ON WELL-POSEDNESS OF QUADRATIC MINIMIZATION PROBLEM ON ELLIPSOID AND POLYHEDRON

M. Jaćimović, I. Krnić and M. M. Potapov

Communicated by Gradimir Milovanović

Abstract. We consider existence of solutions for quadratic minimization problem on an ellipsoid and on a polyhedron. In the case of polyhedron, we present a necessary and sufficient conditions for Tikhonov well-posedness of the problem.

1. We consider the following extremal problem:

\[J(u) = \|Au - f\|_F^2 \to \inf, \ u \in U, \]

where \(U \) is the ellipsoid

\[U = \{u \in H : \|Bu\|_G \leq R\} \]

or the polyhedron

\[U = \{u \in H : \langle c_i, u \rangle \leq \beta_i, \ i = 1, \ldots, m\}. \]

Here \(H, F, G \) are real Hilbert spaces; \(A : H \to F, B : H \to G \) are bounded linear operators; \(f \in F, c_i \in H, c_i \neq 0, i = 1, \ldots, m \) are fixed elements from the corresponding spaces; \(\beta_i, i = 1, \ldots, m \) and \(R > 0 \) are given real numbers.

The results of this paper complete the results from [1]–[3]. Namely, in the case of an ellipsoid (1), (2), we get necessary conditions for the existence of solutions and show that these conditions are sufficient for normal solvable operators \(A \) and \(B \); in the case of polyhedron (1), (3), we present the necessary and sufficient conditions for the existence of solutions as well as for the well-posedness.

AMS Subject Classification (1991): Primary 49J27

Key Words: quadratic functional, minimization, well-posedness
Let us introduce the following notation: $R(A)$ is the range space of the operator A, $AU = \{Au : u \in U\}$ is the image of U under the action of A, $\operatorname{Ker} A$ is the kernel of A, $A^* : F \to H$ is the adjoint operator of A, M is the closure of the set $M \subseteq H$ with respect to the norm of H, L^\perp is the orthogonal complement of the subspace L, P is the orthogonal projector of H onto $R(A^*)$.

The operators A and B generate the following orthogonal decompositions of H:

$$
H = \overline{R(A^*)} \oplus \operatorname{Ker} A, \quad H = \overline{R(B^*)} \oplus \operatorname{Ker} B.
$$

An operator A is called normal soluble if $R(A) = \overline{R(A)}$. This condition is equivalent to $\overline{R(A^*)} = R(A^*)$ [4].

Lemma 1. [5] A linear bounded operator $A : H \to F$ is normal soluble if and only if

$$
\mu := \inf\{\|Au\| : u \perp \operatorname{Ker} A, \|u\| = 1\} > 0.
$$

This lemma implies immediately

Lemma 2. If a linear bounded operator $A : H \to F$ is not normal soluble, then there exists a sequence (p_n) such that

$$
p_n \in \overline{R(A^*)}, \quad \|p_n\| = 1, \quad p_n \to 0, \quad Ap_n \to 0 \text{ as } n \to \infty.
$$

Let us notice that the set U in (2) and (3) is convex and closed with respect to the norm of H. If, moreover, the set U in (2) is bounded, then the existence of a solution for (1), (2) for each $f \in F$ follows by Weierstrass theorem [6]. If U is unbounded (that is always so for U in (3) when $\dim H = \infty$), then the problems (1), (2) and (1), (3) have solutions for each $f \in F$ if and only if AU is a closed set in F (see [1], [2]). We will use this existence criterion repeatedly in the sequel. Now we formulate the necessary conditions for the solvability of the problem (1), (2).

Theorem 1. Suppose that the problem (1), (2) has a solution for each $f \in F$. Then at least one of the following conditions is satisfied:

(i) $R(A^*) \cap R(B^*B) = \{0\}$,

(ii) $\operatorname{Ker} A + \operatorname{Ker} B = \operatorname{Ker} A + \operatorname{Ker} B$.

