ON TOPOLOGICAL SPACES WITH DENSE COMPLETELY METRIZABLE SUBSPACES

T. Nagamizu

Dedicated to Professor Akihiro Okuyama on his 60th birthday

Abstract. We obtain some characterizations for the spaces which have a dense completely metrizable subspace and some results related with these spaces.

We know that for a metrizable space X, the following statements are equivalent [7, Proposition 4.4]:

(1) X is a almost complete space,

(2) X has a dense completely metrizable subspace.

The first purpose of this paper is to obtain some characterizations for the spaces which have a dense completely metrizable subspace and some results related with these spaces.

Arhangel'skii and Kocinac asked several questions on weakly perfect spaces and spaces with dense $G_δ$-diagonal [1]. The second purpose of this paper is to give answers to their Questions 8 and 9.

2. Definitions and notations. All considered spaces are completely regular. A sequence $\{U_n| n \in \mathbb{N}\}$ of subsets of a space X is said to be complete if every filter base F on X which is controlled* by $\{U_n| n \in \mathbb{N}\}$ clusters at some $x \in X$.

A sequence $\{U_n| n \in \mathbb{N}\}$ of collections of subsets of X is said to be complete if $\{U_n| n \in \mathbb{N}\}$ is a complete sequence whenever $U_n \in \mathcal{U}_n$ for all $n \in \mathbb{N}$.

A collection \mathcal{U} of subsets of a space X is said to be an almost cover if $\bigcup \mathcal{U}$ is dense in X. Let \mathcal{U} and \mathcal{V} be collections of subsets of X. We say that \mathcal{V} is a strong

* F is controlled by $\{U_n\}$ if each U_n contains some $F \in F$.
refinement of \mathcal{U} if \mathcal{V} is a refinement of \mathcal{U} and for each element $V \in \mathcal{V}$ there exists an element $U \in \mathcal{U}$ with $\text{Cl}(V) \subset U$.

The following lemma is proved in [7, Lemma 4.6].

Lemma 2.1. If X has a complete sequence $\{\mathcal{U}_n| n \in \mathbb{N}\}$ of open almost covers, then there exists a complete sequence $\{\mathcal{V}_n| n \in \mathbb{N}\}$ of disjoint open almost covers of X such that \mathcal{V}_{n+1} is a strong refinement of \mathcal{V}_n for each $n \in \mathbb{N}$.

Let \mathcal{U} be a collection of subsets of X. \mathcal{U} is said to separate points of X if x and y are distinct points of X, then there exists different elements U_x and U_y in \mathcal{U} such that $x \in U_x$ and $y \in U_y$. \mathcal{U} is said to have a finite intersection property (f.i.p.) if every finite subcollection of \mathcal{U} have a nonempty intersection.

3. Characterizations. The main purpose in this section is to prove Theorem 3.4.

Lemma 3.1. Let X has a complete sequence $\{\mathcal{U}_n| n \in \mathbb{N}\}$ of open almost covers such that for each sequence $\{U_n| U_n \in \mathcal{U}_n, n \in \mathbb{N}\}$ with f.i.p., the set $\bigcap\{\text{Cl}(U_n)| n \in \mathbb{N}\}$ is a singleton. Then there exists a complete sequence $\{\mathcal{V}_n| n \in \mathbb{N}\}$ of disjoint open almost covers of X such that

(i) \mathcal{V}_{n+1} is a strong refinement of \mathcal{V}_n for each $n \in \mathbb{N}$, and

(ii) for each decreasing sequence $\{V_n| V_n \in \mathcal{V}_n, n \in \mathbb{N}\}$, the set $\bigcap\{\text{Cl}(V_n)| n \in \mathbb{N}\}$ is a singleton.

Proof. From Lemma 2.1, there exists a complete sequence $\{\mathcal{V}_n| n \in \mathbb{N}\}$ of disjoint open almost covers of X such that \mathcal{V}_{n+1} is a strong refinement of \mathcal{V}_n and \mathcal{U}_n for each $n \in \mathbb{N}$.

Let $\{V_n| n \in \mathbb{N}\}$ is a decreasing sequence where $V_n \in \mathcal{V}_n$ for each $n \in \mathbb{N}$. By the construction of \mathcal{V}_n, for each $n \in \mathbb{N}$, there exists $U_n \in \mathcal{U}_n$ such that $\text{Cl}(V_{n+1}) \subset V_n \cap U_n$. Since $\{V_n| n \in \mathbb{N}\}$ is decreasing, $\{U_n| n \in \mathbb{N}\}$ has f.i.p.

