SOME ESTIMATES OF THE INTEGRAL $\int_0^{2\pi} \log |P(e^{i\theta})|(2\pi)^{-1} d\theta$

Stojan Radenović

Abstract. We investigate some estimates of the integral $\int_0^{2\pi} \log |P(e^{i\theta})|\frac{d\theta}{2\pi}$, if the polynomial $P(z)$ has a concentration at low degrees measured by the l_p-norm, $1 \leq p \leq 2$. We also obtain better estimates for some concentrations than those obtained in [1].

Let $P(z) = \sum_{j=0}^{n} a_j z^j$ be a polynomial with complex coefficients and let d be a real number such that $0 < d \leq 1$. We say that $P(z)$ has a concentration d of degrees of at most k, measured by the l_p-norm $(p \geq 1)$, if

$$\left(\sum_{j \leq k} |a_j|^p\right)^{1/p} \geq d \left(\sum_{j \geq 0} |a_j|^p\right)^{1/p}.$$ \hspace{1cm} (1)

Polynomials with concentrations of low degrees were introduced by B. Beauzamy and P. Enflo; this plays an important role in the construction of an operator on a Banach space with no non-trivial invariant subspace. We investigate here the estimates of the integral $\int_0^{2\pi} \log |P(e^{i\theta})|\frac{d\theta}{2\pi}$ of such polynomials. In the following, we shall normalize $P(z)$ under the l_p-norm and also assume that

$$\left(\sum_{j \geq 0} |a_j|^p\right)^{1/p} = 1.$$ \hspace{1cm} (2)

Otherwise, the concentration of polynomials is measured by some of the well-known norms: $|P|_p (p \geq 1)$, $|P|_2 = \|P\|_2$, $|P|_\infty$, $|P|_{l_\infty}$, \ldots. For details see [1].

Similarly, as in [1, Lemme 3] (case $p = 2$) and [2, Theorem 1] (case $p = 1$) we have the following results:

AMS Subject Classification (1991): Primary 30 C10
Theorem 1. Let \(P(z) = \sum_{j \geq 0} a_j z^j \) be a polynomial which satisfies (1) and (2). Then:

\[
\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq \sup_{1 < t \leq 3} f_{a,k}(t), \quad \text{where}
\]

\[
f_{a,k}(t) = \begin{cases} t \log \left(\frac{t-1}{t+1} \right)^{k+1} - \frac{1}{2} t^2, & 1 < p \leq 2 \\ t \log \left(\frac{t-1}{t+1} \right)^{k+1}, & p = 1 \end{cases}
\]

(see also [3, Lemma 3.2; p. 28, 29]).

Theorem 2. Let \(P(z) \) be a polynomial as in Theorem 1. Then:

\[
\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq \sup_{1 < t < +\infty} f_{d,k,p}(t), \quad \text{where}
\]

\[
f_{d,k,p}(t) = \begin{cases} \frac{t}{p} \log dp \left(\frac{t+1}{t-1} \right)^{p(k+1) - 1} - \frac{1}{2} t^2, & 1 < p \leq 2 \\ t \log \left(\frac{t+1}{t-1} \right)^{k+1}, & p = 1 \end{cases}
\]

(for the case \(p = 1 \) see [2, Theorem 1]).

For proofs of the Theorems 1 and 2 we use (as in [1, Lemme 3] and [2, Theorem 1] (see also [3])) the following well known facts

1° \(a_j = \int_0^{2\pi} P(re^{i\theta}) \frac{d\theta}{2\pi} \) if \(0 < r < 1 \).

2° \(|a_j| \leq |P(z_0)| \frac{1}{r^j} \), where \(|P(z_0)| = \max_{|z| = r} |P(z)| \).

3° The classical Jensen’s inequality and the known transformation:

\[
\log |P(z_0)| \leq \int_0^{2\pi} \log \left| P \left(\frac{z_0 + e^{i\theta}}{1 + z_0 e^{i\theta}} \right) \right| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log |P(e^{i\theta})| \frac{1 - r^2}{|1 - z_0 e^{i\theta}|^2} \frac{d\theta}{2\pi},
\]

where \(|z_0| = r \).