Proof. Assume that $R(A^*) \cap R(B^*B) \neq \{0\}$. The continuity of the operator A and the closure of the set AU imply that the set

$$
A^{-1}(AU) = \operatorname{Ker} A + \operatorname{Ker} B + V_R,
$$

where $V_R = \{u \in \overline{R(B^*)} : \|Bu\| \leq R\}$, is closed in the space H. Let $y \in R(A^*) \cap R(B^*B), y \neq 0$. Take a point $z \in H$ such that $y = B^*Bz$. Present z, according to
(4), in the form \(z = z_1 + z_2, \ z_1 \in \overline{R(B^*)}, \ z_2 \in \text{Ker} \ B \). Then \(y = B^*Bz_1 \), and, for the point \(x_0 = \frac{R}{\|z_1\|}z_1 \), we have

\[
x_0 \in \overline{R(B^*)}, \ B^*Bx_0 \in R(A^*) \cap R(B^*B), \ ||Bx_0||^2 = R^2,
\]

in particular, \(x_0 \in V_R \). Now take any point \(y_0 \in \text{Ker} \ A + \text{Ker} \ B \). The point \(y_0 + x_0 \) is a limit point of the closed set \(\text{Ker} \ A + \text{Ker} \ B + V_R \). Therefore, the point \(y_0 + x_0 \) is presentable as \(y_0 + x_0 = p_0 + z_0 \), where \(p_0 \in \text{Ker} \ A + \text{Ker} \ B \) and \(z_0 \in V_R \). Multiplying both sides of (6) by \(B^*Bz_0 \) and taking into account (5) and the orthogonality

\[
R(A^*) \cap R(B^*B) \perp \text{Ker} \ A + \text{Ker} \ B,
\]

we find that \(R^2 = ||Bx_0||^2 = \langle Bx_0, Bx_0 \rangle \). Since \(z_0 \in V_R \), we obtain

\[
||B(x_0 - z_0)||^2 = ||Bx_0||^2 - 2\langle Bx_0, Bz_0 \rangle + ||Bz_0||^2 \leq 0
\]

and therefore \(x_0 = z_0 \). Now we have \(y_0 = p_0 \in \text{Ker} \ A + \text{Ker} \ B \). Recalling that \(y_0 \) was an arbitrary point from \(\text{Ker} \ A + \text{Ker} \ B \), we finally get the condition (ii). This concludes the proof. \(\square \)

The following example shows that the assumptions about normal solvability of both operators \(A \) and \(B \) do not guarantee the existence of solutions of the problem (1), (2) for all \(f \in F \).

Example. Take \(H = F = G = l_2 \) and consider two closed subspaces of \(l_2 \):

\[
L = \{x \in l_2 : x = (0, x_2, 0, x_4, 0, x_6, 0, \ldots)\},
\]

\[
M = \{x \in l_2 : x = (0, x_2, x_2/2, x_4, x_4/4, x_6, x_6/6, \ldots)\}.
\]

Define \(A \) as the orthoprojector of \(l_2 \) onto \(L^\perp \) and \(B \) as the orthoprojector of \(l_2 \) onto \(M^\perp \). Then \(A = A^*, \ B = B^* = B^*B \), \(\text{Ker} \ A = L \), \(\text{Ker} \ B = M \), operators \(A \) and \(B \) are normal solvable but both relations (i) and (ii) from Theorem 1 are violated:

\[
x_0 = (1, 0, 0, \ldots) \in R(A^*) \cap R(B^*B) = L^\perp \cap M^\perp \neq \{0\},
\]

\[
\text{Ker} \ A + \text{Ker} \ B = L + M \neq L^\perp + M^\perp = \text{Ker} \ A + \text{Ker} \ B = \{x_0\}^\perp.
\]

It means that in this case the problem (1), (2) can not have a solution for each \(f \in l_2 \).

One can ask about additional conditions that normal solvable operators \(A \) and \(B \) should satisfy for the existence of a solution of the problem (1), (2) for each \(f \in F \). In order to answer this question, we shall prove the following

Lemma 3. Let \(A \) be a normal solvable operator and let \(V \subseteq H \) be a convex closed set. Then

\[
\overline{AV} = A(\overline{\text{Ker} \ A + V}).
\]
Proof. For each \(y_0 \in \overline{AV} \) there exists a sequence \((u_n), u_n \in V \) such that the sequence \(y_n = Au_n \) converges to \(y_0 \) as \(n \to \infty \). According to (4) we can present \(u_n \) as

\[
u_n = x_n + z_n, \; x_n \in R(A^*), \; z_n \in \text{Ker} \; A.
\]

Then

\[Ax_n = Au_n = y_n \to y_0, \; n \to \infty.
\]

As the operator \(A \) is normal solvable, (7) implies that the sequence \((x_n) \) is bounded. Therefore, \((x_n) \) (or some of its subsequence) converges weakly to some limit \(x_0 \) and also \(x_n \in V + \text{Ker} \; A \). The set \(\text{Ker} \; A + V \) is weakly closed, thus \(x_0 \in \text{Ker} \; A + V \) and

\[
y_0 = \lim_{n \to \infty} Au_n = \lim_{n \to \infty} Ax_n = Ax_0 \in A(\text{Ker} \; A + V).
\]

