VARIATIONAL INEQUALITIES OF STRONGLY NONLINEAR
ELLiptIC OPERATORS OF INFINITE ORDER

A.T. El-dessouky

Abstract. We study the solvability of variational inequalities for strongly nonlinear elliptic operators of infinite order with liberal growth on their coefficients.

1. Introduction. In a number of papers Dubinskii [cf. [3], [4]) has considered the nontriviality of Sobolev spaces of infinite order corresponding to the boundary value problems for linear differential equations of infinite order and obtained the solvability of those problems in the case when the coefficients of the equation grow polynomially with respect to the derivatives.

Chan Dyk Van [2], extended the results of Dubinskii to include the case of operators with rapidly (slowly) increasing coefficients.

We generalize the results above to cover the solvability of variational inequalities for strongly nonlinear operators of the form

$$Au(x) + Bu(x), \quad x \in \Omega$$

where

$$Au(x) = \sum_{|\alpha| = 0}^{\infty} (-1)^{|\alpha|} D^\alpha A_{\alpha}(x, D^\gamma u(x)), \quad |\gamma| \leq |\alpha|, \quad (1.2)$$

$$Bu(x) = \sum_{|\alpha| \leq M} (-1)^{|\alpha|} D^\alpha B_{\alpha}(x, D^\alpha u(x)), \quad M \text{ fixed,} \quad (1.3)$$

with more liberal growth on the coefficients. Here Ω is a bounded domain in \mathbb{R}^n.

2. Preliminaries. Let Ω be a bounded domain in $\mathbb{R}^n \ (n \geq 2)$ for which the cone and the strong local lipschitz properties hold [1].

An N-function is any continuous map $\Phi : \mathbb{R} \to \mathbb{R}$ which is even, convex and satisfies $\Phi(t)/t \to 0$ (resp. $+\infty$) as $t \to 0$ (resp. $+\infty$). The conjugate or
complementary N-function of Φ and its nonnegative reciprocal will be denoted by Φ and Φ^{-1}, respectively \cite{1}.

When Φ and Ψ are two N-functions we shall write $\Psi \ll \Phi$ if for any $\varepsilon > 0$
\[
\lim_{t \to \infty} \frac{\Psi(t)}{\Phi(\varepsilon t)} = 0
\]
The Orlicz space $L_{\Phi_\alpha}(\Omega)$ corresponding to N-functions Φ_α is defined as the set of all measurable functions $u : \Omega \to \mathbb{R}$ such that
\[
\|u\|_{\Phi_\alpha} = \inf \left\{ \lambda > 0 ; \int_{\Omega} \Phi_\alpha \left(\frac{u}{\lambda} \right) \leq 1 \right\} < \infty
\]
Let $E_{\Phi_\alpha}(\Omega)$ be the (norm) closure in $L_{\Phi_\alpha}(\Omega)$ of $L^\infty(\Omega)$-functions with compact support in Ω.

The Sobolev-Orlicz spaces of functions u such that u and its distributional derivatives $D^\alpha u$, $|\alpha| \leq m$, lie in $L_{\Phi_\alpha}(\Omega)$ (resp. $E_{\Phi_\alpha}(\Omega)$). These are Banach spaces for the norm
\[
\|u\|_{m, \Phi_\alpha} = \left(\sum_{|\alpha| \leq m} \|D^\alpha u\|_{\Phi_\alpha}^2 \right)^{1/2}
\]
and they are identified to subspaces of the product
\[
\prod_{|\alpha| \leq m} L_{\Phi_\alpha}(\Omega) = \prod L_{\Phi_\alpha}
\]
Denote by $C^\infty(\Omega)$ the space of infinitely differentiable functions on Ω, $D(\Omega)$ the space $C^\infty(\Omega)$ with compact support in Ω and by $D'(\Omega)$ the space of distributions on Ω.

