LOGICS WITH TWO TYPES OF INTEGRAL OPERATORS

Radosav S. Đorđević

Abstract. We prove completeness theorems for absolutely continuous and singular biprobability models of a logic with integrals. Also in both cases, we prove the finite compactness theorem for a set of sentences of the form \(r \in [r, \bar{r}] \).

We assume throughout the paper that \(A \) is a countable admissible set with \(\omega \in A \). In [2], Keisler introduced a logic \(L_{A/I} \) which has an integral operator which builds terms with bound variables. In our case two types of integral operators \(f_1 \ldots dx \) and \(f_2 \ldots dx \) are allowed.

A biprobability model for \(L_{A/I_1/I_2} \) logic is a model \(\mathfrak{A} = \langle A, R_t, c_t, \mu_1, \mu_2 \rangle \) \(t \in I \), \(j \in J \), where \(\langle A, R_t, c_j \rangle \) is a first-order model without operations and \(\mu_1, \mu_2 \) are probability measures on \(A \). We shall see a difference in semantics for \(L_{A_1/I_2}^a \) and \(L_{A_1/I_2}^s \) by means of the following definition.

Definition 1. (a) An absolutely continuous biprobability model for \(L_{A_1/I_2}^a \) is a biprobability model \(\mathfrak{A} \) such that \(\mu_1 \) is absolutely continuous with respect to \(\mu_2 \), i.e. \(\mu_1 \ll \mu_2 \).

(b) A singular biprobability model for \(L_{A_1/I_2}^s \) is a biprobability model \(\mathfrak{A} \) such that \(\mu_1 \) is singular with respect to \(\mu_2 \), i.e. \(\mu_1 \perp \mu_2 \). \(\Box \)

In both cases, quantifiers are interpreted by

\[
(\int \tau(x, \bar{a}) \, dx)^\mathfrak{A} = \int \tau(b, \bar{a})^\mathfrak{A} \, d\mu_k(b) \quad \text{for } k = 1, 2,
\]

where \(\tau(x, \bar{y}) \) is a term and \(\bar{a} \in A^n \).

Diagonal products \(\mu_k^{(n)} \), which are the corresponding restrictions of completions of \(\mu_k^\mathfrak{A} \)'s \((k = 1, 2) \) to \(\sigma \)-algebras generated by the measurable rectangles and the diagonal sets \(\{ \bar{x} \in A^n : x_i = x_j \} \), can be replaced by sequences of probability measures on \(A^n \)'s which satisfy the Fubini theorem. That generalization of a probability structure is relevant for us.

Mathematics Subject Classification (1991): Primary 03C70

This research was supported by Government of Serbia grant number 0401A, through Matematički institut.
Definition 2. A graded biprobability model for $L_{A I_1I_2}$ is a model
$\mathfrak{A} = \langle A, R_i, c_j, \mu_i^k, \mu^m_i \rangle_{i \in I, j \in J, n \geq 1}$ such that:

1. Each μ_i^k is a countably additive probability measure on A^n.
2. Each n-ary relation R_i is μ_i^k-measurable and the identity relation is $\mu_{I_2}^k$-measurable.
3. $\mu_i^k \times \mu_i^m \leq \mu_{n+m}^k$.
4. Each μ_i^k is preserved under permutation of $\{1, 2, \ldots, n\}$.
5. $\langle \mu_i^k : n \in \mathbb{N} \rangle$ has the Fubini property: If B is μ_{m+n}^k-measurable, then
 (a) For each $\bar{x} \in A^m$, the section $B_{\bar{x}} = \{ \bar{y} : B(\bar{x}, \bar{y}) \}$ is μ_n^k-measurable.
 (b) The function $f(\bar{x}) = \mu_i^k(B_{\bar{x}})$ is μ_n^k-measurable.
 (c) $\int f(\bar{x}) d\mu_m = \mu_m^{n+m}(B)$. \hfill \square

Definition 3. (a) A graded biprobability model for $L^{a}_{A I_1I_2}$ is a graded biprobability model \mathfrak{A} such that $\mu_i^k \ll \mu_{n}^k$ for each $n \in \mathbb{N}$.