Therefore, we have proved the inclusion \(\overline{AV} \subseteq A(\text{Ker} \; A + V) \). Conversely, for each \(y_0 \in A(\text{Ker} \; A + V) \) there exists a sequence \(u_n \in \text{Ker} \; A + V \) such that the sequence \(y_n = Au_n \to y_0 \) as \(n \to \infty \). Present the elements \(u_n \in \text{Ker} \; A + V \) in the form:

\[
u_n = z_n + x_n, \; z_n \in \text{Ker} \; A, \; x_n \in V.
\]

Since \(y_n = Au_n = Ax_n \in AV \), it follows that \(y_0 \in \overline{AV} \). Thus we have proved the inclusion \(A(\text{Ker} \; A + V) \subseteq \overline{AV} \), which completes the proof. \(\square \)

Now we show that for normal solvable operators \(A \) and \(B \) the statement of Theorem 1 can be inverted.

Theorem 2. Let \(A \) and \(B \) be normal solvable operators. If at least one of the conditions (i) or (ii) from Theorem 1 is satisfied, then the problem (1), (2) has a solution for each \(f \in F \).

Proof. First consider the case (ii) when

\[
\text{Ker} \; A + \text{Ker} \; B = \overline{\text{Ker} \; A + \text{Ker} \; B}.
\]

Using Lemma 3 for \(V = \text{Ker} \; B \), we get

\[
\overline{A(\text{Ker} \; B)} = \overline{A(\text{Ker} \; A + \text{Ker} \; B)} = A(\text{Ker} \; A + \text{Ker} \; B) = A(\text{Ker} \; B),
\]

i.e., the set \(A(\text{Ker} \; B) \) is closed. Then, by Theorem 3 in [2], it follows that the problem (1), (2) has a solution.

Now consider the case (i) when \(R(A^*) \cap R(B^*B) = \{0\} \). Since the operators \(A^*, B^*B \) are normal solvable and their ranges \(R(A^*), R(B^*B) \) are closed, we get

\[
H = \{0\}^\perp = (R(A^*) \cap R(B^*B))^\perp = \text{Ker} \; A + \text{Ker} \; B,
\]

i.e., the set \(\text{Ker} \; A + \text{Ker} \; B \) is dense in \(H \). Note that ellipsoid (2) has a nonempty interior (we consider \(R > 0 \)), therefore \(U + \text{Ker} \; A + \text{Ker} \; B = H \). On the other hand, \(U = U + \text{Ker} \; B \), hence \(U + \text{Ker} \; A = H \). Finally, we see that

\[
AU = A(U + \text{Ker} \; A) = AH = R(A),
\]
i.e., the set \(AU \) is closed. This concludes the proof. \(\Box \)

Let us consider the existence problem for (1), (3). Suppose the operator \(B : H \to \mathbb{R}^m \) is defined by \(Bu = \langle c_1, u \rangle, \langle c_2, u \rangle, \ldots, \langle c_m, u \rangle \), \(u \in H \). The operator \(B \) is normal solvable and

\[
R(B^*) = \left\{ \sum_{i=1}^{m} \lambda_i c_i : \lambda_i \in \mathbb{R}^1, i = 1, \ldots, m \right\} = \mathcal{L}(c_1, c_2, \ldots, c_m).
\]

Since \(H = R(B^*) \oplus \text{Ker} B \), the constraints (3) can be presented in the form

\[
(\text{fl}) \quad U = \text{V}_\beta \oplus \text{Ker} B,
\]

where

\[
\text{V}_\beta = \left\{ v \in R(B^*) : \langle c_i, v \rangle \leq \beta_j, j = 1, \ldots, m \right\}.
\]

Theorem 3. The problem (1), (3) has a solution for each \(f \in F \) if and only if the operator \(A \) is normal solvable.