4° If \(0 < r < 1 \) then \(\frac{1 - r}{1 + r} = \frac{1 - r^2}{|1 - z_0 e^{i\theta}|^2} \leq \frac{1 + r}{1 - r} \).

5° \(\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} = \int_{\log |P| < 0} + \int_{\log |P| > 0}, \) and

\[
\int_{\log |P| > 0} = \frac{1}{2} \int_{\log |P| > 0} \log |P|^2 \frac{d\theta}{2\pi}
\]

\[
= \frac{1}{2} |P|^2 \frac{d\theta}{2\pi} = \frac{1}{2} |P|^2 \frac{d\theta}{2\pi} = \frac{1}{2} |P|^2 = \frac{1}{2} |P|^2.
\]
because the l_p norm decreases with p.

Finally, we get the functions $f_{d,k}(t)$ and $f_{d,k,p}(t)$ after the change of variables $t = (1 + r)/(1 - r)$.

Taking $t = 2$ and $1 < p \leq 2$, we have the Beuzamy-Enflo’s estimate from [1]:

$$\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq 2 \log \frac{d}{e^{\cdot 3k+1}}.$$

From the following proposition and Corollaries 1 and 3, it follows that this is not the best possible estimate.

Proposition 1. Let $P(z)$ be a polynomial as in Theorem 1. Then there exists a $t_k \in [1,3]$ such that

$$\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq f_{d,k}(t_k) \geq \begin{cases} 2 \log \frac{d}{e^{\cdot 3k+1}} : & 1 < p \leq 2; \\ 2 \log \frac{d}{3k+1} : & p = 1. \end{cases}$$

Proof. First observe that $\lim_{t \to 1^+} f_{d,k}(t) = -\infty$ and the function $f_{d,k}(t)$ has the form

$$f_{d,k}(t) = t \log d + t(k+1) \log(t-1) - t(k+1) \log(t+1), \quad 1 < p \leq 2.$$

We find derivatives:

$$f'_{d,k} = \log d + (k+1)(\log(t-1) - 1 - \log(t+1))$$

$$f''_{d,k} = 2(k+1) + 2(k+1) - 1 + t(k+1) \left(\frac{1}{(t+1)^2} - \frac{1}{(t-1)^2}\right)$$

$$f'''_{d,k} = 3(k+1) - 3(k+1) + 2t(k+1) \left(\frac{1}{(t+1)^3} - \frac{1}{(t-1)^3}\right).$$

It is clear that $\lim_{t \to 1^+} f''_{d,k} = -\infty$ and $f'''_{d,k}(3) < 0$. Since $f'''_{d,k}(t) > 0$, $t \in [1,3]$, it follows that $f''_{d,k}(t) < 0$, hence $f'_{d,k}(t)$ decreases. We also observe that $\lim_{t \to 1^+} f'_{d,k}(t) = +\infty$. Hence, there exists exactly one $t_k \in [1,3]$ such that $f_{d,k}(t_k) = 0$ or $f'_{d,k}(t) > 0$ for each $t \in [1,3]$. This proves the proposition. The case $p = 1$ can be treated similarly.

Corollary 1. Let $P(z)$ be a polynomial as in Theorem 1. Then for every $d \in [0,1]$ and $k \in \{0,1,2,3,4,5,6,7\}$ there exists a $t_k \in [1,2]$, such that

$$\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq f_{d,k}(t_k) > 2 \log \frac{d}{e^{\cdot 3k+1}}, \quad 1 < p \leq 2.$$

For the case $p = 1$ a similar result does not hold.
Proof. Since
\[f'_{d,k}(3) = \frac{4}{3} k - \frac{2}{3} - (k + 1) \log 3 + \log d = 0.235k - 1.773 + \log d, \quad \log 3 = 1.098 \]
it follows that \(f'_{d,k}(2) < 0 \), for each \(d \in [0,1] \) and \(k \in \{0,1,\ldots,7\} \). Hence,
\[
\max_{1 < t \leq 3} f_{d,k}(2) > f_{d,k}(2) = 2 \log \frac{d}{e \cdot 3^{k+1}}.
\]
If \(p = 1 \), we have
\[
f'_{d,k}(2) = (4/3 - \log 3) k + (4/3 - \log 3) + \log d = 0.235k + 0.235 + \log d \geq 0.
\]

