UN THÉORÈME DE MOYENNE
POUR LES SOMMES D’EXPO NENTIELLES.
APPLICATION À L’INÉGALITÉ DE WEYL

O. Robert et P. Sargos

Communicated by Aleksandar Ivić

ABSTRACT. Nous étudions la moyenne de puissances sixièmes de certaines sommes d’exponentielles selon une méthode due à Bombieri et Iwaniec [1]. Le résultat s’applique à l’inégalité de Weyl en suivant une idée due à Heath-Brown [3].

1. Introduction

Soit \(p \) un entier fixé, \(p = 3, 4 \) ou \(5 \). Nous cherchons à majorer la moyenne de puissances \(2p \)-ièmes de sommes d’exponentielles:

\[
I_{2p} = \int_0^1 \int_0^\lambda \left| \sum_{n=N+1}^{2N} e(\alpha n^2 + \gamma n^4) \right|^{2p} \, d\alpha \, d\gamma,
\]

avec \(N \) entier \(\geq 2 \), \(\lambda \) réel positif et avec la notation \(e(x) = e^{2\pi i x} \).

Un raisonnement heuristique facile montre que le résultat attendu est:

\[
I_{2p} \ll \lambda N^{p+\varepsilon} + N^{2p-6+\varepsilon}, \quad \text{pour tout } \varepsilon > 0
\]

Notre résultat principal consiste à démontrer (1.2) dans le cas \(p = 3 \). Pour cela, nous suivons un scénario dû à Bombieri et Iwaniec [1]; nous nous démarquons de [1] par de nombreuses simplifications de détail rendues possibles par le cadre plus simple dans lequel nous nous plaçons. Notre motivation principale pour ce résultat est un critère de la dérivée cinquième pour les sommes d’exponentielles; cette application est détaillée dans [6]. Dans les cas \(p = 4 \) et \(p = 5 \), nous ne parvenons pas au résultat attendu (1.2), et nous nous contentons de déduire du cas \(p = 3 \) les majorations suivantes:

\[
I_8 \ll \lambda N^{9/2+\varepsilon} + N^{2+\varepsilon}, \quad \text{pour tout } \varepsilon > 0
\]

1991 Mathematics Subject Classification. Primary 11L07; Secondary 11L15.
(pour fixer le idées, signalons qu’un raisonnement direct équivaut à la démonstration du lemme de Hua, cf. [7], aboutirait seulement à la majoration: \(I_8 \ll \varepsilon \lambda N^{5+\varepsilon} + N^{2+\varepsilon} \) et

\[
(1.3) \quad I_{10} \ll \varepsilon \lambda N^{49/8+\varepsilon} + N^{4+\varepsilon}, \text{ pour tout } \varepsilon > 0
\]

Ce dernier résultat s’applique à l’inégalité de Weyl en suivant une idée due à Heath-Brown [3]. Plus précisément, soit \(k \) un entier fixé. Étant donné le réel \(\alpha \) et l’entier \(N \), on pose:

\[
S_k(\alpha) = \sum_{n=1}^{N} e(\alpha n^k).
\]

Supposons que \(\alpha \) admette une approximation rationnelle “générique” (en un sens à préciser dans chaque cas). Alors l’inégalité classique de Weyl s’écrit, en posant \(K = 2^k \): \(S_k(\alpha) \ll \varepsilon N^{-2/K+\varepsilon} \), pour chaque \(k \geq 2 \) (cf. [4] ou [7]). Dans le théorème 1 de [3], l’exposant \(1 - 2/K \) devient \(1 - 8/3K \), pour \(k \geq 6 \), avec des conditions plus restrictives sur \(\alpha \).

Comme conséquence de (1.3), nous obtenons l’exposant \(1 - 3/K \), pour \(k \geq 8 \), avec de nouvelles restrictions sur \(\alpha \).

2. Notations

L’écriture \(u \ll v \) signifie qu’il existe une constante absolue \(C > 0 \) telle qu’on ait \(|u| \leq C v \). L’écriture \(u \ll_k v \) signifie que \(C \) peut dépendre de \(k \). L’écriture \(u \ll_{\varepsilon} v \) sous-entend que la majoration a lieu pour tout \(\varepsilon > 0 \). Si \(u \) et \(v \) sont positifs, l’écriture \(u \asymp v \) signifie qu’on a à la fois \(u \ll v \) et \(v \ll u \).

La fonction caractéristique de l’intervalle \([a, b]\) est notée \(1_{[a, b]} \).

Enfin, le symbole \(\square \) se place à la fin d’une démonstration pour signaler que celle-ci est terminée, ou à la fin d’un énoncé pour signaler que la démonstration a été omise.

3. Enoncé du résultat principal

Afin de formuler nos résultats dans un cadre adéquat, nous introduisons quelques notations.

Soit un réel \(N \geq 2 \). Pour toute suite \((b_n)_{N < n \leq 2N} \) de nombres complexes, on pose:

\[
(3.1) \quad \left| \sum_{n=N}^{2N} b_n \right| = \max_{N < n \leq 2N} \left| \sum_{N < n \leq N_1} b_n \right|.
\]

De même, on désigne par \(\sum_{n=N}^{2N} b_n \) la somme \(\sum_{N < n \leq N_1} b_n \) pour laquelle le maximum ci-dessus est réalisé, \(N_1 \) étant choisi minimum en cas d’ambiguïté.

Dans toute la suite, \((a_n)_{N < n \leq 2N} \) désigne une suite de nombres complexes de modules au plus égaux à 1. Soit \(\lambda > 0 \). On pose enfin:

\[
I_{2p} = \int_0^1 \int_0^\lambda \left| \sum_{n=N}^{2N} a_n e(\alpha n^2 + \gamma n^4) \right|^{2p} d\alpha \, d\gamma,
\]

Notre résultat principal s’énonce ainsi:
Théorème 1. Avec les notations ci-dessus, on a la majoration suivante:

\[I_6 \ll \lambda N^{3+\varepsilon} + N^\varepsilon. \]

Les deux résultats suivants sont conséquence du théorème 1.