For each $n \in \mathbb{N}$, we put $F_n = \text{Cl}(V_{n+1})$. By completeness of $\{\mathcal{V}_n| n \in \mathbb{N}\}$, we have:

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} F_n = \bigcap_{n \in \mathbb{N}} V_n = \bigcap_{n \in \mathbb{N}} \text{Cl}(V_n) = \bigcap_{n \in \mathbb{N}} \text{Cl}(U_n).$$

Since $\bigcap_{n \in \mathbb{N}} \text{Cl}(U_n)$ is a singleton, $\bigcap_{n \in \mathbb{N}} \text{Cl}(V_n)$ is also a singleton. \(\square\)

Theorem 3.2. Let X have a complete sequence $\{\mathcal{U}_n| n \in \mathbb{N}\}$ of disjoint open almost covers such that

(i) \mathcal{U}_{n+1} is a strong refinement of \mathcal{U}_n for each $n \in \mathbb{N}$, and

(ii) the set $\bigcap_{n \in \mathbb{N}} \text{Cl}(U_n)$ is a singleton for each decreasing sequence $\{U_n| U_n \in \mathcal{U}, n \in \mathbb{N}\}$.

Then X has a dense G_δ completely metrizable subspace.

Proof. By [7, Proposition 4.5], X is a Baire space. Since $G_n = \bigcup \mathcal{U}_n$ is an open dense subset in X for each $n \in \mathbb{N}$, then $M = \bigcap_{n \in \mathbb{N}} G_n$ is a dense G_δ set in X.

By the condition (ii), if x and y are two distinct points of M, then there exists $n \in \mathbb{N}$ such that U_n separates x and y.

Let us define the metric ρ on M by

$$\rho(x, y) = \begin{cases} 0, & x = y \\ \min\{n \mid U_n \text{ separates } x \text{ and } y\}^{-1}, & \text{otherwise} \end{cases}$$

It is easy to check that ρ is a complete metric on M, by the condition (i) and (ii). Moreover, $U_n \cap M$ is a $1/n$-open ball at x for each $U_n \in \mathcal{U}_n$ and $x \in U_n \cap M$. Hence the original topology on M is stronger than ρ-topology.

Now we show the next claim.

Claim. Let F be a closed subset of M and $x \in M \setminus F$. Then there exist $n \in \mathbb{N}$ and $U_n \in \mathcal{U}_n$ such that $x \in U_n$ and $U_n \cap F = \emptyset$.

Proof of the claim. Suppose that $U_n \cap F \neq \emptyset$ whenever $x \in U_n$ for each $n \in \mathbb{N}$. Pick a point x_n in $U_n \cap F$, and put $F_n = \text{Cl}\{x_m \mid m \geq n + 1\}$ for each $n \in \mathbb{N}$. Then by the condition (i), $\{U_n \mid n \in \mathbb{N}\}$ is a decreasing sequence, and $\{x\} = \bigcap_{n \in \mathbb{N}} U_n$, by the condition (ii). It follows that

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} F_n \subset \bigcap_{n \in \mathbb{N}} U_n = \{x\}.$$

Hence $x \in F$. This is a contradiction, and the claim is proved.

By the claim, ρ-topology is stronger than the original topology. It follows that M is a dense $G_δ$ completely metrizable subspace. The proof is complete. □

Theorem 3.3. Let X be a space with a dense completely metrizable subspace. Then there exists a complete sequence $\{U_n \mid n \in \mathbb{N}\}$ of open almost covers of X such that for each sequence $\{U_n \mid U_n \in \mathcal{U}_n, n \in \mathbb{N}\}$ with the f.i.p., the set $\bigcap_{n \in \mathbb{N}} \text{Cl}(U_n)$ is a singleton.

Proof. Let M be a dense completely metrizable subspace of X and ρ a compatible metric on M. Let $U(x, n)$ be an open subset of X such that $B(x, 1/n) = U(x, n) \cap M$ for each $x \in M$ and $n \in \mathbb{N}$, where $B(x, 1/n) = \{y \in M \mid \rho(x, y) < 1/n\}$ be a $1/n$-open ball in M. Then for each $n \in \mathbb{N}, U_n = \{U(x, n) \mid x \in M\}$ is an open almost cover of X.

Now we show that $\{U_n \mid n \in \mathbb{N}\}$ is a complete sequence. Let $\{U_n \mid U_n \in \mathcal{U}_n, n \in \mathbb{N}\}$ be a sequence and \mathcal{F} a filter base on X which is controlled by $\{U_n \mid n \in \mathbb{N}\}$. Then for each $n \in \mathbb{N}$, there exists $F_n \in \mathcal{F}$ such that $F_n \subset U_n$. By the construction of \mathcal{U}_n, there exists x_n such that $x_n \in M$, $U_n = U(x_n, n)$ for each $n \in \mathbb{N}$. Since $\{U_n \mid n \in \mathbb{N}\}$ has the f.i.p., it follows that $\{x_n \mid n \in \mathbb{N}\}$ is a ρ-Cauchy sequence. Then there exists $x_0 \in M$ such that $\{x_n \mid n \in \mathbb{N}\}$ converges to x_0. Therefore we have that $x_0 \in \bigcap_{n \in \mathbb{N}} \text{Cl}(F)$ if $F \in \mathcal{F}$. Hence $\{U_n \mid n \in \mathbb{N}\}$ is a complete sequence.