Proof. The implication normal solvability \(\Rightarrow \) existence was proved in [1, p. 12]. Let us prove the converse implication. First observe that (fl) implies \(AU = AV_\beta + A(\text{Ker} B) \). We claim that \(AU = AV_\beta + \overline{A(\text{Ker} B)} \). Since by assumption the set \(AU \) is closed, we see that any point \(y \in AV_\beta + \overline{A(\text{Ker} B)} \) as a limit point of \(AU \) belongs to \(AU \). So, we have obtained that \(AV_\beta + \overline{A(\text{Ker} B)} \subseteq AU \). It is obvious that the inverse inclusion is valid. Therefore

\[
AV_\beta + \overline{A(\text{Ker} B)} = AV_\beta + \overline{A(\text{Ker} B)}
\]

is really true. Adding \(A(R(B^*)) \) to both sides, by the inclusion \(\text{V}_\beta \subset R(B^*) \), we get

\[
R(A) = A(R(B^*)) + A(\text{Ker} B) = A(R(B^*)) + \overline{A(\text{Ker} B)}.
\]

To conclude the proof, it remains to note that the set \(R(A) \) is closed as a sum of the finite-dimensional subspace \(A(R(B^*)) \) and the closed subspace \(\overline{A(\text{Ker} B)} \). \(\Box \)

2. Consider the question of well-posedness for the problem (1), (3) in Tikhonov sense.

Definition. [1] The problem (1) is well-posed in the space \(H \) in Tikhonov sense if the following three conditions hold: 1) \(J_* = \inf \{ J(u) : u \in U_* \} > -\infty \); 2) \(U_* = \left\{ u \in U : J(u) = J_* \right\} \neq \emptyset \); 3) each minimizing sequence \((u_n) \) of the problem (1) converges strongly in \(H \) to the solution set \(U_* \), i.e.,

\[
d(u_n, U_*) = \inf \{ ||u_n - u|| : u \in U_* \} \to 0 \text{ as } n \to \infty.
\]

If at least one of the conditions 1), 2), 3) is not valid, then the problem is called *ill-posed.*
THEOREM 4. The problem (1), (3) is well-posed in the sense of Tikhonov if and only if the operator A is normal solvable.

Proof. Let A be a normal solvable operator and let \(u_n \) be an arbitrary minimizing sequence of the problem (1), (3). Present the elements \(u_n \) in the form

\[
\|Pu_n - Pu_*\| \to 0 \text{ as } n \to \infty,
\]

where \(u_* \in U_* \) is a solution (for instance, normal) of the problem (1), (3). Consider the sequence \(v_n = Pu_* + (I - P)u_n \). Then

\[
J(v_n) = J(Pu_*) = J(u_*) = J_*
\]

and

\[
\langle c_i, v_n \rangle = \langle c_i, Pu_* \rangle + \langle c_i, (I - P)u_n \rangle = \langle c_i, u_n \rangle + \langle c_i, Pu_* - Pu_n \rangle, \quad i = 1, 2, \ldots, m.
\]

Let us introduce the notation \(\alpha_{in} = \langle c_i, Pu_* - Pu_n \rangle \). The last relation implies that

\[
\langle c_i, v_n \rangle \leq \beta_i + \alpha_{in},
\]

and, moreover, according to (2)

\[
\alpha_{in} \to 0 \text{ as } n \to \infty, \quad i = 1, 2, \ldots, m.
\]

Present the set \(U_* \) in the form: \(U_* = (Pu_* + \text{Ker } A) \cap U \) and notice that \(v \in U_* \) if and only if \(v = Pu_* + (I - P)v \) and

\[
\beta_i \geq \langle c_i, v \rangle = \langle c_i, Pu_* \rangle + \langle c_i, (I - P)v \rangle, \quad i = 1, \ldots, m.
\]

Take the finite-dimensional subspace

\[
L = \mathcal{L}\{(I - P)c_1, (I - P)c_2, \ldots, (I - P)c_m\}
\]

and denote by \(Q \) the orthogonal projector of \(H \) onto \(L \). Then we have

\[
\langle (I - P)c_i, (I - P)v \rangle = \langle (I - P)c_i, Qv \rangle, \quad i = 1, \ldots, m.
\]

According to (5) and (6), we get that for each \(v \in U_* \)

\[
\langle (I - P)c_i, Qv \rangle \leq \beta_i - \gamma_i, \quad i = 1, 2, \ldots, m,
\]

where \(\gamma_i = \langle c_i, Pu_* \rangle \). Using (3), (7), we obtain

\[
\langle (I - P)c_i, Qv_n \rangle \leq \beta_i - \gamma_i + \alpha_{in}, \quad i = 1, 2, \ldots, m, \quad n = 1, 2, \ldots
\]
In the subspace L define the set W by

\[(\text{f9}) \quad W = \{ w \in L : \langle (I - P)c_i, w \rangle \leq \beta_i - \gamma_i, \; i = 1, 2, \ldots, m \}. \]