Théorème 2. Avec les notations ci-dessus, on a de même:

\[I_8 \ll \lambda N^{9/2+\varepsilon} + N^{2+\varepsilon} \]

Théorème 3. Avec les notations ci-dessus, on a enfin:

\[I_{10} \ll \lambda N^{49/8+\varepsilon} + N^{4+\varepsilon} \]

4. Systèmes diophantiens et moyennes de sommes d’exponentielles

Dans cette section, nous établissons un lemme qui, bien que complètement élémentaire, est essentiel dans la démonstration des théorèmes 1, 2 et 3. Il exprime que les bornes des intégrales et du domaine de sommation dans (1.1) peuvent être modifiées à volonté, moyennant un facteur multiplicatif. Le phénomène s’explique par le lien qui existe entre \(B_{2p} \) et le système diophantien:

\[|n_1^2 + \cdots + n_p^2 - m_1^2 - \cdots - m_p^2| \leq \delta_1 N^2 \]

\[|n_1^4 + \cdots + n_p^4 - m_1^4 - \cdots - m_p^4| \leq \lambda_1 N^4 \]

\[N < n_i, m_i \leq 2N \]

avec \(\delta_1 \) et \(\lambda_1 \) réels positifs ou nuls, dont le nombre de solutions sera noté:

\[B_{2p}(N, \delta_1, \lambda_1). \]

Ce lien est tout à fait classique (cf. [4, chapitre 4]) et a été largement utilisé sous une forme semblable dans [1] et [8]. Cependant, nous préférons redémontrer complètement le résultat précis dont nous avons besoin:

Lemme 1. Soit \(p \geq 1 \) et \(N \geq 2 \) deux entiers, avec \(p \) fixé. Soient \(c, d, \lambda, \mu, \Delta, \delta \) des réels tels que \(0 < \Delta \leq \delta \leq 1 \), \(0 < \mu \leq \lambda \). Soient, pour \(\alpha \in [c, c+\delta] \) et \(\gamma \in [d, d+\lambda] \), des fonctions \(\varphi_{\alpha, \gamma} : \mathbb{N}, [2N] \to \mathbb{R} \) de classe \(C^1 \) telles que \(\varphi_{\alpha, \gamma}^\prime \ll 1/N \).

Alors on a

\[
\left(\frac{1}{(\log N)^{2p}} \right) \int_c^{c+\delta} \int_d^{d+\lambda} \left| \sum_{n \sim N} a_n e(\alpha n^2 + \gamma n^4 + \varphi_{\alpha, \gamma}(n)) \right|^{2p} da \, d\gamma \ll_p B_{2p}(N, \frac{1}{\delta N^2}, \frac{1}{\lambda N^4})
\]

\[
\ll_p \frac{1}{\Delta \mu} \int_{-\Delta/2}^{\Delta/2} \int_{-\mu/2}^{\mu/2} \left| \sum_{N < n \leq 2N} e(\alpha n^2 + \gamma n^4) \right|^{2p} da \, d\gamma
\]
Remarque. Si la fonction

\[(\alpha, \gamma) \rightarrow \left| \sum_{n \sim N} a_n e(\alpha n^2 + \gamma n^4 + \varphi_{\alpha, \gamma}(n)) \right|^{2p} \]

n’est pas mesurable au sens de Lebesgue, l’intégrale du premier membre de (4.3) doit être prise au sens d’une intégrale supérieure.

Démonstration. 1) Pour chaque \((\alpha, \gamma)\) fixé, la fonction \(n \rightarrow \varphi_{\alpha, \gamma}(n)\) a une variation totale \(\ll 1/N\). Par le choix des notations, la sommation d’Abel s’écrit:

\[
\sum_{n \sim N} a_n e(\alpha n^2 + \gamma n^4 + \varphi_{\alpha, \gamma}(n)) \ll \left| \sum_{n \sim N} a_n e(\alpha n^2 + \gamma n^4) \right|
\]

Par ailleurs, pour tout \(N_1 \in]N/2, 2N]\], on a

\[
\sum_{N < n \leq N_1} a_n e(\alpha n^2 + \gamma n^4) = \int_{-1/2}^{1/2} \left(\sum_{N < n \leq 2N} a_n e(\alpha n^2 + \gamma n^4 - \theta n) \right) \left(\sum_{N < \nu \leq N_1} e(\nu \theta) \right) d\theta
\]

Posons \(L(\theta) = \min(N, 1/|\theta|)\). Par l’inégalité de Hölder, on a:

\[
\left| \sum_{n \sim N} a_n e(\alpha n^2 + \gamma n^4) \right|^{2p} \ll_p (\log N)^{2p-1} \int_{-1/2}^{1/2} L(\theta) \left| \sum_{N < n \leq 2N} a_n e(\alpha n^2 + \gamma n^4 - \theta n) \right|^{2p} d\theta.
\]

En intégrant par rapport à \(\alpha\) et \(\gamma\), on obtient finalement

\[
\frac{1}{(\log N)^{2p}} \frac{1}{\lambda} \int_{c+\delta}^{c+\delta} \int_{d+\lambda}^{d+\lambda} \left| \sum_{n \sim N} a_n e(\alpha n^2 + \gamma n^4 + \varphi_{\alpha, \gamma}(n)) \right|^{2p} d\alpha d\gamma \ll_p \frac{1}{(\log N)^{2p}} \int_{-1/2}^{1/2} L(\theta) I(\theta) d\theta,
\]

avec

\[
I(\theta) = \frac{1}{\delta \lambda} \int_{c+\delta}^{c+\delta} \int_{d+\lambda}^{d+\lambda} \left| \sum_{N < n \leq 2N} a'_n(\theta) e(\alpha n^2 + \gamma n^4) \right|^{2p} d\alpha d\gamma
\]

et \(a'_n(\theta) = a_n e(-\theta n)\).

2) Pour \(\theta\) fixé, on va établir la majoration:

\[(4.4) \quad I(\theta) \ll B_{2p} \left(N, \frac{1}{\delta N^2}, \frac{1}{\lambda N^4} \right),\]
ce qui suffit à prouver la première inégalité dans (4.3).