We define $W^m_0 L_{\Phi_\alpha}(\Omega)$ as the $\sigma(\Pi L_{\Phi_\alpha}, \Pi E_{\Phi_\alpha})$ closure of $D(\Omega)$ in $W^m L_{\Phi_\alpha}(\Omega)$ and $W^m_0 E_{\Phi_\alpha}(\Omega)$ as the norm closure of $D(\Omega)$ in $W^m L_{\Phi_\alpha}(\Omega)$. The Sobolev-Orlicz spaces of infinite order is defined by:

\[
W^\infty L_{\Phi_\alpha}(\Omega) = \left\{ u \in C^\infty(\Omega) : \sum_{|\alpha| = 0}^\infty \int_{\Omega} \Phi_\alpha (D^\alpha u(n)) \, dx < \infty \right\},
\]
and

\[
W^\infty_0 L_{\Phi_\alpha}(\Omega) = \left\{ u \in D(\Omega) : \|u\|_{\infty, \Phi_\alpha} = \sum_{|\alpha| = 0}^\infty \|D^\alpha u\|_{\Phi_\alpha} < \infty \right\}
\]
They are Banach spaces with the norm $\|\cdot\|_{\infty, \Phi_\alpha}$. Similar definition of $W^\infty_0 E_{\Phi_\alpha}(\Omega)$ is obvious. The dual of $W^\infty_0 L_{\Phi_\alpha}(\Omega)$ (resp. $W^\infty_0 E_{\Phi_\alpha}(\Omega)$) will be denoted by $W^{-\infty} E_{\Phi_\alpha}(\Omega)$ (resp. $W^{-\infty} L_{\Phi_\alpha}(\Omega)$), where

\[
W^{-\infty} E_{\Phi_\alpha}(\Omega) \text{ (resp. } W^{-\infty} L_{\Phi_\alpha}(\Omega)) = \left\{ h \in D'(\Omega) : h(x) = \sum_{|\alpha| = 0}^\infty (-1)^{|\alpha|} D^\alpha h_\alpha, h_\alpha \in E_{\Phi_\alpha}(\Omega) \text{ (resp. } L_{\Phi_\alpha}(\Omega)) \right\}
\]
These spaces are Banach spaces with the norm
\[\| h \|_{E_{\Phi, \alpha}} = \sum_{|\alpha|=0}^{\infty} \| h_\alpha \|_{E_{\Phi, \alpha}} < \infty \]

The duality of \(W_0^\infty L_{\Phi, \alpha}(\Omega) \) and \(W^{-\infty} E_{\Phi, \alpha}(\Omega) \) is defined by
\[\langle h, u \rangle = \sum_{|\alpha|=0}^{\infty} \int_{\Omega} h_\alpha(x) D^\alpha u(x) \, dx. \]

Let \(1 \leq p < \infty \). The Sobolev spaces of infinite order are defined by
\[W_0^\infty(a_\alpha, p)(\Omega) = \left\{ u \in D(\Omega) : \| u \|_{E_{\Phi, \alpha}} = \sum_{|\alpha|=0}^{\infty} a_\alpha \int_{\Omega} |D^\alpha u(x)|^p \, dx < \infty \right\}, \]
where \(a_\alpha \geq 0 \) is a sequence of numbers. We formally define the spaces dual to \(W_0^\infty(a_\alpha, p)(\Omega) \) via:
\[W^{-\infty}(a_\alpha, p')(\Omega) = \left\{ h : h = \sum_{|\alpha|=0}^{\infty} (-1)^{|\alpha|} a_\alpha D^\alpha h_\alpha; h_\alpha \in L^{p'}(\Omega) : \right\}
\[\| h \|_{E_{\Phi, \alpha}}^p = \sum_{|\alpha|=0}^{\infty} a_\alpha \| h_\alpha \|_{L^{p'}(\Omega)} < \infty, \quad p' = \frac{p}{p-1}. \]

For more details we may refer to [1-3].

Let \(l, M \in N, M \) be fixed. By \(\lambda_1 \) and \(\lambda_2 \) we denote the number of multi-indices \(\alpha \) with \(|\alpha| \leq l, |\alpha| \leq M \), respectively.

3. **Conditions on the coefficients.** To define the operator (1.2) more precisely we introduce either the following set of hypotheses:

\(A_1 \) For all \(l \in N \) and \(|\gamma| \leq |\alpha| \), each \(A_\alpha(x, \xi_\gamma) \) is a Caratheodory function, i.e., \(A_\alpha(x, \xi_\gamma) \) is measurable in \(x \in \Omega \) for all fixed \(\xi_\gamma \in R^{m_\gamma} \), and continuous in \(\xi_\gamma \) for almost all \((a, \alpha)\) fixed \(x \in \Omega \). Moreover there exists a function \(h_1 \in L^1(\Omega) \), independent of \(l \), and a sequence of positive numbers \((S_l)_{l \in N} \) with \(\sum l \lambda_1 S_l < \infty \) such that
\[\sup_{|\xi_\gamma| \leq S_l^{-1}} |A_\alpha(x, \xi_\gamma)| \leq h_1(x) S_l. \]