In the same way, it is easy to see that $\bigcap_{n \in \mathbb{N}} \text{Cl}(U_n) = \{x_0\}$. The proof is complete. □
These results lead to the following theorem.

Theorem 3.4. For the space X, the following conditions are equivalent.

1. X has a complete sequence $\{U_n\}_{n \in \mathbb{N}}$ of open almost covers such that for each sequence $\{U_n\}_{n \in \mathbb{N}}$ with f.i.p., the set $\bigcap_{n \in \mathbb{N}} \text{Cl}(U_n)$ is a singleton.

2. X has a complete sequence $\{U_n\}_{n \in \mathbb{N}}$ of disjoint open almost covers such that

 (i) U_{n+1} is a strong refinement of U_n for each $n \in \mathbb{N}$,

 (ii) for each decreasing sequence $\{U_n\}_{n \in \mathbb{N}}$, the set $\bigcap_{n \in \mathbb{N}} \text{Cl}(U_n)$ is a singleton.

3. X has a dense G_δ completely metrizable subspace.

4. X has a dense completely metrizable subspace.

A space X is said to be a **Namioka space** if the following condition is satisfied:

(5) for any compact space Y and any separately continuous function $f: X \times Y \to \mathbb{R}$, there exists a dense G_δ subset $A \subset X$ such that f is jointly continuous at each point of $A \times Y$.

Next we consider the following game. Let α and β be two players with β the first to move. β starts by choosing a nonempty open subset $U_1 \subset X$. Then α chooses an open subset $V_1 \subset U_1$ and a point $x_1 \in V_1$, then β chooses a nonempty open subset $U_2 \subset V_1$ (he may choose as he wishes but is expected to escape from x_1). Next α chooses an open subset $V_2 \subset U_2$ and a point $x_2 \in V_2$, and so on. α wins if any subsequence $\{x_{n_p}\}_{p \in \mathbb{N}}$ of the sequence $\{x_n\}_{n \in \mathbb{N}}$ accumulates to at least one point of the set $\bigcap_{i=1}^{\infty} V_i = \bigcap_{i=1}^{\infty} U_i$. Then X is said to be σ-well α-favorable if α has a winning strategy in the game above.

It is well known that σ-well α-favorable spaces are Namioka [9, Theorem 6.3].

Theorem 3.5. Let X be a space with a dense completely metrizable subspace M. Then X is a σ-well α-favorable space. Hence X is a Namioka space.

Proof. Let U_1 be a nonempty open subset of X. Since M is a dense subspace, we can pick a point $x_1 \in M \cap U_1$. Then there exists a nonempty open subset V_1 of X such that $x_1 \in V_1 \subset \text{Cl}(V_1) \subset U_1$ and $d_M - \text{diam}(V_1 \cap M) \leq 1/2$, where d_M is a compatible metric on M. By induction, there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ in X and sequences $\{V_n\}_{n \in \mathbb{N}}, \{U_n\}_{n \in \mathbb{N}}$ of subsets of X such that

$x_n \in V_n \cap M$, $U_{n+1} \subset V_n \subset \text{Cl}(V_n) \subset U_n$, and $d_M - \text{diam}(V_n \cap M) \leq 1/n + 1$

for each $n \in \mathbb{N}$. Since $\{x_n\}_{n \in \mathbb{N}}$ is a d_M-Cauchy sequence in M, there exists x_0 in M such that $\{x_n\}_{n \in \mathbb{N}}$ converges to x_0. By the construction of $\{V_n\}_{n \in \mathbb{N}}$, we have $x_0 \in \bigcap_{n \in \mathbb{N}} V_n = \bigcap_{n \in \mathbb{N}} \text{Cl}(V_n)$. The proof is complete. \Box

Theorem 3.6. Let X be a space with a dense completely metrizable subspace, Y a space and $f: X \to Y$ an irreducible, closed, continuous and onto map. Then Y has a dense completely metrizable subspace.
Proof. By Theorem 3.4, there exists a complete sequence \(\{ \mathcal{U}_n \mid n \in \mathbb{N} \} \) of disjoint open almost covers of \(X \), which satisfies the conditions (i) and (ii) of (2). For each \(U \in \mathcal{U}_n \), put \(W(U) = Y \setminus f(X \setminus U) \). Then each \(W(U) \) is a nonempty open subset of \(Y \). Now put \(\mathcal{V}_n = \{ W(U) \mid U \in \mathcal{U}_n \} \) for each \(n \in \mathbb{N} \). It is easy to see that \(\{ \mathcal{V}_n \mid n \in \mathbb{N} \} \) is a complete sequence of open almost covers of \(Y \), which satisfies the condition (1) of Theorem 3.4. The proof is complete. \(\square \)