Soit la fonction \(\rho(y) = \left(\frac{\sin(\pi y)}{\pi y} \right)^2 \) (avec la convention \(\rho(0) = 1 \)), dont la transformée de Fourier vaut

\[
\hat{\rho}(t) = \int_{-\infty}^{+\infty} \rho(y)e(-ty)dy = (1 - |t|)^+,
\]

et qui vérifie:

\[
1_{[-1/2,1/2]}(y) \ll \rho(y).
\]

On revient à \(I(\theta) \). Par changement de variable, on écrit:

\[
I(\theta) = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \left| \sum_{N<\eta\leq 2N} a_n''(\theta)e(\alpha \delta n^2 + \gamma \lambda n^4) \right|^{2p} d\alpha d\gamma,
\]

avec \(a_n''(\theta) = a_n e((c + \delta/2)n^2 + (d + \lambda/2)n^4 - \theta n) \), d'où

\[
I(\theta) \ll \int_{\mathbb{R}} \int_{\mathbb{R}} \rho(\alpha)\rho(\gamma) \left| \sum_{N<\eta\leq 2N} a_n''(\theta)e(\alpha \delta n^2 + \gamma \lambda n^4) \right|^{2p} d\alpha d\gamma,
\]

On développe maintenant la puissance \(2p \)-ième et on intègre terme à terme. Tenant compte du fait que \(|a_n| \leq 1 \), on arrive sans mal à la formule:

\[
(4.5) \quad I(\theta) \ll \sum_n \sum_m \hat{\rho}(\delta(s_2(n) - s_2(m)))\hat{\rho}(\lambda(s_4(n) - s_4(m)))
\]

où on a posé:

\(n = (n_1, \ldots, n_p) \) et \(m = (m_1, \ldots, m_p) \in \mathbb{N}^p, s_2(n) = n_1^2 + \cdots + n_p^2 \) et \(s_4(n) = n_1^4 + \cdots + n_p^4 \). Il est clair que (4.5) implique (4.4).

3) Nous allons établir la deuxième inégalité de (4.3). On remarque d’abord l’inégalité suivante qui, bien que triviale, constitue le coeur de la démonstration du lemme 1:

\[
B_{2p} \left(N, \frac{1}{\Delta N^2}, \frac{1}{\lambda N^4} \right) \leq B_{2p} \left(N, \frac{1}{\Delta N^2}, \frac{1}{\mu N^4} \right)
\]

Pour finir la démonstration du lemme 1, il suffit de prouver que:

\[
(4.6) \quad B_{2p} \left(N, \frac{1}{\Delta N^2}, \frac{1}{\mu N^4} \right) \ll \frac{1}{\Lambda^2} \int_{\mu/2}^{2\mu} \int_{\mu/2}^{2\mu} \left| \sum_{N<\eta\leq 2N} e(\alpha n^2 + \gamma n^4) \right|^{2p} d\alpha d\gamma,
\]

et, pour cela, de reprendre les calculs de la deuxième partie en sens inverse. Plus précisément, on a:

\[
(4.7) \quad B_{2p} \left(N, \frac{1}{\Delta N^2}, \frac{1}{\mu N^4} \right) = \sum_n \sum_m 1_{[-1/\Delta,1/\Delta]}(s_2(n) - s_2(m))1_{[-1/\mu,1/\mu]}(s_4(n) - s_4(m))
\]
(avec \(n \) et \(m \in \mathbb{N}, 2N^p \)).

Maintenant, on écrit que \(1_{[-1/\Delta, 1/\Delta]}(y) \ll \rho(\Delta y/2) \) et que \(\rho(y) = \int_R \hat{\rho}(x)e(xy)dx \),

ce qui montre que le deuxième membre de (4.7) est

\[
\ll \int_{R} \int_{\mathbb{R}} \hat{\rho}(\alpha)\hat{\rho}(\gamma) \left\{ \sum_{n} \sum_{m} e \left(\frac{\alpha \Delta}{2} (s_2(n) - s_2(m)) + \frac{\gamma \mu}{2} (s_4(n) - s_4(m)) \right) \right\} \, d\alpha \, d\gamma
\]

\[
= \int_{R} \int_{\mathbb{R}} \hat{\rho}(\alpha)\hat{\rho}(\gamma) \left| \sum_{N < n \leq 2N} e(\alpha n^2 + \gamma n^4) \right|^{2p} \, d\alpha \, d\gamma.
\]

On majore \(\hat{\rho}(y) \) par \(1_{[-1,1]}(y) \), puis on fait un changement de variable évident et

on obtient exactement (4.6).

\[\square\]

5. Puissances quatrièmes

Le but de cette section est de majorer l'intégrale

\[
\int_0^{N^{-1/2}} \int_{N^{-3}}^{N^{-3}} \left| \sum_{n - N} e(\alpha n^2 + \gamma n^4) \right|^6 \, d\alpha \, d\gamma,
\]

des qui fournissent l'analogue du corollaire de [1]. Auparavant, nous devons établir un

lemme auxiliaire sur les puissances quatrièmes:

LEMME 2. *Soient un entier \(N \geq 2 \) et un réel \(\Delta \geq N^{-1} \). Alors:

\[
(5.1) \quad \int_0^{\Delta} \int_{N^{-1/2}}^{N^{-3/2}} \left| \sum_{n - N} e(\alpha n^2 + \gamma n^4) \right|^4 \, d\alpha \, d\gamma \ll \Delta \frac{(\log N)^6}{N}.
\]

Soit \(J \) l'intégrale du premier membre de (5.1). Le lemme 1 s'applique ici:

\[
J \ll (\log N)^4 B_4 \left(N, \frac{1}{\Delta N^2}, \frac{1}{N} \right) \leq (\log N)^4 B_4 \left(N, \frac{1}{N^2}, \frac{1}{N} \right),
\]

de la dernière inégalité étant évidente du fait que \(\Delta \geq \frac{1}{N} \). On rappelle que \(B_4 = B_4 \left(N, \frac{1}{N^2}, \frac{1}{N} \right) \) est le nombre de solutions du système:

\[
\begin{align*}
|n_1^2 + n_2^2 - m_1^2 - m_2^2| & \leq N, \\
|n_1^4 + n_2^4 - m_1^4 - m_2^4| & \leq N^3
\end{align*}
\]