\(A_2 \) There exists a constant \(C_0 > 0 \) and a function \(h_2 \in L^1(\Omega) \), both independent of \(l \), such that
\[\sum_{|\alpha|=0}^{l} A_\alpha(x, \xi_\gamma) |\xi_\gamma|^p \geq C_0 \sum_{|\alpha|=0}^{l} a_\alpha |\xi_\gamma|^p - h_2(x) \]
for all \(x \in \Omega, \xi_\gamma \in R^{m_\gamma} \).
A₃) For all \(l \in \mathbb{N} \), \(a, x \in \Omega \) and all distinct \(\xi, \xi^*_\in \mathbb{R}^{l_1} \)
\[
\sum_{|\alpha|=0}^{l} (A_\alpha(x, \xi) - A_\alpha(x, \xi^*_\alpha))(\xi - \xi^*_\alpha) > 0;
\]

or the following one:

A₁) For all \(l \in \mathbb{N} \), each \(A_\alpha(x, \xi) \) is a real-valued Caratheodory function defined on \(\Omega \times \mathbb{R}^{l_1} \). There exist two \(\mathcal{N} \)-functions \(\Phi_\alpha, \Psi_\alpha \) with \(\Psi_\alpha \ll \Phi_\alpha \); functions \(a_\alpha(x) \) in \(E_{\Phi_\alpha}(\Omega) \) for \(|\alpha| = l \), in \(L_{\Phi_\alpha}(\Omega) \) for \(|\alpha| < l \); and positive constants \(c_1, c_2 \), both independent of \(l \), such that

if \(|\alpha| = l \), then
\[
|A_\alpha(x, \xi)| \leq a_\alpha(x) + c_1 \sum_{|\beta|=l} \Phi_\alpha^{\alpha^{-1}}(c_2 \xi_\beta) + c_1 \sum_{|\beta|<l} \Phi_\alpha^{\alpha^{-1}}(c_2 \xi_\beta),
\]

if \(|\alpha| < l \), then
\[
|A_\alpha(x, \xi)| \leq a_\alpha(x) + c_1 \sum_{|\beta|<l} \Phi_\alpha^{\alpha^{-1}}(c_2 \xi_\beta) + c_1 \sum_{|\beta|<l} \Phi_\alpha^{\alpha^{-1}}(c_2 \xi_\beta)
\]

for a.a. \(x \in \Omega \) and all \(\xi, \xi^*_\in \mathbb{R}^{l_1} \).

A₂) There exist functions \(b_\alpha \) in \(E_{\Phi_\alpha}(\Omega) \) for \(|\alpha| = l \), in \(L_{\Phi_\alpha}(\Omega) \) for \(|\alpha| < l \); function \(h_3 \in L^1(\Omega) \) and positive constants \(d_1, d_2 \), independent of \(l \), such that
\[
\sum_{|\alpha|=0}^{l} A_\alpha(x, \xi_\alpha) \xi_\alpha \geq d_1 \sum_{|\alpha|=0}^{l} \Phi_\alpha(d_2 \xi_\alpha) - \sum_{|\alpha|=0}^{l} b_\alpha(x) \xi_\alpha - h_3(x)
\]

for a.a. \(x \in \Omega \) and all \(\xi, \xi^*_\in \mathbb{R}^{l_1} \).

A₃) As \(A₃) \).

For the operator (1.3) we impose the following assumption:

B₁) \(B_\alpha(x, \xi_\alpha) \) is a Caratheodory function defined on \(\Omega \times \mathbb{R}^{l_2} \). There exists a function \(h_4 \) in \(L^1(\Omega) \) such that: \(|B_\alpha(x, \xi_\alpha)| \leq h_4(x) P_\alpha(\xi_\alpha) \) for some continuous function \(P_\alpha : \mathbb{R}^{l_2} \to \mathbb{R} \) and \(B_\alpha(x, \xi_\alpha) \xi_\alpha \geq 0, \ x \in \Omega, \ |\alpha| \leq M \).