4. countable dense \(\Delta \)-base. Here \(\Delta_X = \{(x,x) \mid x \in X\} \) is the diagonal in \(X \times X \). Arhangel’skiĭ and Kočinac [1] asked the following questions:

Question 1. When there exist a countable family \(\mathcal{U} \) of open sets in \(X \times X \) such that \(\bigcap \mathcal{U} \cap \Delta_X \) is dense in \(\Delta_X \) and for each open neighborhood \(V \) of \(\Delta_X \) in \(X \times X \) one can find \(U \in \mathcal{U} \) such that \(U \subset V \)? Such \(\mathcal{U} \) will be called a dense \(\Delta \)-base of \(X \).

Question 2. Let \(X \) be a compact space with a countable dense \(\Delta \)-base. Does there exist a dense open metrizable subspace \(Y \subset X \)? A dense separable subspace \(Z \subset X \)?

It is clear that if \(X \) has a dense discrete subspace, then \(X \) has a countable dense \(\Delta \)-base. Now we prove the following theorem.

Theorem 4.1. Let \(X \) be a compact space. If \(X \) has a dense completely metrizable subspace, then \(X \) has a countable dense \(\Delta \)-base.

Proof. Let \(M \) be a completely metrizable subspace of \(X \) and \(\rho \) a compatible metric on \(M \). For each \(n \in \mathbb{N} \), put \(V_n = \{(x,y) \in M \times M \mid \rho(x,y) < 1/n \} \). Since each \(V_n \) is open set in \(M \times M \), there exists an open set \(U_n \) in \(X \) such that \(V_n = U_n \cap (M \times M) \). We show that \(\mathcal{U} = \{ U_n \mid n \in \mathbb{N} \} \) is a countable dense \(\Delta \)-base of \(X \).

Let \(V \) be an open neighborhood of \(\Delta_X \) in \(X \times X \). Then we prove that there exists \(n \in \mathbb{N} \) such that \(U_n \subset V \). By normality of \(X \times X \), it is enough to show that \(U_n \subset \text{Cl}(V) \).

Indeed, suppose that \(U_n \not\subset \text{Cl}(V) \) for each \(n \in \mathbb{N} \). Then there exists \((x_n,y_n) \in V_n \setminus \text{Cl}(V) \) for each \(n \in \mathbb{N} \). By the definition of \(V_n \), \(\rho(x_n,y_n) < 1/n \) and \(\{(x_n,y_n) \mid N \in \mathbb{N} \} \subset (X \times X) \setminus \text{Cl}(V) \subset (X \times X) \setminus V \). Since \((X \times X) \setminus V \) is compact, there exists a cluster point \((x_0,y_0) \) of \(\{(x_n,y_n) \mid n \in \mathbb{N} \} \) such that \((x_0,y_0) \in (X \times X) \setminus V \). Hence \(x_0 \neq y_0 \). Then there exist open subsets \(V_{x_0} \) and \(V_{y_0} \) such that \(x_0 \in V_{x_0} \), \(y_0 \in V_{y_0} \) and \(\text{Cl}(V_{x_0}) \cap \text{Cl}(V_{y_0}) = \emptyset \). By the completeness, it follows that \(\text{dist}(\text{Cl}(V_{x_0}) \cap M, \text{Cl}(V_{y_0}) \cap M) > 0 \). But \(\rho(x_n,y_n) < 1/n \) for each \(n \in \mathbb{N} \), a contradiction.

Finally, since \(\Delta_M \subset (\bigcap \mathcal{U}) \cap \Delta_X \), the set \((\bigcap \mathcal{U}) \cap \Delta_X \) is dense in \(\Delta_X \). The proof is complete. \(\square \)

Next we consider Question 2. We remark the following proposition.

Proposition 4.2. Let \(X \) be a space and \(M \) a dense completely metrizable subspace of \(X \). Then the following conditions are equivalent.

1. \(X \) is separable.
(2) M is separable.
(3) X satisfies the countable chain condition.

We have the negative answer of the second part of Question 2.

Example 4.3. Let X be the closed ordinal space $[0, \Omega]$, where Ω is the first uncountable ordinal. Since X is a compact scattered space, it has a dense uncountable discrete subspace. Therefore X has a countable dense Δ-base. But it is clear that X does not have any dense separable metrizable subspaces.

Let us note that if M is a dense open metrizable subspace of a compact space X, then M is a completely metrizable.

REFERENCES