Corollary 2. Let \(P(z) \) be a polynomial as in Theorem 1. Then for every \(d \in [0,1] \) and \(k > 7 \) for which \(\log(3k+1/d) \) is a rational number, there exists a \(t_k \in [1,3], t_k \neq 2 \), such that
\[
\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq f_{d,k}(t_k) > f_{d,k}(2), \quad 1 \leq p \leq 2.
\]

Proof. In both cases \((1 < p \leq 2, p = 1)\) we have that \(f'_{d,k}(2) = 0 \) iff \(4/3 - 2/3 = \log 3^{k+1} / d \), that is \(4/3 k + 4/3 = \log 3^{k+1} / d \).

Corollary 3. Let \(P(z) \) be a polynomial as in Theorem 1. Then for every \(d \in [0,1] \) there exists a \(k_1 \in \mathbb{N} \) such that for \(k > k_1 \):
\[
\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq f_{d,k}(3) = \begin{cases}
\frac{3 \log d}{e^{3/2} (2k+1)}, & 1 < p \leq 2 \\
\frac{3 \log d}{2k+1}, & p = 1 \\
\frac{2 \log d}{3k+1}, & 1 < p \leq 2 \\
\frac{2 \log d}{3k+1}, & p = 1.
\end{cases}
\]

Proof. Since
\[
f'_{d,k}(3) = \frac{3}{4} k - \frac{9}{4} - (k + 1) \log 2 + \log d = 0.057k - 2.943 + \log d,
\]
we have that \(\max_{1 < t \leq 3} f_{d,k}(t) = f_{d,k}(3) \) \((1 < p \leq 2)\) iff \(f'_{d,k}(3) \geq 0 \). Hence, it follows that
\[
k_1 = \left\lfloor \frac{(9/4) + \log 2 - \log d}{(3/4) - \log 2} \right\rfloor = [51.634 - 17.543 \log d].
\]
Similarly, for \(p = 1 \) there exists the corresponding number \(k_1 \).
Corollary 4. Let $P(z)$ be a polynomial as in Theorem 1. Then, for every $d \in [0, 1]$ and $k \in \{0, 1, 2, \ldots, 51\}$, there exists a $t_k \in [1, 3]$, such that
\[
\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi} \geq f_{d,k}(t_k) > f_{d,k}(3) = 3 \log \frac{d}{e^{2/2k+1}}, \quad 1 < p \leq 2.
\]

Proof. This is clear from the equality
\[
f'_{d,k}(3) = \frac{3}{4} k - \frac{9}{4} = (k + 1) \log 2 = 0.057 k - 2.943 + \log d, \quad 1 < p \leq 2.
\]

Since for $p = 1$ we have that $f'_{d,k}(3) = 0.057 k + 0.057 + \log d$, it follows that the conclusion is not the same as in the case $1 < p \leq 2$.

We shall now analyse the estimate of the integral \(\int_0^{2\pi} \log |P(e^{i\theta})| \frac{d\theta}{2\pi}\) with the function $f_{d,k,p}(t)$ as in Theorem 2. The following results can be compared with [2, Th. 2, Lemmas 3 and 4]. Firstly, we represent $f_{d,k,p}(t)$ in the form:

\[
f_{d,k,p} = h_{d,p}(t) + g_k(t) - \frac{1}{p} \cdot t \cdot \log \left[1 - \left(\frac{t - 1}{t + 1}\right)^{\frac{1}{p(k+1)}}\right],
\]

where (see [2])

\[
h_{d,p} = t \log d - \frac{1}{2} t^2 + \frac{t}{p} \log [(t+1)^p - (t-1)^p]
\]

\[
g_k(t) = kt \log (t-1) - (k+1)t \log (t+1).
\]

It is clear that $f_{d,k,p}(t) > h_{d,p}(t) + g_k(t)$, $t > 1$. We shall now prove the following.

Proposition 2. The function $h_{d,p}(t) + g_k(t)$ takes its maximum value at a point (unique) t_k such that $t_k \to +\infty$, when $k \to +\infty$.