4. Main results. THEOREM 1. Let \(K \) be a closed convex subset of \(\mathbb{W}_0^\infty(a, \mathbb{R})^p(\Omega) \) containing the origin. Suppose that \(A₁) - A₃) \) and \(B₁) \) hold. Let \(f \in \mathbb{W}^{-\infty}(a, \mathbb{R})^p(\Omega) \) be given. Then there exists at least one solution \(u \in K \) of
\[
\langle A(u), v - u \rangle + \langle B(u), v - u \rangle \geq \langle f, v - u \rangle \quad \forall v \in K \tag{4.1}
\]

Proof. Consider a partial sum of order \(2l \) of the series (4.1):
\[
\langle A_{2l}(u), v - u_l \rangle + \langle B(u_l), v - u_l \rangle \geq \langle f, v - u_l \rangle \quad \forall v \in K \tag{4.2}
\]
where
\[A_2(u_l)(x) = \sum_{|\alpha| = 0}^l (-1)^{|\alpha|} D^\alpha A_\alpha(x, D^\gamma u_l), \quad |\gamma| \leq |\alpha|, \]
\[B(u_l)(x) = \sum_{|\alpha| \leq M < l} (-1)^{|\alpha|} D^\alpha B_\alpha(x, D^\alpha u_l), \]
and
\[f^l = \sum_{|\alpha| = 0}^l (-1)^{|\alpha|} a_\alpha D^\alpha f_\alpha \in W^{-l}(a_\alpha, p')(\Omega). \]
For solvability of (4.2), in view of \(A_1 - A_3 \) and \(B_1 \), we refer to [5] and [6]. Set \(v = 0 \) in (4.2), and use \(A_3 \) and \(B_1 \); we obtain an a priori bound
\[\|u_l\|_{W^l_0(a_\alpha, p)(\Omega)} \leq \text{const.} \]
Since \(u_l \in W^l(a_\alpha, p)(\Omega) \) implies \(u_l \in W_0^l(a_\alpha, p)(\Omega) \), we get from compactness of \(W^l(a_\alpha, p)(\Omega) \rightarrow C(\Omega) \), the uniform convergence of \(u_l(x) \rightarrow u(x) \) on \(\Omega \) as \(l \rightarrow \infty \).
Similarly, by compactness of \(W^l(a_\alpha, p)(\Omega) \rightarrow C^{l-m}(\Omega) \), for large enough \(l \) and \(m \in \mathbb{N} \), we obtain,
\[D^\alpha u_l(x) \rightarrow D^\alpha u(x) \quad \text{uniformly on } \Omega \text{ as } l \rightarrow \infty \quad (4.3) \]
Using the definition of \(W^\infty_0(a_\alpha, p)(\Omega) \) we get \(u \in W^\infty_0(a_\alpha, p)(\Omega) \) and by closedness of \(K, u \in K \).

It remains to show that \(u \) is a solution of (4.1). For this purpose it suffices to prove the assertions:
\[\text{Lim}_l \langle A_2(u_l), z \rangle = \langle A(u), z \rangle \quad (4.4) \]
\[\text{Lim}_l \langle B(u_l), z \rangle = \langle B(u), z \rangle \quad (4.5) \]
\[\text{Lim}_l \inf \langle A_2(u_l), u_l \rangle \geq \langle A(u), u \rangle \quad (4.6) \]
and
\[\text{Lim}_l \inf \langle B(u_l), u_l \rangle \geq \langle B(u), u \rangle \quad (4.7) \]
for all \(z \in K \). To prove (4.4) we use the inequality:
\[|A_\alpha(x, D^\gamma u_l)| \leq \sup_{|\xi| \leq S^{-1}} |A_\alpha(x, \xi)| + S_i A_\alpha(x, D^\gamma u_l) D^\alpha u_l \]
as well as the uniform boundedness of \(\{A_2(u_l, u_l)\} \) in \(L^1(\Omega) \), to obtain the uniform equi-integrability of \(\{A_\alpha(x, D^\gamma u_l)\} \) in \(L^1(\Omega) \) provided that \(\sum S_i \lambda_i (., l) < \infty \). Now, in view of Vitali’s convergence theorem, (4.7) follows.
To prove (4.5) we have
\[\sum_{|\alpha| \leq M} \int_\Omega |B_\alpha(x, D^\alpha u_l)| \leq \int_\Omega |h(x) P_\alpha(D^\alpha u_l)| \leq \|
h(x)\|_{L^1(\Omega)} \sum_{|\alpha| \leq M} \|P_\alpha(D^\alpha u_l)\|_{L^1(\Omega)} \leq \text{const.}, \]
and (4.5) follows from the dominated convergence theorem.