(b) A graded biprobability model for $L^{a}_{A I_1I_2}$ is a graded biprobability model \mathfrak{A} such that $\mu_i^k \perp \mu_{n}^k$ for each $n \in \mathbb{N}$. \hfill \square

1. The logic $L^{g}_{A I_1I_2}$. Axioms and rules of inference for $L^{a}_{A I_1I_2}$ are those for $L_{A I}$, as listed in [3] with both \int_1 and \int_2 playing the role of \int, together with the following axioms:

(A1) Axioms of continuity of integral operators: $(i, j = 1, 2)$

(a) $\bigwedge_n \bigvee_m \bigwedge_k \int_i F_k \left(\int_j \tau(\bar{x}, \bar{y}) \, d\bar{x} \right) d\bar{y} < \frac{1}{n}$,

where $F_k(s) = \begin{cases} 1, & \text{if } r - 1/m + 1/k \leq s \leq r - 2/k, \\ 0, & \text{if } s \leq r - 1/m \text{ or } s \geq r - 1/k \\ \text{linear, for other cases} \end{cases}$

is a continuous real function such that $F_k \upharpoonright \mathbb{Q} \in A$.

(b) $\bigwedge_n \bigvee_m \bigwedge_k \int_i G_k \left(\int_j \tau(\bar{x}, \bar{y}) \, d\bar{x} \right) d\bar{y} < \frac{1}{n}$,

where $G_k(s) = \begin{cases} 1, & \text{if } r + 2/k \leq s \leq r + 1/m - 1/k, \\ 0, & \text{if } s \leq r + 1/k \text{ or } s \geq r + 1/m \\ \text{linear, for other cases} \end{cases}$

(A2) Axiom of absolute continuity:

$\bigwedge_{\epsilon \in \mathbb{Q}_+} \bigvee_{\delta \in \mathbb{Q}_+} \bigwedge_n \bigvee_{\tau \in T_n} (| \int_2 \tau(\bar{x}) \, d\bar{x} | < \delta \Rightarrow | \int_1 \tau(\bar{x}) \, d\bar{x} | < \epsilon)$,

where $T = \bigcup_n T_n$, T_n is a set of terms with n free variables and $T, T_n \in A$.

(A3) $\int_1 (\int_2 \tau \, d\bar{x}) \, d\bar{y} = \int_2 (\int_1 \tau \, dx) \, dy$.

Now we introduce two sorts of auxiliary models.

Definition 4. (a) A weak model for $L^{g}_{A I_1I_2}$ is a model $\langle \mathfrak{A}, I_1, I_2 \rangle$ where \mathfrak{A} is a first-order model and I_1 is what may be called an A-Daniell integral on A, that is, I_k is a positive linear real function on the set of terms with at most one free
variable \(x \) and parameters from \(A \), i.e.

\[
I_k(r) = r, \quad k = 1, 2
\]

\[
I_k(r \cdot \sigma + s \cdot \tau) = r \cdot I_k(\sigma) + s \cdot I_k(\tau),
\]

if \(\tau(b, \tilde{a}) \geq 0 \) for all \(b \in A \), then \(I_k(\tau(x, \tilde{a})) \geq 0 \).

(b) A middle model for \(L^\sigma_{A \models I_1 I_2} \) is a weak model \(\mathfrak{A} \) such that for each \(\varepsilon > 0 \) there is \(\delta > 0 \) such that for each term \(\tau(x, \tilde{y}) \) and \(\tilde{a} \in A^n \), if \(|I_2(\tau(x, \tilde{a}))| < \delta \) then \(|I_1(\tau(x, \tilde{a}))| < \varepsilon \).

