ON THE CONVERGENCE OF A MULTICOMPONENT ALTERNATING DIRECTION DIFFERENCE SCHEME

Boško Jovanović

Communicated by Gradimir Mikovanović

Abstract. We consider a multicomponent finite-difference scheme (FDS) for solving the heat conduction equation with several variables. Some convergence rate estimates consistent with the smoothness of data are obtained.

We consider the first initial–boundary value problem (IBVP) for the heat conduction equation

\[\begin{align*}
\frac{\partial u}{\partial t} &= \Delta u + f, \quad (x, t) \in Q = \Omega \times (0, T) = (0, 1)^n \times (0, T), \\
\tau(x, 0) &= \tau_0(x), \quad x \in \Omega, \\
\tau(x, t) &= 0, \quad x \in \Gamma = \partial \Omega, \quad t \in (0, T).
\end{align*} \tag{1} \]

We assume that the generalized solution of IBVP (1) belongs to the anisotropic Sobolev space \(W^{n, s/2}_2(Q) \), \(s \geq 1 \) [1]. In this case there exist a trace \(\tau|_{\Omega} \in W^{-1}_2(\Omega) \subset L^2(\Omega) \). We also assume that the solution \(\tau \) can be oddly extended in space variables outside the domain \(\Omega \), preserving the Sobolev class.

Let \(\tau \) be a uniform mesh in \(\bar{\Omega} \) with the step size \(h \). Let us set \(\omega = \bar{\tau} \cap \Omega, \quad \gamma = \bar{\tau} \setminus \omega \) and \(\omega_i = \omega \cup \{x = (x_1, \ldots, x_n) \in \gamma | x_i = 0\} \). Let \(\bar{\theta} \) be a uniform mesh on \([0, T] \) with the step size \(\tau, \quad \theta = \bar{\theta} \cap (0, T), \quad \theta^- = \theta \cup \{0\} \) and \(\theta^+ = \theta \cup \{T\} \). Finally, let \(\bar{Q}_{h\tau} = \bar{\tau} \times \bar{\theta} \). For a function \(\tau \) defined on the mesh \(\bar{Q}_{h\tau} \) we introduce the finite-difference operators \(\tau_{x_i}, \quad \tau_{x_1}, \quad \tau_{x} \) and \(\tau_{\gamma} \) in a usual manner [2]. Let us denote \(\tau = \tau(x, t) \) and \(\tau(x, t + \tau) \).

Let \(H \) be the set of discrete functions defined on the mesh \(\bar{\tau} \), which vanish on \(\gamma \). Let us denote

\[\begin{align*}
A_i \tau &= \begin{cases}
-\tau_{x_i}, & x \in \omega \\
0, & x \in \gamma
\end{cases} \quad \text{and} \quad A \tau = \sum_{i=1}^n A_i \tau.
\end{align*} \]

AMS Subject Classification (1991): Primary 65M15
Supported by Science Fund of Serbia, grant number 0401F
We introduce the following discrete inner product
\[(v, w)_\omega = h^n \sum_{x \in \omega} v(x) w(x)\]
and norms
\[\|v\|_\omega = (v, v)_\omega^{1/2} = \left(h^n \sum_{x \in \omega} v^2(x) \right)^{1/2} \quad \text{and} \quad \|v\|_{\omega_1} = \left(h^n \sum_{x \in \omega_1} v^2(x) \right)^{1/2}.\]

\(A_i\) and \(A\) are linear, selfadjoint, commutative and positive operators on \(H_\omega\). Therefore, the "energy" norms
\[\|v\|_{A_i} = (A_i v, v)_\omega^{1/2} = \|v_{x_i}\|_{\omega_1} \quad \text{and} \quad \|v\|_{A_i^{-1}} = (A_i^{-1} v, v)_\omega^{1/2}\]
can be defined.

With \(T_t\) and \(T_t^+\) we denote the Steklov averaging operators in space variables \(x_i\) and time variable \(t\) (see [3])
\[T_t f(x, t) = \frac{1}{h} \int_{x_i-h/2}^{x_i+h/2} f(x_1, \ldots, x_i, \ldots, x_n, t) \, dx', \quad T_t^+ f(x, t) = \frac{1}{\tau} \int_t^{t+\tau} f(x_1, \ldots, x_n, t') \, dt'.\]

Finally, \(C\) will stand for a generic positive constant, independent of \(h\) and \(\tau\).