\(N < n_i, m_i \leq 2N \)

qu'on majore par le nombre de solutions du système:

\[
(5.2) \quad a) \quad n_1^2 + n_2^2 = m_1^2 + m_2^2 + O(N) \\
b) \quad n_1^4 + n_2^4 = m_1^4 + m_2^4 + O(N^3)
\]

\(N < n_i, m_i \leq 2N \)
Si on élève (5.2.a) au carré et qu'on lui retranche (5.2.b), on obtient:
\[(n_1 n_2)^2 = (m_1 m_2)^2 + O(N^3),\]
ce qui implique immédiatement
\[(5.3) \quad n_1 n_2 = m_1 m_2 + O(N),\]
Dans le système constitué par (5.2.a) et (5.3), on pose
\[a = n_1 + n_2, \ b = m_1 + m_2, \ c = n_1 - n_2, \ d = m_1 - m_2.\]
On a montré que \(B_4\) est majoré par le nombre de solutions d'un système du type:
\[(5.4) \quad \begin{align*}
a) \quad & a = b + O(1) \quad a \asymp N, \ b \asymp N, \\
b) \quad & c^2 = d^2 + O(N) \quad c \ll N, \ d \ll N.
\end{align*}\]
Supposons que \(c\) soit d'un ordre de grandeur fixé \(U\), avec \(1 \leq U \leq N\). Alors (5.4.b) s'écrit:
\[c - d \ll N/U,\]
qui possède \(O(N)\) solutions. En sommant sur les \(O(\log N)\) valeurs possibles de \(U\), et en ajoutant le cas \(c = 0\), on a montré que le nombre de solutions de (5.4) est \(\ll N^2 \log N\), et de même pour \(B_4\).
\(\Box\)

Nous sommes maintenant en mesure d'établir le:

LEMME 3. Pour tout entier \(N \geq 2\), on a:
\[
\int_{0}^{N^{-1/2}} \int_{-N^{-1}}^{N^{-1}} \left| \sum_{n=-N}^{n=N} e(\alpha n^2 + \gamma n^4) \right|^6 \, d\alpha \, d\gamma \ll (\log N)^6
\]
On découpe le domaine d'intégration de la variable \(\alpha\) en \(O(\log N)\) intervalles:
\[
\int_{0}^{N^{-1/2}} \leq \int_{0}^{16N^{-1}} + \sum_{16N^{-1} < \delta < N^{-1/2}} \int_{\delta}^{2\delta} \quad \text{avec} \quad \delta = 2^k N^{-1},
\]
et on montre que chaque terme qui lui correspond est \(\ll (\log N)^5\). Par exemple, soit \(\delta\) tel que \(16N^{-1} \leq \delta < N^{-1/2}\); on pose
\[
S(\alpha, \gamma) = \sum_{n=-N}^{n=N} e(\alpha n^2 + \gamma n^4) \quad \text{et} \quad I_\delta = \int_{\delta}^{2\delta} \int_{-N^{-1}}^{N^{-1}} \left| S(\alpha, \gamma) \right|^6 \, d\alpha \, d\gamma.
\]
On écrit alors:
\[
I_\delta \ll \left(\max_{\delta < \alpha < 2\delta} \left| S(\alpha, \gamma) \right| \right)^2 \int_{\delta}^{2\delta} \int_{-N^{-1}}^{N^{-1}} \left| S(\alpha, \gamma) \right|^4 \, d\alpha \, d\gamma.
\]
Comme on a choisi \(\delta \geq 16N^{-1}\), on peut appliquer l'inégalité de Van der Corput (cf. [2, Théorème 2.2]) pour obtenir \(S(\alpha, \gamma)^2 \ll N^2 \delta\), ce qui montre, à l'aide du Lemme 2, qu'on a:
\[
I_\delta \ll N \delta^2 (\log N)^5 \ll (\log N)^5. \quad \Box
\]
6. Un calcul sur la transformation \textbf{B}

Comme dans la démonstration de Bombieri et Iwaniec (cf. [1, section 3]), nous avons besoin de calculs précis sur la transformation \textbf{B} de Van der Corput. Ces calculs ont, depuis, été écrits dans un cadre général (cf. [5]). Nous nous contenterons ici de rappeler le résultat dont nous avons besoin. Soit $f : [N, AN] \rightarrow \mathbb{R}$ une fonction de classe C^4 telle que:

$$ (6.1) \quad \lambda_2 \leq f''(x) \leq \lambda_2, \quad f'''(x) \leq \lambda_2/N, \quad f^{(4)}(x) \leq \lambda_2/N^2 $$

pour $x \in [N, AN]$, où λ_2 désigne un réel positif.

La transformation \textbf{B} de Van der Corput (cf. [2, Lemme 3.6], ou [4, chapitre 3, Théorème 10]) s’écrit:

$$ (6.2) \quad \sum_{N < n \leq 2N} e(f(n)) = ei\pi/4 \sum_{\alpha \leq y \leq \beta} \frac{e(f^*(y))}{f''(z(y))} + O(\log(2 + N\lambda_2)) + O(\lambda_2^{-1/2}), $$

avec les notations suivantes: $\alpha = f'(N), \beta = f'(AN)$,

$$ (6.3) \quad z(y) = (f')^{-1}(y), \quad \text{pour} \quad \alpha \leq y \leq \beta $$

e t enfin

$$ (6.4) \quad f^*(y) = f(z(y)) - yz(y), \quad \text{pour} \quad \alpha \leq y \leq \beta. $$

Cette dernière relation définit la fonction f^* à partir de f.

Soit maintenant $u : [N, 2N] \rightarrow \mathbb{R}$ une fonction de classe C^4, qui est "petite" devant f. Pour cela, on suppose qu’il existe un réel $\eta (0 \leq \eta \leq 1/4)$ tel que l’on ait

$$ (6.5) \quad |u^{(j)}(x)| \leq \eta \lambda_2 N^{2-j}, \quad \text{pour} \quad j = 1, 2, 3, 4 \quad \text{et pour} \quad x \in [N, 2N]. $$

Le calcul suivant est détaillé dans [5]:

Lemme 4. Soient f et u vérifiant (6.1) et (6.5). On conserve les notations (6.3) et (6.4). On pose $g(x) = f(x) + u(x)$. Soit $[\alpha_0, \beta_0]$ l’intersection des domaines de définition de f^* et de g^*. Alors, pour $y \in [\alpha_0, \beta_0]$, on a:

$$ g^*(y) = f^*(y) + u(z(y)) - u'(z(y)) \frac{u'(z(y))^2}{2 f''(z(y))} + v(y), $$

où v est une fonction de classe C^1 qui vérifie: $v(y) \ll \eta^3 N^2 \lambda_2$ et $v'(y) \ll \eta^3 N$.