In both cases, for \(\tau \) a term, define \(\tau^3 \) inductively as for biprobability models, except that at the integral step, we define

\[
(f_x(\tau(x, \tilde{a}) \, dz)^3 = I_k(\tau(x, \tilde{a})).
\]

Lemma 1. (Middle Completeness Theorem for \(L^\sigma_{A \models I_1 I_2} \)) Let \(T \) be a set of sentences of \(L^\sigma_{A \models I_1 I_2} \) such that \(T \) is \(\Sigma_1 \)-definable over \(A \). Then \(T \) is consistent with the axioms of this logic iff it has a middle model in which each theorem of \(L^\sigma_{A \models I_1 I_2} \) is true.

Proof. The soundness is easy to prove because all the axioms represent known properties of integrals (the Generalized Radon-Nikodym Theorem and the Fubini Theorem prove that each function \(\tau(x, \tilde{y})^3 \): \(A \times A \to \mathbb{R} \) is compatible with absolutely continuous measures \(\mu_1 \) and \(\mu_2 \), i.e.

\[
\int \int \tau(x, y)^3 \, d\mu_1(x) \, d\mu_2(y) = \int \int \tau(x, y)^3 \, d\mu_2(y) \, d\mu_1(x).
\]

A Henkin argument is used to construct a weak model \(\langle \mathfrak{A}, I_1, I_2 \rangle \) of \(T \) in which each theorem of \(L^\sigma_{A \models I_1 I_2} \) is true. Let \(K = L \cup C \) be the language introduced in this construction, where \(C \) is a set of new constant symbols and \(C \in A \). We wish the axiom \(A_2 \) to hold for all the terms and that is done by the following construction (see [9]).

Let \(K' \) be a language with four kinds of variables: \(X, Y, Z, \ldots \) are variables for sets, \(x, y, z, \ldots \) are variables for urelements, \(r, s, t, \ldots \) are variables for reals from \([0, 1] \cap A\), and \(U, V, W, \ldots \) are variables for functions \(A^n \to \mathbb{R}, n \geq 0 \). Predicates are: \(E_n^m(x, \tilde{x}) \) for \(n \geq 1, E_n^{n+1}(\tilde{x}, r, U) \) for terms, \(n \geq 0 \); \(I_k(U, r) \) for \(U: A^0 \to \mathbb{R} \) or \(U: A^1 \to \mathbb{R}, k = 1, 2 \); and \(\leq \) for reals. Function symbols are \(f, g, h, \ldots \) for each continuous real functions \(F: \mathbb{R}^n \to \mathbb{R} \) such that \(F \upharpoonright \mathbb{Q}^n \in A \). Constant symbols are: \(X_{\varphi} \) for each formula \(\varphi; \) \(U_\tau \) for each term \(\tau; \) and \(\tau \) for each real number \(r \in [0, 1] \cap A \).

Let \(S \) be the following theory of \(K'_{A} \):

1. Axioms of validity:
 1.1. \(\forall X \) \(\bigwedge_{n < m} \neg(\exists \tilde{z}, \tilde{y}) E_n^m(\tilde{x}, \tilde{y}, X) \land E_n^2(\tilde{x}, X), \) where \(\{ \tilde{x} \} \cap \{ \tilde{y} \} = \emptyset; \)
 1.2. \(\forall U \) \(\bigwedge_{n < m} \neg(\exists \tilde{x}, \tilde{y}, r, s) E_n^{m+1}(\tilde{x}, \tilde{y}, r, U) \land E_n^{n+1}(\tilde{x}, s, U); \)
 1.3. \(\forall \tilde{x}, r, s \) \((E_{n+1}^n(\tilde{x}, r, U) \land E_{n+1}^n(\tilde{x}, s, U)) \implies r = s; \)
2. Axioms of extensionality:
2.1 $(\forall \bar{x})(E^0_n(\bar{x}, X) \iff E^0_n(\bar{x}, Y)) \iff X = Y$;
2.2 $(\forall \bar{x}, r)(E^1_{n+1}(\bar{x}, r, U) \iff E^1_{n+1}(\bar{x}, r, V)) \iff U = V$;