We approximate IBVP (1) with the following alternating direction finite-difference scheme (see [4, 5])
\[(I + \sigma \tau A_1) v_1^i + \sum_{j=1}^n A_j v^j = f \equiv T_1^2 \cdots T_n^2 T_t^+ f, \quad t \in \theta^-, \quad v^i|_{t=0} = T_1^2 \cdots T_n^2 u_0, \quad i = 1, 2, \ldots, n \]
(2)

where \(\sigma\) is a free weight parameter and \(Iv \equiv v\). FDS (2) represents a system of \(n\) unknown mesh functions \(v^i\). They can be determined parallely, contrary to the other variants of the alternating direction method, such as the factorized scheme
\[(I + \sigma \tau A_1) \cdots (I + \sigma \tau A_n) v_i + Av = f. \]

The errors defined as \(z^i = T_1^2 \cdots T_n^2 u - v^i\) satisfy the FDS
\[(I + \sigma \tau A_1) z_i^i + \sum_{j=1}^n A_j z^j = \varphi^i, \quad t \in \theta^-, \quad z^i|_{t=0} = 0, \quad i = 1, 2, \ldots, n \]
(3)
where
\[
\varphi^i = \varphi + \Lambda \chi, \quad \chi = \sigma T_1^2 \cdots T_n^2 u, \\
\varphi = \sum_{j=1}^n \Lambda_j \eta^j, \quad \eta^j = \prod_{i \neq j} T_i^2 \left(T_j^2 u - T_i^+ u \right).
\]

To prove the stability and the convergence of the FDS (2) we represent the equation (3) in the matrix form (see also [6])
\[
(I + \sigma \tau \Lambda) z_t + E \Lambda z = \Phi, \quad t \in \theta^-; \quad z|_{t=0} = 0,
\]
where \(z = (z^1, \ldots, z^n)^T, \Phi = (\varphi^1, \ldots, \varphi^n)^T, I = \text{diag} (I, \ldots, I), \Lambda = \text{diag}(\Lambda_1, \ldots, \Lambda_n) \) and
\[
E = \begin{pmatrix} I & I & \cdots & I \\ I & I & \cdots & I \\ \vdots & \vdots & \ddots & \vdots \\ I & I & \cdots & I \end{pmatrix}.
\]

Let us also define the inner product and norms of vector-functions
\[
(z, w) = \sum_{i=1}^n (z^i, w^j)_\omega, \quad \|z\| = (z, z)^{1/2}, \quad \|z\|_\Lambda = (\Lambda z, z)^{1/2}.
\]

Applying operator \(\Lambda \) to (4) we obtain a FDS in canonical form (see [2])
\[
B z_t + A z = \Psi,
\]
where \(A = \Lambda E \Lambda = A^* \geq 0, \quad B = \Lambda + \sigma \tau \Lambda^2 = B^* > 0 \) i \(\Psi = \Lambda \Phi \). The FDS (5) is stable for
\[
B - 0.5 \tau A > 0.
\]