□

L’exemple qui nous intéresse est celui de la fonction $g(x) = ax^2 + \gamma x^4$, avec:

$$ (6.6) \quad 0 < \alpha \leq \frac{1}{2}, \quad |\gamma| \leq \frac{\alpha}{96N^2} $$

Alors le calcul de g^* découle du lemme 3:

$$ (6.7) \quad g^*(y) = \frac{-y^2}{4\alpha} + \frac{\gamma y^4}{16\alpha^3} - \frac{\gamma^2 y^6}{16\alpha^5} + v(y), $$

avec

$$ v(y) \ll \frac{|\gamma|^3 N^8}{\alpha^2} \quad \text{et} \quad v'(y) \ll \frac{|\gamma|^3 N^7}{\alpha^3}. $$
7. Une application de la transformation B

Le coeur de la démonstration du Théorème 1 est le résultat suivant, analogue du lemme 5 de [1]:

Lemme 5. Soient N et Δ deux réels tels que $N \geq 16$ et $N^{-1/2} \leq \Delta \leq 1/4$. On pose:

\[
R(\Delta, N) = \int_0^1 \left| \sum_{-N^{-1/2} \leq \gamma \leq 0} e(\alpha n^2 + \gamma n^4) \right|^6 \alpha \, d\gamma,
\]

(7.1)

\[
I(N) = \int_0^1 \left| \sum_{-N^{-3} \leq \gamma \leq 0} e(\alpha n^2 + \gamma n^4) \right|^6 \alpha \, d\gamma,
\]

(7.2)

Alors on a:

\[
R(\Delta, N) \ll \Delta (\log N)^6 \left(I(2\Delta N) + I(4\Delta N) \right)
\]

(7.3)

1) La preuve s’appuie sur la transformation B de Van der Corput qu’on va appliquer à la somme:

\[S(\alpha, \gamma) = \sum_{N < n \leq 2N} e(g(n)),\]

avec $g(n) = g_{\alpha, \gamma}(n) = \alpha n^2 + \gamma n^4$, et $\alpha \in [\Delta, 2\Delta]$, $\gamma \in [-N^{-3}, N^{-3}]$.

Pour que la condition (6.6) soit satisfaite, on doit supposer que

\[N \geq N_0 := 96^2.\]

Pour démontrer (7.3) dans le cas $N < N_0$, il suffit de remarquer qu’on a toujours, sans limitation sur N:

\[I(N) \geq 1,\]

(7.4)

Cela provient de la deuxième inégalité de (4.3) en remarquant que $B_{2p}(N, \delta_1, \lambda_1)$ est toujours minoré par le nombre de solutions triviales du système correspondant.

À partir d’ici, on suppose $N \geq N_0$. Alors g' est à valeurs dans un intervalle fixe $J_0 := [2\Delta N - 4, 8\Delta N + 32]$. L’application de (6.2) peut donc s’écrire:

\[
S(\alpha, \gamma) \ll \left| \sum_{m \in J} \frac{e(g^* (m))}{g''(z(m))^{1/2}} \right| + N^{1/4},
\]

(7.5)

où $J = J(\alpha, \gamma)$ est un sous-intervalle de J_0. Mais dans la somme du membre de droite de (7.5), on peut supprimer $O(1)$ termes sans avoir à modifier le terme d’erreur; en particulier, on peut supposer que J est un sous-intervalle de $J_1 := [2\Delta N, 8\Delta N]$, et ce, pour des raisons de commodité qui apparaîtront plus loin.
On intègre alors (7.5) par rapport à α et γ et, grâce à une sommation d'Abel, on a finalement:

\[
R(\Delta, N) \ll \Delta^{-3} \int_{-\Delta}^{2\Delta} \int_{-N^{-3}}^{N^{-3}} \left| \sum_{m \in J} e(g^*(m)) \right|^6 d\alpha d\gamma + \frac{\Delta}{N^{3/2}}.
\]

2) Le calcul de \(g^*(m)\) est donné par (6.7):

\[
g^*(m) = -\frac{m^2}{4\alpha} + \frac{\gamma m^4}{16\alpha^4} - \frac{\gamma^2 m^6}{16\alpha^7} + \psi(m),
\]

où \(\psi\) est une fonction dont la variation totale est \(O(1)\). En particulier, le terme \(\psi(m)\) peut disparaître par sommation d’Abel dans la somme (7.6). D’autre part, on pose \(M = 2\Delta N\). Alors, avec la notation (3.1), et si \(J\) désigne n’importe quel sous-intervalle de \(J_1\) (\(J_1 = [2\Delta N, 8\Delta N]\)), on a:

\[
\sum_{m \in J} b(m) \ll \left| \sum_{m \sim M} b(m) \right| + \left| \sum_{m \sim 2M} b(m) \right|
\]

pour toute suite \((b(m))_m\) de nombres complexes. On a montré que:

\[
R(\Delta, N) \ll R_1(\Delta, N) + R_2(\Delta, N) + \Delta
\]

avec

\[
R_1(\Delta, N) = \Delta^{-3} \int_{-\Delta}^{2\Delta} \int_{-N^{-3}}^{N^{-3}} \left| \sum_{m \sim M} e \left(\frac{m^2}{4\alpha} - \frac{\gamma m^4}{16\alpha^4} + \frac{\gamma^2 m^6}{16\alpha^7} \right) \right|^6 d\alpha d\gamma
\]

et où \(R_2(\Delta, N)\) se définit de la même façon, mais en remplaçant \(M\) par \(2M\).

On va prouver les majorations:

\[
R_1(\Delta, N) \ll (\log N)^6 I(2\Delta N)\quad \text{et}\quad R_2(\Delta, N) \ll (\log N)^6 I(4\Delta N)
\]

ce qui, compte tenu de (7.4), achèvera la démonstration du Lemme.