3. Axioms of terms:
3.1 $(\forall \bar{x})(E^1_{n+1}(\bar{x}, 0, U_r) \lor E^1_{n+1}(\bar{x}, 1, U_r))$ if τ is $1(R(\bar{x}))$;
3.2 $(\forall \bar{x}, y)(E^2_{n+1}(\bar{x}, y, 0, U_r) \lor E^2_{n+1}(\bar{x}, y, 1, U_r))$ if τ is $1(x = y)$;
3.3 $E^\sigma_{n+1}(\tau, U_r)$ if τ is r;
3.4 $(\forall \bar{x}, r)(E^1_{n+1}(\bar{x}, r, U_r) \iff (\exists s)(\bigwedge_{s=1}^k E^1_{n+1}(\bar{x}, s, U_{r_i}) \land f(s_1, \ldots, s_k) = r))$ if τ is $\mathcal{F}(t_1, \ldots, t_k)$;
3.5 $(\forall \bar{x}, r)(E^1_{n+1}(\bar{x}, r, U_r) \iff (\exists V)((\forall y, s)(E^1_{n+1}(y, s, V) \iff \bigwedge_{s=1}^k E^1_{n+1}(\bar{x}, y, s, U_r) \land I_k(V, r)))$ if τ is $\int_k \sigma(v, u) dv_0, k = 1, 2$;

4. Axioms of satisfaction:
4.1 $(\forall \bar{x})(E^0_n(\bar{x}, X_\varphi) \iff (\exists r \geq 0)E^1_{n+1}(\bar{x}, r, U_r))$ if φ is $\tau \geq 0$;
4.2 $(\forall \bar{x})(E^0_n(\bar{x}, X_{\varphi_\neg}) \iff \neg E^0_n(\bar{x}, X_{\varphi}))$;
4.3 $(\forall \bar{x})(E^0_n(\bar{x}, X_{\varphi_\land}) \iff \bigwedge_{\varphi \in \Phi} E^0_n(\bar{x}, X_{\varphi}))$;

5. Axioms of integral operators:
5.1 $(\forall U)((\bigwedge_{n \geq 2} \neg (\exists r, r)E^1_{n+1}(\bar{x}, r, U_r)) \iff (\exists s)I_k(U, s), k = 1, 2$;
5.2 $(\forall r)I_k(U, r, r)$;
5.3 $(\forall U, r, s)I_k(\bar{r} \cdot U + s \cdot V) = r \cdot I_k(U) + s \cdot I_k(V)$, where $I_k(U) = r$ iff $I_k(U, r)$;
5.4 $(\forall \bar{x})(\forall U)(\forall \varphi(\exists r \geq 0)E^1_{n+1}(\bar{x}, r, U_r) \iff (\exists r \geq 0)I_k(U, s))$;

6. Axiom of absolute continuity:
$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall U)(|I_2(U)| < \delta \implies |I_1(U)| < \varepsilon)$;

7. Axioms for an Archimedean field:

8. Transformations of axioms of $K^a_{A_1A_2}$:
$(\forall \bar{x})E^a_n(\bar{x}, X_\varphi)$, where φ is an axiom of this logic;

9. Axioms of realizability of all sentences φ of T:
$(\forall x_0)E^0_{1}(x_0, X_\varphi)$.

A weak model (\mathfrak{A}, I_1, I_2) for $K^a_{A_1A_2}$ can be transformed to a standard model \mathfrak{M} for K^a_A by taking:
$E^\mathfrak{M}_n = \{ \bar{a} ∈ A^n : \mathfrak{A} \models \varphi[\bar{a}] \}$,
$U^\mathfrak{M}_n(\bar{a}) = \tau^\mathfrak{A}(\bar{a})$ for $\bar{a} ∈ A^n$ and $I^\mathfrak{M}_{I_k}(U^\mathfrak{M}_n) = I_k(\tau)$ for each term τ with at most one free variable. By the Barwise Compactness Theorem (see [1]), it can be shown that S has a standard model \mathfrak{D}, because S is Σ-definable over \mathfrak{A} and A_2 holds in \mathfrak{A}. \mathfrak{D} can be transformed to a middle model \mathfrak{C} of T by taking:

$R^\mathfrak{C} = \{ \bar{x} ∈ D^n : E^0_n(\bar{x}, X_{1(R(\bar{x}))-1}) \}$ and
$I^\mathfrak{C}_k(\tau(\bar{x}, \bar{a})) = I^\mathfrak{C}_k(U_{\tau(\bar{x}, \bar{a})})$ for $\bar{a} ∈ D^n$ and $k = 1, 2$.