For \(\sigma \geq n/2 \) we have
\[
\left((B - 0.5 \tau A) z, z \right) = (A z, z) + \sigma \tau (A z, A z) - 0.5 \tau \left(E \Lambda z, \Lambda z \right)
\]
\[
= \sum_{i=1}^n (A_i z^i, z^j)_\omega + \sigma \tau \sum_{i=1}^n (A_i z^i, A_i z^j)_\omega - 0.5 \tau \left\| \sum_{i=1}^n A_i z^i \right\|_\omega^2
\]
\[
= \sum_{i=1}^n \|z^i\|_{A_i}^2 + \tau (\sigma - n/2) \sum_{i=1}^n \|A_i z^i\|_\omega^2 + 0.5 \tau \sum_{i=2}^n \sum_{j=1}^{i-1} \|A_i z^j - A_j z^j\|_\omega^2
\]
\[
\geq \sum_{i=1}^n \|z^i\|_{A_i}^2 = \|z\|_\Lambda^2,
\]
which means that
\[
B - 0.5 \tau A \geq \Lambda > 0,
\]
and, consequently, FDS (5) is stable.
Using energy method, multiplying (5) by $2 \tau z_t$, we obtain the a priori estimate
\[
\max_{t \in \theta^+} ||z||_A^2 + \tau \sum_{t \in \theta^-} ||x_t||_A^2 \leq C \tau \sum_{t \in \theta^-} ||\Phi||_A^2,
\]
where $||z||_A^2 = (A z, z)$, or, in expanded form
\[
||z||_A^2 = \max_{t \in \theta^+} \sum_{i=1}^n \sum_{t \in \theta^-} A_i z_t^2 + \sum_{t \in \theta^-} \tau \sum_{i=1}^n ||z_t||_A^2 \leq C \sum_{t \in \theta^-} \tau \sum_{i=1}^n ||\varphi||_A^2.
\]
(6)

Others standard a priori estimates (see [2]) do not hold because the operators A and B do not commute.

Further
\[
||\varphi||_A \leq \sum_{j=1}^n ||\eta_{x_j}||_{\omega_i} + ||\chi_{x_j}||_{\omega_i}.
\]

The value of η_{x_j} in the node $(x, t) \in \omega_i \times \theta^-$ is a bounded linear functional of $u \in W_2^{s, s/2}(e)$, where $e = \prod_{t=1}^n (x_t - 2h, x_t + 2h) \times (t, t + \tau)$ and $s \geq 1$. Moreover, η_{x_j} vanishes on the functions of the form $u = x_1^{\alpha_1} \cdots x_n^{\alpha_n} t^{\beta}$, $\alpha_1 + \cdots + \alpha_n + 2 \beta \leq 4$. Using the Bramble–Hilbert lemma, in the same manner as in [3], for $t \sim h^2$, we obtain
\[
||\eta_{x_j}||_{\omega_i} \leq C h^{s-4} \frac{|u|_{W_2^{s, s/2}(e)}}{h^2}, \quad 3 \leq s \leq 5.
\]
From here, by summation over the mesh, follows
\[
\left\{ \tau \sum_{t \in \theta^-} ||\eta_{x_j}||_{\omega_i} \right\}^{1/2} \leq C h^{s-3} ||u||_{W_2^{s, s/2}(Q)}, \quad 3 \leq s \leq 5.
\]

In the same manner we can estimate χ_{x_j}. From these estimates and the inequality (6) follows
\[
||z||_A \leq C h^{s-3} ||u||_{W_2^{s, s/2}(Q)}, \quad 3 \leq s \leq 5.
\]
(7)

Remark. In same cases the assumption $t \sim h^2$ can be omitted. For example, using representations
\[
\eta^j = \left(\prod_{l=1}^n T_{l-1}^2 \right) \left(\int_t^{t+h} \int_t^{t+h} \frac{\partial u(x, t, t')}{\partial t} \, dt' \, dt \right) + \left(\prod_{l \neq j} T_{l}^2 \right) T_{l-1}^+ \left(\int_{x_j - h}^{x_j + h} \int_{x_j - h}^{x_j} \left(1 - \frac{|x_j - x_j - x_l|}{h} \right) \times \right. \left. \frac{\partial^2 u(x_1, \ldots, x_j', \ldots, x_n, t)}{\partial x_j^2} \, dx_j' \, dx_j' \right)
\]
above equality implies
\[
\chi = \sigma \tau \left(\prod_{l=1}^n T_{l-1}^2 \right) T_{l-1}^+ \frac{\partial u}{\partial t}
\]
we directly obtain
\[|\eta^j_{\alpha,\beta,x_1}|, |\chi_{x_1}z_1| \leq C \frac{h^2 + \tau}{\sqrt{h^n \tau}} ||u||_{W_2^{n,5/2}(\omega)} \].

From here, similarly as in a previous case, follows
\[||z||_3 \leq C (h^2 + \tau) ||u||_{W_2^{n,5/2}(\omega)} \].