3) Dans l’intégrale (7.8), on fait le changement de variables \(x = \frac{1}{4\alpha}, \quad y = -\frac{\gamma}{16\alpha^4}\). La nouvelle variable \((x, y)\) reste dans le rectangle

\[
\Omega = \left[\frac{1}{8\Delta}, \frac{1}{4\Delta} \right] \times \left[-\frac{N^{-3}}{16\Delta^4}, \frac{N^{-3}}{16\Delta^4} \right].
\]

On recouvre \(\Omega\) par des petits rectangles de la forme

\[
\omega = [c, c+1] \times [d, d+2M^{-3}], \quad c \asymp \Delta^{-1}, \quad d \ll (\Delta M^3)^{-1}
\]
Le nombre de petits rectangles nécessaires est \(\ll \Delta^{-2} \). Tous calculs faits, on aboutit ainsi à:

\[
R_1(\Delta, N) \ll \Delta \max_{d \geq \varepsilon \Delta^{-1}} \int_{c}^{c+1} \int_{d}^{d+2M^{-3}} \left| \sum_{m \sim M} e \left(x m^2 + y m^4 + 4y^2 m^6 \right) \right|^6 \, dx \, dy
\]

Maintenant, on pose

\[
a_m = e \left(\frac{4d^2 m^6}{c} \right) \text{ et } \phi_{x, y}(m) = 4 \left(\frac{y^2}{x} - \frac{d^2}{c} \right) m^6.
\]

On obtient:

\[
R_1(\Delta, N) \ll \Delta \max_{c, d} \int_{c}^{c+1} \int_{d}^{d+2M^{-3}} \left| \sum_{m \sim M} a_m e \left(x m^2 + y m^4 + \phi_{x, y}(m) \right) \right|^6 \, dx \, dy
\]

La variation totale de \(\phi_{x, y} \) est \(\ll 1 \); les hypothèses du lemme 1 sont vérifiées et on en déduit la première inégalité de (7.9). Raisonnant de même pour la deuxième, on achève la démonstration du Lemme.

Démonstration du Théorème 1. Nous commençons par établir une relation de récurrence:

Lemme 6. Pour \(N \geq 16 \), on définit \(I(N) \) comme en (7.2). On suppose qu’il existe un réel \(\beta \geq 0 \) tel qu’on ait:

(7.10)

\[
I(N) \ll \varepsilon N^{\beta+\varepsilon}
\]

Alors on a:

(7.11)

\[
I(N) \ll \varepsilon N^{\beta+\varepsilon}
\]

On pose \(\Delta = N^{-\frac{\beta}{1+\varepsilon}} \). Par le Lemme 1, on a:

\[
I(N) \ll \Delta^{-1} \left(\log N \right)^6 \int_0^\Delta \int_{-N^{-3}} \left| \sum_n e(\alpha n^2 + \gamma n^4) \right|^6 \, d\alpha \, d\gamma
\]

On décompose l’intégrale: \(\int_0^\Delta \leq \int_0^{N^{-1/2}} + \sum_{N^{-1/2} \leq \delta \leq \Delta} \int_0^{\delta} \), où \(\delta \) est de la forme \(2^k N^{-1/2} \). On utilise le Lemme 3 pour l’intégrale \(\int_0^{N^{-1/2}} \), d’où

\[
I(N) \ll \Delta^{-1} (\log N)^{12} + \Delta^{-1} (\log N)^7 \max_{N^{-1/2} \leq \delta \leq \Delta} \left| R(\delta, N) \right|
\]

où \(R(\delta, N) \) est défini en (7.1). On applique le Lemme 5, puis l’hypothèse de récurrence (7.10) et on obtient:

\[
I(N) \ll \varepsilon \Delta^{-1} N^\varepsilon + \Delta^{\beta} N^{\beta+\varepsilon},
\]
ce qui, par le choix de \(\Delta \), redonne (7.11). \(\square \)

\textbf{Démonstration du Théorème 1:} On doit majorer

\[I_0 = \int_0^1 \int_0^\lambda \left| \sum_{n=0} e(\alpha n^2 + \gamma n^4) \right|^6 \, d\alpha \, d\gamma. \]

En considérant séparément le cas \(\lambda \leq N^{-3} \) et le cas \(\lambda > N^{-3} \), le Lemme 1 montre qu'on a:

\[I_0 \ll (\log N)^6 (1 + \lambda N^3) I(N). \]

D'autre part, une majoration triviale montre que (7.10) est vrai pour \(\beta = \beta_0 := 3 \).

On définit par récurrence, pour \(n \geq 1 \), \(\beta_n = \frac{\beta_{n-1}}{1 + (n-1)\lambda} \). Par le lemme 6 appliqué \(n \) fois, on obtient (7.10) avec \(\beta = \beta_n \); ce qui donne, en prenant \(n \) arbitrairement grand:

\[I(N) \ll \varepsilon N^\varepsilon, \]

et le théorème 1 en découle. \(\square \)

Pour en finir avec les puissances sixièmes, nous rappelons la formulation équivalente du Théorème 1 en termes de systèmes diophantiens:

\textbf{Théorème 1'.} \textit{Soit un entier} \(N \geq 2 \). \textit{Le nombre de solutions du système}

\[n_1^2 + n_2^2 + n_3^2 = m_1^2 + m_2^2 + m_3^2, \quad |n_1^4 + n_2^4 + n_3^4 - m_1^4 - m_2^4 - m_3^4| \leq \delta N^4 \quad 0 \leq n_i, m_i \leq N \]

\textit{est} \(\ll \varepsilon N^{3+\varepsilon} + \delta N^{4+\varepsilon} \).