According to (f7), $Qv \in W$ for all $v \in U_*$. By virtue of (f4), (f8), and Hoffman’s lemma [7] we derive

\[(\text{f10}) \quad d(Qv_n, W) = \inf \{ \|Qv_n - w\| : w \in W \} \to 0, \; n \to \infty. \]

Note that in (f10) the infimum is achievable for each $n = 1, 2, \ldots$ and take the elements $w_n \in W$ so that $d(Qv_n, W) = \|Qv_n - w_n\|$. Furthermore, consider the sequence $y_n = Pu_* + (I - Q)(I - P)u_n + w_n, \; n = 1, 2, \ldots$. Then, for all $n = 1, 2, \ldots, J(y_n) = J(Pu_*) = J(u_*) = J$, and using (f9) we get

\[
\langle c_i, y_n \rangle = \langle c_i, Pu_* \rangle + \langle c_i, (I - Q)(I - P)u_n \rangle + \langle c_i, w_n \rangle \\
= \gamma_i + \langle c_i, (I - P)u_n \rangle - \langle Qc_i, (I - P)u_n \rangle + \langle c_i, w_n \rangle \\
= \gamma_i + \langle (I - P)c_i, (I - P)u_n \rangle - \langle (I - P)c_i, (I - P)u_n \rangle + \langle (I - P)c_i, w_n \rangle \\
\leq \gamma_i + \beta_i - \gamma_i = \beta_i.
\]

This means that (y_n) is a minimizing sequence for the problem (1), (3) (moreover, $y_n \in U_*$). Let us now note that

\[
\|v_n - y_n\| = \|Pu_* + (I - P)u_n - Pu_* - (I - Q)(I - P)u_n - w_n\| \\
= \|Q(I - P)u_n - w_n\| = \|Qv_n - w_n\|.
\]

Finally, by (f10), we obtain

\[
d(u_n, u_*) \leq \|u_n - y_n\| \leq \|u_n - v_n\| + \|v_n - y_n\| \\
= \|Pu_n - Pu_*\| + \|Qv_n - w_n\| \to 0, \; n \to \infty,
\]

hence, the well-posedness of the problem (1), (3) is proved.

Suppose conversely, that the problem (1), (3) is well-posed in the sense of Tikhonov. It is necessary to prove that the operator A is normal solvable. Let us suppose conversely that $R(A^*) \neq \bar{R(A^*)}$. Then, according to Lemma 2, there exists a sequence p_n such that

\[(\text{f11}) \quad p_n \in \bar{R(A_*)}, \; \|p_n\| = 1, \; p_n \to 0, \; Ap_n \to 0, \; n \to \infty. \]

Let c_1, \ldots, c_k be some base of the system c_1, \ldots, c_m. Define the sequences $(\lambda_{n_1}), \ldots, (\lambda_{n_k})$ so that for the elements

\[
v_n = u_* + p_n + \sum_{i=1}^{k} \lambda_n c_i
\]
we have
\[\langle v_n, c_i \rangle = \langle u_*, c_i \rangle, \quad i = 1, \ldots, m. \]

These relations form a system of linear equations
\[\lambda_{n_1} \langle c_1, c_i \rangle + \lambda_{n_2} \langle c_2, c_i \rangle + \cdots + \lambda_{n_k} \langle c_k, c_i \rangle = -\langle p_n, c_i \rangle, \quad i = 1, \ldots, m. \]

This system is equivalent to the shortened system
\[(f12) \quad \lambda_{n_1} \langle c_1, c_i \rangle + \lambda_{n_2} \langle c_2, c_i \rangle + \cdots + \lambda_{n_k} \langle c_k, c_i \rangle = -\langle p_n, c_i \rangle, \quad i = 1, \ldots, k. \]

The system (f12) has a unique solution \(\lambda_{n_1}, \ldots, \lambda_{n_k} \); moreover, by virtue of (f11), we have
\[\lim_{n \to \infty} \lambda_{n_i} = 0, \quad i = 1, \ldots, k. \]

Thus we see that \((v_n) \) is a minimizing sequence; however, by (f11), we derive that
\[d^2(v_n, U_*) \geq ||p_n||^2 - \sum_{i=1}^{k} \lambda_{n_i}^2 ||c_i||^2 \to 1 \text{ as } n \to \infty. \]

Therefore, we have constructed a minimizing sequence \((v_n) \) that does not converge to the solution set \(U_* \), but this is impossible under the above assumption of the well-posedness of the problem (1), (3). This completes the proof. \(\square \)

References