Proof. We essentially use the same argument as in [2]. From [2] it follows that $g_k'(t) < 0$, $t > 1$. Now, we find derivatives for $h_{d,p}(t)$

\[
h'_{d,p}(t) = \log d - t - \frac{1}{p} \log [(t+1)^p - (t-1)^p] + t \cdot \frac{(t+1)^{p-1} - (t-1)^{p-1}}{(t+1)^p - (t-1)^p}.
\]

\[
h''_{d,p}(t) = -1 + 2 \cdot \frac{(t+1)^{p-1} - (t-1)^{p-1}}{(t+1)^p - (t-1)^p} - \frac{t(p-1)}{A^2(t)} \left([(t+1)^{p-2} - (t-1)^{p-2}] A(t) - \frac{t[(t+1)^{p-1} - (t-1)^{p-1}]}{A(t)} \right),
\]

where $A(t) = (t+1)^p - (t-1)^p$.

Since $p \in [1, 2]$, $t > 1$, it is clear that

\[
h''_{d,p}(t) < 0 \quad \text{iff} \quad -1 + 2 \cdot \frac{(t+1)^{p-1} - (t-1)^{p-1}}{A(t)} < 0.
\]
But, this is true iff \(\varphi_p(t) < 0 \), where
\[
\varphi_p(t) = 2(t + 1)^{p-1} - 2(t - 1)^{p-1} - (t + 1)^p + (t - 1)^p.
\]
Hence, we find that
\[
\varphi_p'(t) = 2(p - 1)(t + 1)^{p-2} - 2(p - 1)(t - 1)^{p-2} + p[(t - 1)^{p-1} - (t + 1)^{p-1}] < 0.
\]
This shows that \(h_{d,p}'(t) + g_k''(t) < 0 \). Since
\[
\lim_{t \to +1} \left(h_{d,p}'(t) + g_k'(t) \right) = +\infty \quad \text{and} \quad \lim_{t \to +1} \left(h_{d,p}'(t) + g_k'(t) \right) = -\infty,
\]
equation \(h_{d,p}'(t) + g_k'(t) = 0 \) has exactly one solution \(t_k \). From the equality \(h_{d,p}'(t) + g_k'(t) = 0 \) we get with \(t = t_k \),
\[
k = \frac{(t^2 - 1) \log(t + 1) + \log \left(\frac{t}{(t - 1)^{2k} - 1} \right) - \frac{1}{2} t^2}{2t + (t^2 - 1) \log(t - 1) - (t^2 - 1) \log(t + 1)},
\]
wherefrom we easily deduce that \(t_k \to +\infty \).

Remark 1. From the Proposition 1 it follows that the function \(f_{d,k,p}(t) \) \((1 < p \leq 2)\) has the same behaviour as the function \(f_{d,k}(t) \) from [2]. If \(p = 2 \) we get
\[
f_{d,k,2}(t) = t \log \frac{2d}{t - 1} \sqrt{\frac{t}{((t + 1)/(t - 1))^{2k+2} - 1} - \frac{1}{2} t^2},
\]
which is the answer to the remark from [2, p. 223].

For the function \(f_{d,k,2}(t) \) we have the following results

Proposition 3. Let \(f_{d,k,2}(t) \) be the function from Theorem 2 \((p = 2)\). Then, when \(k \to +\infty \)

1° \(\frac{4}{3} t_k \to 1 \);

2° \(t_k \log \left(1 - \frac{t_k - 1}{t_k + 1} \right)^{2(k+1)} \to 0 \);

3° \(f_{d,k,2}(t_k) \) and \(h_{d,2}(t_k) + g_k(t_k) \) are asymptotically equivalent.

Namely, \(f_{d,k,2}(t) = t \log d - \frac{1}{2} t^2 + \frac{t}{2} \log 4t + g_k(t) \), where \(g_k(t) \) is same as in [2]. The proof is similar as in [2], i.e. it uses the Taylor expansion of \(\log(1 \pm x) \), \(x \to 0 \).

Acknowledgement. The author takes this opportunity to express his sincere thanks to Professor B. Beauzamy for providing him with the reprints of his papers.

References

Prirodno matematički fakultet

34000 Kragujevac, p. 60

Jugoslavija