\textbf{8. Démonstration du Théorème 2}

On doit majorer

\[I_8 = \int_0^1 \int_0^\lambda \left| \sum_{n=0} a_n e(\alpha n^2 + \gamma n^4) \right|^8 \, d\alpha \, d\gamma. \]

On pose \(\mu = N^{-5/2} \). En séparant le cas \(\lambda \leq \mu \) et le cas \(\lambda > \mu \), on obtient, par le Lemme 1:

\[I_8 \ll \varepsilon N^\varepsilon (1 + \frac{\lambda}{\mu}) \int_0^{\mu} \int_0^{\mu} \left| \sum_{N < n \leq 2N} e(\alpha n^2 + \gamma n^4) \right|^8 \, d\alpha \, d\gamma. \]

On décompose l'intégrale:

\[\int_0^{\mu} \leq \int_0^{N^{-3}} + \sum_{N^{-3} \leq \delta < \mu} \int_0^{2\delta}, \]
avec δ de la forme: $\delta = 2^k N^{-3}$, d'où:

(8.1) \[I_8 \ll \varepsilon N^\varepsilon \left(1 + \frac{\lambda}{\mu} \right) \left(J_0 + \max_{N^{-2} \leq \delta \leq \mu} J_8 \right), \]

où on a posé:

\[
J_0 = \int_0^1 \int_0^{N^{-3}} \left| \sum_n e(\alpha n^2 + \gamma n^4) \right|^8 \, d\alpha \, d\gamma
\]

\[
J_\delta = \int_0^1 \int_\delta^{2\delta} \left| \sum_n e(\alpha n^2 + \gamma n^4) \right|^8 \, d\alpha \, d\gamma.
\]

La première intégrale se majore simplement:

\[
J_0 \ll N^2 \int_0^1 \int_0^\lambda \left| \sum_n e(\alpha n^2 + \gamma n^4) \right|^6 \, d\alpha \, d\gamma \ll \varepsilon N^{2+\varepsilon},
\]

d'après le Théorème 1. Pour les autres intégrales, on écrit :

\[
J_\delta \ll \left(\max_{0 \leq \alpha \leq 1} \left| \sum_{N^{-2} \leq \gamma \leq \delta} e(\alpha n^2 + \gamma n^4) \right| \right)^2 \int_0^1 \int_0^{2\delta} \left| \sum_n \right|^6 \, d\alpha \, d\gamma
\]

\[
\ll \varepsilon \left(N^2 (\delta N)^{1/3} + N^{3/2} + \delta^{-1/2} \right) \delta N^{3+\varepsilon},
\]

d'une part d'après le critère de la dérivée troisième pour les sommes d'exponentielles (cf. [2, Théorème 2.6]) et, d'autre part, d'après le Théorème 1. Par le choix de μ, on a $J_\delta \ll \varepsilon N^{2+\varepsilon}$ pour tout $\delta \in [N^{-3}, \mu]$. Reportant ces majorations dans (8.1), on obtient (3.2).

\[\square \]

9. Démonstration du Théorème 3

Le Théorème 3 se déduit du Théorème 2 exactement de la même façon que le Théorème 2 se déduit du Théorème 1. La démonstration précédente peut être reconduite avec les modifications suivantes:

Tout d'abord, on doit prendre $\mu = N^{-1/8}$ au lieu de $N^{-5/2}$. Le deuxième point à changer est le découpage de l'intégrale qu'on doit maintenant écrire:

\[
\int_0^\mu \leq \int_0^{N^{-5/2}} + \sum_{N^{-5/2} \leq \delta \leq \mu} \int_\delta^{2\delta},
\]

toujours avec δ de la forme $\delta = 2^k N^{-5/2}$.

Enfin, chaque application du Théorème 1 doit être remplacée par une application du Théorème 2.

\[\square \]
Remarques: 1) Dans la démonstration du Théorème 3, on doit majorer la somme d’exponentielles:

\[S(\mu) = \max_{0 \leq \alpha \leq 1} \left| \sum_{n} e(\alpha n^2 + \gamma n^4) \right|, \quad \text{avec} \quad \mu = N^{-17/8}. \]

Le critère de la dérivée troisième s’applique précisément à ce type de situation. Cependant, on peut faire mieux en introduisant des techniques plus élaborées (par exemple, en appliquant le Lemme A, puis en adaptant une paire d’exposants convenable, cf. [2]). Mais les améliorations attendues sont minimes; c’est pourquoi nous n’avons pas cherché à le faire.

2) La même méthode permet de déduire du Théorème 3 un résultat sur les puissances douzièmes. Il faudrait pour cela prendre \(\mu \) nettement plus grand que \(N^{-17/8} \). Dans ce cas, les majorations possibles de \(S(\mu) \), même à l’aide de paires d’exposants performantes, fourniraient un résultat insuffisant pour l’application aux sommes de Weyl.

10. Application à l’inégalité de Weyl

10.1. Enoncé du résultat. Soit \(k \) un entier fixé, \(k \geq 8 \); les constantes sous-entendues dans le symbole \(\ll \) pourront dorénavant dépendre de \(k \). Étant donné un réel \(\alpha \) et un entier \(N \geq 2 \), on veut majorer la somme d’exponentielles

\[S(\alpha) = S_{N,k}(\alpha) = \sum_{n=1}^{N} e(\alpha n^k) \]

à l’aide de la quantité \(B_{H,\delta}(\alpha) = \# \{ h = 1, \ldots, H \mid ||ah|| \leq \delta \} \), où \(H \) est un entier, où \(\delta \) est un réel positif et où \(||x|| \) désigne la distance du réel \(x \) à l’entier le plus proche.

Théorème 4. On pose \(H = 16\frac{k}{\delta} N^{k-4} \), \(\delta = N^{-4} \) et \(K = 2k \). Alors on a:

\[S(\alpha) \ll_{\varepsilon} N^{1-\frac{1}{k}} + N^{1-\frac{1}{k}+\varepsilon} \left(\frac{B_{H,\delta}(\alpha)}{HN^{-1}} \right)^{\frac{1}{5K}}. \]

10.2. Remarques sur le résultat. Supposons que \(B_{H,\delta}(\alpha) \) admette la majoration “probabiliste”:

\[B_{H,\delta}(\alpha) \ll_{\varepsilon} H^{1+\varepsilon} \delta + H^{\varepsilon}. \]