Another group of convergence rate estimates can be obtained in the following way. Applying \(A_i(I + \sigma\tau A_i)^{-1} \) to (3), after summation on \(i \) we obtain
\[z_t + A z = \psi, \quad t \in \theta^{-}; \quad z|_{t=0} = 0, \quad (8) \]
where
\[z = A^{-1} \sum_{i=1}^{n} A_i z^i, \quad A = \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} A_i(I + \sigma\tau A_i)^{-1}, \quad \psi = A^{-1} \sum_{i=1}^{n} A_i \phi^i. \]

For \(\sigma \geq n/2 (1 - \alpha) \), \(0 < \alpha < 1 \), we have \(0 < \alpha I \leq I - 0.5 \tau A \leq I \), so the FDS (8) is absolutely stable.

The operators \(A \) and \(\Lambda \) satisfy the relations \(A \leq \Lambda \) and \(\Lambda^{-1} \leq A^{-1} \). In the case when \(\tau \sim h^2 \) we also have \(\beta A_i \leq A_i, \beta \Lambda \leq \Lambda, \ 0 < \beta < 1 \). Using these relations, the energy method [2] and the Fourier expansion in \(t \) (see [7]) we obtain the a priori estimates
\[||z||_3^2 \leq C \tau \sum_{t \in \theta^-} \left(\frac{\dot{z} + z}{2} \right)^2_{\omega} \leq C \tau \sum_{t \in \theta^-} ||A^{-1} \psi||_{\omega}^2, \quad (9) \]
\[||z||_3^2 \leq \max_{t \in \theta^+} ||z||_{\omega}^2 + \tau \sum_{t \in \theta^-} \left(\frac{\dot{z} + z}{2} \right)^2_{A} + \tau^2 \sum_{t, t' \in \theta, t \neq t'} ||z(\cdot, t) - z(\cdot, t')||_A^2 \leq C \tau \sum_{t \in \theta^-} ||\psi||_{A}^2 \quad (10) \]
\[||z||_3^2 \equiv \max_{t \in \theta^+} ||z||_{A}^2 + \tau \sum_{t \in \theta^-} \left(\frac{\dot{z} + z}{2} \right)^2_{\omega} + \tau \sum_{t \in \theta^-} ||z_t||_{\omega}^2 \leq C \tau \sum_{t \in \theta^-} ||\psi||_{A}^2. \quad (11) \]

Further
\[||A^{-1} \psi||_{\omega} \leq \sum_{j=1}^{n} ||\eta^j||_{\omega} + n ||\chi||_{\omega}, \quad (12) \]
\[||\psi||_{A^{-1}} \leq \sum_{j=1}^{n} \left(||\eta^j||_{\omega} + ||\chi||_{\omega} \right), \quad (13) \]
\[||\psi||_{\omega} \leq \sum_{j=1}^{n} \left(||\eta^j||_{\omega} + ||\chi||_{\omega} \right). \quad (14) \]
In such a way, the problem of deriving the convergence rate estimate for FDS (8), or (2), is now reduced to estimation of \(\eta^j \), \(\chi \), \(\eta^j \chi \), \(\chi x_j \), \(\eta^j \chi x_j \), and \(\chi x_j x_j \). Using the Bramble–Hilbert lemma, in the same manner as in the previous case, from (9–14) we obtain

\[
\|z\|_0 \leq C h^n \|u\|_{W^{n+1/2}_{2}(Q)}, \quad 1 \leq s \leq 2, \tag{15}
\]

\[
\|z\|_1 \leq C h^{s-1} \|u\|_{W^{n+1/2}_{2}(Q)}, \quad 1 \leq s \leq 3, \tag{16}
\]

\[
\|z\|_2 \leq C h^{s-2} \|u\|_{W^{n+1/2}_{2}(Q)}, \quad 2 \leq s \leq 4. \tag{17}
\]

The convergence rate estimates (7), (15–17) are consistent with the smoothness of data. In such a way, results for standard FDSs for parabolic problems with solutions in the Sobolev classes \(W^{n+1/2}_{2} \) (see [3], [7]) are extended to the new class of multicomponent alternating direction difference schemes. In [4], [5] the convergence of these schemes is proved for the problems with smooth solutions \(u \in C^{2k,k} \).

REFERENCES