This completes the proof of the Middle Completeness Theorem. □
In order to construct an absolutely continuous bprobability model, we need the following lemma.

Lemma 2. (Loeb [4]) In an ω_1-saturated nonstandard universe, let M be an internal vector lattice of functions from an internal set A into $^{*}\mathbb{R}$ (the set of hyperreal numbers), and let I be an internal positive linear functional on M, such that $1 \in M$ and $I(1) = 1$. Then there is a complete probability measure μ on A such that for each finitely bounded $\varphi \in M$, the standard part of φ is integrable with respect to μ and its integral is equal to the standard part of $I(\varphi)$.

Theorem 1. (Completeness Theorem for $L_{A,1}^{\omega}$) Let T be a set of sentences of $L_{A,1}^{\omega}$ such that T is Σ_1 on A and consistent. Then there is an absolutely continuous bprobability model of T.

Proof. Let (\mathfrak{A}, I_1, I_2) be a middle model of T in which each theorem of $L_{A,1}^{\omega}$ is true. The Daniell integral construction from Lemma 2 produces probability measures μ_1, μ_2 on $^{*}A$ such that for each $*$-term $\tau(x)$, the standard part of $^{*}I_k(\tau)$ is the integral $\int_{^*} \tau(b) d\mu_k(b)$ (we define measures μ_n^{*} on $^{*}A$ by using iterated integrals). The absolute continuity in the middle model \mathfrak{A} implies the absolute continuity for all measurable sets. Also, using axiom A_3, it can be shown that $\mu_1^n \ll \mu_2^n$ for each $n \in \mathbb{N}$. This graded bprobability model $\mathfrak{A} = (^{*}\mathfrak{A}, \mu_1^n, \mu_2^n)$ can be used to produce an absolutely continuous bprobability model of T (see [3]). □

We can look only for a part of $L_{A,1}^{\omega}$ which satisfies the finite compactness property, because this logic cannot satisfy the full compactness (for example, each finite subset of $T = \{ \mu_1(1(R(x))) dx > 0 \} \cup \{ \mu_1(1(R(x))) dx \leq \frac{1}{n} : n \in \mathbb{N} \}$, where R is a unary predicate, has a probability model, but not T itself).

Theorem 2. Let T be a set of sentences of $L_{A,1}^{\omega}$ of the form $\tau \in [r,s]$. If every finite subset of T has a graded bprobability model, then T has a graded bprobability model.

Proof. Let us suppose that each finite subset $\Psi \subseteq T$ has a model \mathfrak{A}_Ψ. By Lemma 1 we can suppose that \mathfrak{A}_Ψ is a middle model. Take an ultraproduct $^{*}\mathfrak{A}$ such that, for each $\varphi \in T$, almost every \mathfrak{A}_Ψ satisfies φ. Then form a graded bprobability model \mathfrak{A} from $^{*}\mathfrak{A}$ by the Daniell integral construction (Lemma 2). It can be shown by induction that every sentence of $L_{A,1}^{\omega}$ of the form $\tau \in [r,s]$ which is true in almost all \mathfrak{A}_Ψ holds in \mathfrak{A}, too. The absolute continuity condition can be expressed in the middle model by the first-order sentence

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall U)(|I_2(U)| < \delta \implies |I_1(U)| < \varepsilon).$$

By Los’s Theorem and Loeb construction the sentence

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall X)(\mu_2(X) < \delta \implies \mu_1(X) < \varepsilon)$$

holds in \mathfrak{A}. □
2. The logic $L^*_{A_1 I_2}$. Axioms and rules of inference for the logic $L^*_{A_1 I_2}$ are those of $L_{A I}$ (with both I_1 and I_2 in place of I, see [3]) together with the axioms of continuity A_1 and A_2:

(A4) Axiom of singularity:
$$\forall x \in A, \exists y \in A : \chi_{x \rightarrow y} \in \text{dom}(I_k)$$
where $H_k(s, t) = \begin{cases} 1, & \text{if } s \geq \frac{1}{k} \text{ and } t \geq \frac{2}{k} \\ 0, & \text{if } s \leq \frac{1}{k} \text{ or } t \leq \frac{1}{k} \\ \text{linear}, & \text{for other cases} \end{cases}$

Theorem 3. (Completeness Theorem for $L^*_{A_1 I_2}$) A theory T of $L^*_{A_1 I_2}$ is consistent if and only if T has a singular biprobability model.

Proof. The proof of soundness is easy. Let (\mathcal{A}, I_1, I_2) be a weak model of T in which each theorem of $L^*_{A_1 I_2}$ is true. Let $\mathcal{F} = \{ B \subseteq A : \chi_B \in \text{dom}(I_1) = \text{dom}(I_2) \}$ be an algebra of sets in A, where $\chi_B = \begin{cases} 1, & \text{if } x \in B \\ 0, & \text{if } x \notin B \end{cases}$.

Define finitely additive probability measures ν_1, ν_2 on \mathcal{F} by $\nu_k(B) = I_k(\chi_B)$, $B \in \mathcal{F}$ and $k = 1, 2$.

Then, for $a \in A$, the singleton $\{ a \}$ belongs to \mathcal{F} because $\chi_{\{ a \}} = (x = a)^A$, the set $B = \{ a \in A : \nu_1(a) > 0 \}$ belongs to \mathcal{F} and $\nu_1(B) = 0$ $k = 1, 2$ by A_4.

By construction from [7], the measures ν_1, ν_2 can be extended so that $\nu_1 \subseteq \mathcal{P}_1$, $\nu_2 \subseteq \mathcal{P}_2$ and the measures $\mathcal{P}_1, \mathcal{P}_2$ are singular. Then construct a middle biprobability model $(\mathcal{A}, \mathcal{I}_1, \mathcal{I}_2)$ of T by

$$\text{dom}(\mathcal{I}_k) = \text{dom}(I_k) \cup \{ \chi_C : C \in \mathcal{F} \} \quad \text{and} \quad \mathcal{I}_k(\chi_C) = \mathcal{P}_k(C),$$

for each C from the extension \mathcal{F} of \mathcal{F}.

By Loeb’s construction (Lemma 2) and the construction of the biprobability model from a graded biprobability model (see [3]), the singularity of finitely additive measures in the middle model will be preserved in the biprobability model. □

Finally, we prove Finite Compactness Theorem for the singular case.

Theorem 4. Let T be a set of sentences of $L^*_{A_1 I_2}$ of the form $\tau \in [r, s]$. If every finite subset of T has a graded biprobability model, then T has a graded biprobability model.

Proof. As in Theorem 2, our proof is based on the ultraproduct and Daniell integral construction. Now, we can suppose that \mathcal{A}_ψ is a weak model for each finite subset $\Psi \subseteq T$. Let \mathcal{A}_ψ be a middle model as in Theorem 3. Take an ultraproduct $\mathcal{A} = \prod \mathcal{A}_\psi$ such that, for each $\varphi \in T$, almost every \mathcal{A}_ψ satisfies φ. The condition of singularity can be express in the middle model by the first-order sentence $(\exists f)(I_1(f) = 1 \land I_2 = 0)$. By Los’s Theorem and Loeb’s construction the sentence $(\exists X)(\mu_1(X) = 1 \land \mu_2(X) = 0)$ holds in \mathcal{A}. □

Logics with two types of integral operators.
REFERENCES

Prirodno-matematički fakultet
Radoja Domanovića 12
34001 Kragujevac, p.p. 60
Jugoslavija

(Received 16 11 1992)