Alors (10.1) devient:

\[S(\alpha) \ll_{\varepsilon} N^{1+\varepsilon-\frac{1}{k}} \left(1 + N^{8-k} \right)^{8/5K}, \]

ce qui explique pourquoi nous nous restreignons au cas \(k \geq 8 \). Par ailleurs, on peut majorer \(B_{H,\delta}(\alpha) \) en fonction des approimations rationnelles de \(\alpha \) grâce à un lemme de Heath-Brown que nous rappelons maintenant:
Lemme 7. (cf. [3, Lemme 6]) On suppose que \(\alpha \) admet l'approximation rationnelle
\[
\alpha = a/q + \theta, \quad \text{avec} \quad q \geq 1, \quad (a,q) = 1 \quad \text{et} \quad |\theta| \leq q^{-2}.
\]
Alors on a les deux majorations:
\[
B_{H,\delta}(\alpha) \leq 4(1+q\delta)(1+H/q) \quad \text{et} \quad B_{H,\delta}(\alpha) \leq 8(1+\delta/q|\theta|)(1+q|\theta|H).
\]
\[\square\]

On en déduit le:

Corollaire. Avec les notations (10.3), on suppose que l'une des deux hypothèses suivantes est vérifiée:
\[
N^4 \ll q \ll N^{k-4} \quad \text{ou} \quad \frac{1}{N^{k-4}} \ll |\theta|q \ll \frac{1}{N^4}.
\]
Alors, on a la majoration \(S(\alpha) \ll \varepsilon N^{1+\varepsilon-2/k} \).

10.3. Deux lemmes classiques. Le premier lemme est le Lemme A itéré \(r \) fois faisant intervenir les différences symétriques: \(\Delta_{h} f(x) = f(x + h) - f(x - h) \). Pour une démonstration, nous renvoyons au §2 de [3].

Lemme 8. Pour toute fonction \(f : [1,N] \rightarrow \mathbb{R} \), et tout entier \(r \geq 1 \), on a, en posant \(R = 2^r \):
\[
\left| \sum_{n=1}^{N} e(f(n)) \right|^R \ll_r \left[N^{R-1} + N^{R-(r+1)} \sum_{h=1,2} \sum_{|h_1| < N/2} \cdots \sum_{|h_r| < N/2} \sum_{n \in J(h) \mod 2} e(\Delta_{h_1} \ldots \Delta_{h_r} f(n)) \right],
\]
où \(J(h) = J(h_1, \ldots h_r) \) est un sous-intervalle de \([1,N]\).
\[\square\]

Le deuxième lemme est un cas particulier du double grand crible de Bombieri et Iwaniec (cf. [2, Lemme 7.5]):

Lemme 9. Pour tout entier \(h = 1, \ldots, H \), soient \(a_h \) et \(b_h \) des réels. Soit un entier fixé \(p \geq 1 \). Pour chaque \(h \), soit \(N_h \) un entier tel que \(1 \leq N_h \leq N \). Alors on a:
\[
\left| \sum_{h=1}^{H} \sum_{n=1}^{N_h} e(a_h n^4 + b_h n^2) \right| \ll \varepsilon \ H^{1-\frac{1}{2r}} N^{3/p+\varepsilon} N^{1/2p} \left(\int_0^1 \int_0^1 \left| \sum_{n=1}^{N} e(xn^2 + yn^4) \right|^{2p} dx dy \right)^{1/2p}
\]
avec \(\mathcal{N} = \# \{(h_1, h_2) \in \{1, \ldots, H\}^2 \mid \|a_{h_1} - a_{h_2}\| \leq N^{-4} \text{ et } \|b_{h_1} - b_{h_2}\| \leq N^{-2} \} \).
\[\square\]
10.4. Démonstration du théorème 4. On applique le Lemme A itéré \(k - 4 \) fois (au lieu de \(k - 3 \) fois dans [3]). Par le calcul, on obtient:

\[
\Delta_{h_1} \cdots \Delta_{h_r} (\alpha n^k) = 2^{k-4} \binom{k-1}{4} h_1 \cdots h_{k-4} \alpha n^4 + b_h n^2 + c_h,
\]

l'expression de \(b_h = b_{h_1, \ldots, h_{k-4}} \) et de \(c_h = c_{h_1, \ldots, h_{k-4}} \) étant sans importance.

On doit maintenant réaliser quelques opérations triviales pour se ramener exactement au Lemme 9.

On pose \(h = 2^{k-4} \binom{k-1}{4} h_1 \cdots h_{k-4} \). On désigne ensuite par \(b'_h \) le réel qui réalise le maximum de la quantité:

\[
\max_{1 \leq N_1 \leq N} \left| \sum_{n=1}^{N_1} e(\alpha n^4 + b'_h n^2) \right|.
\]

Enfin, on remarque que, pour tout intervalle \(J \subset [1, N] \), on a:

\[
\sum_{i=1,2} \left| \sum_{n \in J} \beta(n) \right| \leq \max_{1 \leq N_1 \leq N} \left| \sum_{n=1}^{N_1} \beta(n) \right| + \max_{1 \leq N_1 \leq N} \left| \sum_{n=1}^{N_1/2} \beta(2n) \right|,
\]

pour toute suite \((\beta(n))_n\) de nombres complexes.

On a finalement montré que, pour un bon choix des entiers \(N_h \), on a:

\[
\left| S(\alpha) \right|^{K/16} \leq \varepsilon N^{K/16 - 1} + N^{K/16 - k + 3 + \varepsilon} \sum_{h=1}^{H} \left| \sum_{n=1}^{N_h} e(\alpha n^4 + b'_h n^2) \right|,
\]

où \(H \) est défini comme au Théorème 4.

On applique maintenant le Lemme 9 avec \(p = 5 \), puis on majore \(N \) par \(B_{H,N^{-1}}(\alpha) \), ce qui donne (10.1) grâce au Théorème 3.

\textbf{Remarque:} Si on utilise le Théorème 2 à la place du Théorème 3, on obtient

\[
S(\alpha) \ll N^{1-16/K} + N^{1-3/K+\varepsilon} \left(\frac{B_{H,\delta}(\alpha)}{HN^{-1}} \right)^{2/K}.
\]

Ce résultat est identique à (10.1) dans le cas d'une majoration probabiliste de \(B_{H,\delta}(\alpha) \) (cf (10.2)), mais il est moins bon dans les autres cas.

\textbf{References}

Institut Elie Cartan
Université Henri Poincaré - Nancy I
BP 239
54 506 Vandœuvre-lès-Nancy Cedex

Robert@iem.u-nancy.fr
Sargos@iem.u-nancy.fr

(Réçu le 07 10 1998)