The assertions (4.6) and (4.7) are direct consequences of Fatou’s lemma in view of the uniform convergence (4.3), and the proof is completed.

The result above enables us to state the following theorem.

Theorem 2. Let K be a convex $\sigma(W^{\infty}L_{\Phi_0}(\Omega), W^{-\infty}E_{\Phi_0}(\Omega))$ sequentially closed subset of $W^{\infty}L_{\Phi_0}(\Omega)$ such that $K \cap W^{0\infty}E_{\Phi_0}(\Omega)$ is $\sigma(W^{\infty}L_{\Phi_0}(\Omega), W^{-\infty}E_{\Phi_0}(\Omega))$ dense in K and $0 \in K$. Let $f \in W^{-\infty}E_{\Phi_0}(\Omega)$ be given, and let the hypotheses $A_1^* - A_3^*$ hold. Then there exists at least one solution $u \in K$ such that:

$$
(Au, v - u) - (f, v - u) \geq 0 \quad \forall v \in K
$$

(4.8)

Outline of proof. As in Theorem 1, we may consider the auxiliary variational inequality

$$(A_{2m}(u_m), v - u_m) - (f^m, v - u_m) \geq 0 \quad \forall v \in K
$$

(4.9)

The solvability of (4.9) is a consequence of [7]. Thus, there exists $u_m \in K$ solving (4.9). Put $v = 0$ in (4.9) and make use of A_2^*; we have

$$
\int_{\Omega} \Phi_0(c_2 D^\alpha u_m) \leq c_3, \quad \text{where} \quad c_3 = c_3(||f||_{W^{0\infty}L_{\Phi_0}(\Omega)})
$$

Hence, there exists a subsequence of u_m such that $u_m \rightharpoonup u$ in $C_0^\infty(\Omega)$. By the definition of $W^{\infty}L_{\Phi_0}(\Omega)$ and the $\sigma(W^{\infty}L_{\Phi_0}(\Omega), W^{-\infty}E_{\Phi_0}(\Omega))$ sequential closedness of K, we get $u \in K$. To show that u solves (4.8) it remains to prove the assertions (4.4) and (4.6) of Theorem 1. A similar argument as in the proof of Theorem 1, may be used to finish the proof.

Example. As a particular example which can be treated by Theorem 1, outside the scope of [3], one may consider the nonlinear Dirichlet boundary-value problem

$$
\sum_{l=0}^{\infty} \sum_{|\alpha|=l} (-1)^{|\alpha|} D^\gamma(a_{\alpha} s^l_{\gamma} |D^\beta u|^{P-2} D^\beta u) + |u|^{\gamma} = f(x)
$$

where $(s_l)_{l \in \mathbb{N}}$ is a sequence described in A_1^*). In fact

$$
A_{\alpha}(x, D^\gamma u) := a_{\alpha} s_{\gamma}^{P} |D^\gamma u|^{P-2} D^\gamma u, \quad |\gamma| = |\alpha|
$$

$$
B_{\alpha}(x, D^\gamma u) := |u|^{\gamma}
$$

By the Sobolev’s embedding theorem, for $u \in W^l(a_{\alpha}, p)(\Omega)$ ($lp > n$), the functions $D^\alpha u$ are bounded for all $|\alpha| \leq l$. Therefore $A_{\alpha}(x, \xi_\alpha)$ and $B_{\alpha}(x, \xi_\alpha)$ are $L^\infty(\Omega) \cdot$ functions and hence A_1^* and B_1 follow. Condition A_2^* is obvious, while A_3^* follows in view of the inequality

$$
|x|^P + |y|^P - xy(|x|^{P-2} + |y|^{P-2}) > 0 \quad \text{for} \quad x \neq y
$$

Thus the hypotheses of Theorem 1 are satisfied.
Our example falls outside the scope of [3] because the term $|y| e^{[y]}$ does not verify the polynomial growth condition of [3].

REFERENCES

[2] Chan Dyk Van, Traces of functions from Sobolev-Orlicz classes of infinite order and non-
homogeneous boundary value problems for equations with arbitrary nonlinearity, Soviet
boundary-value problems with unbounded increase of the order of the equation, Math. USSR
Sbornik 72 (1972), 143-162.
problems of arbitrary order, Dr. Phil. Thesis, Al-Azhar University, Cairo, Egypt, 1989.

Department of Mathematics, Faculty of Science
Helwan University, Cairo, Egypt.

(Received 01 12 1991) (Revised 08 03 1993)