A LITTLEWOOD–PALEY THEOREM FOR
SUBHARMONIC FUNCTIONS

Miroslav Pavlović

Abstract. If \(u(z) > 0 \) (\(|z| < 1\)) is a subharmonic function of class \(C^2 \) such
that \(\Delta u \) is subharmonic and if \(\int u(r e^{i\theta}) \, dt \) (\(q > 1 \)) is bounded when \(0 < r < 1 \),
then
\[
\int \int (1 - |z|)^{q-1} (\Delta u(z))^q \, dx \, dy < \infty.
\]
In the case \(u = h^2 \) and \(q = p/2 < 1 \), where \(h \) is harmonic, this reduces to the
Littlewood–Paley theorem. In the case \(0 < q < 1 \) we prove a theorem in the
opposite direction.

1. Introduction

Let \(D \) denote the open unit disk in the complex plane. For a function \(u \) defined
on \(D \) we write
\[
I(r, u) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \, dt
\]
provided the integral is defined for all \(r < 1 \), and
\[
I(u) = \sup_{0 < r < 1} I(r, u),
\]
where the value \(\infty \) is permitted. In this paper we prove the following theorem.

Theorem 1.1. Let \(u \geq 0 \) be a subharmonic function of class \(C^2(D) \) such that
its Laplacian, \(\Delta u \), is subharmonic as well. If \(q \geq 1 \) and \(I(u^q) < \infty \), then
\[
(1.1) \quad \int_D (1 - |z|)^{2q-1} (\Delta u(z))^q \, dm(z) \leq C_q (I(u^q) - u(0)^q),
\]
where \(C_q \) is a constant depending only on \(q \).

1991 Mathematics Subject Classification. Primary 30D55.
Key words and phrases. Riesz’ measure of a subharmonic function.
Here dm denotes the area measure in the plane.

An important special case of (1.1) is the Littlewood-Paley inequality [3]; namely, if $p \geq 2$ and $I(|h|^{p}) < \infty$, where h is a real-valued function harmonic in D, then

$$\int_{D} (1 - |z|)^{p-1} |\nabla u|^{p} dm < C_{p} I(|h|^{p} - |h(0)|^{p}).$$

To obtain (1.2) from (1.1) we take $u = h^{2}$ and $q = p/2$. The function u satisfies the hypotheses of Theorem 1.1 because $\Delta u = 2|\nabla h|^{2}$.

Inequality (1.2) is usually stated in the weaker form

$$\int_{D} (1 - |z|)^{p-1} |\nabla h|^{p} dm \leq C_{p} I(|h|^{p}) \quad (p > 2).$$

The usual method of proving (1.3) is to use the Riesz-Thorin theorem. A quick elementary proof is given in [6]; it is based on the Hardy-Stein identity and the inequality $|\nabla h(z)| \leq 2h(z)/(1 - |z|)$ which holds when $h > 0$. An earlier proof based on the Hardy-Stein inequality and some local estimates is due to Luecking [5]. Our proof of Theorem 1.1 is similar to Luecking’s proof of (1.3) (see Lemma 2.2 and 3.1). However, some simplifications are made so that we can treat the case $q < 1$ as well (see Theorem 4.1). This provides, in particular, a new proof of the reverse Littlewood-Paley inequality which holds for harmonic functions when $1 < p < 2$ and for analytic functions when $0 < p < 2$. Moreover, a special case of Theorems 1.1 and 4.1 is the Littlewood-Paley inequality for vector valued functions. More precisely, inequality (1.3) remains true for $p \geq 2$ if we assume that h is a harmonic function with values in L^{p}, $|h(z)|^{2} = \sum h_{n}(z)^{2}$ and $|\nabla h(z)|^{2} = \sum |\nabla h_{n}(z)|^{2}$. The reverse inequality holds for $1 < p < 2$.

2. Local estimates for Riesz’ measure

From now on we shall assume that u is an arbitrary nonnegative subharmonic function defined on D. Then there exists a positive measure $d\mu$ on D, called the Riesz measure of u, such that $\Delta u = d\mu$ in the sense of distribution theory. (If u is of class C^{2}, then $d\mu(z) = \Delta u(z) dm(z)$.) There holds the formula

$$I(r, u) - u(0) = \frac{1}{2\pi} \int_{rD} \log \frac{r}{|z|} d\mu(z) \quad (0 < r < 1),$$

which can be deduced, for example, from the Riesz representation formula (see [4], Theorem 3.3.6.)

Lemma 2.1. We have

$$I(u) - u(0) = \frac{1}{2\pi} \int_{D} \log \frac{1}{|z|} d\mu(z).$$

Proof. Write (2.1) in the form

$$I(r, u) - u(0) = \frac{1}{2\pi} \int_{D} K_{r}(z) \log \frac{r}{|z|} d\mu(z),$$

where $K_{r}(z)$ is the Kelvin transform of the function u.
where \(K_r(z) \) is the characteristic function of the disk \(rD \). Since \(K_r(z) \log(r/|z|) \) increases with \(r \) we have

\[
\lim_{r \to 1} (r, u) - u(0) = \frac{1}{2\pi} \int_D \lim_{r \to 1} K_r(z) \log \frac{r}{|z|} d\mu(z).
\]

And since \(I(r, u) \) increases with \(r \) we have \(I(u) = \lim_{r \to 1} I(r, u) \). The result follows. \(\square \)

Lemma 2.2. Let \(q \geq 1 \) and let \(\mu \) and \(\mu_q \) be the Riesz measures of \(u \) and \(u^q \) respectively. Then

\[
(2.2) \quad \mu(E)^q \leq C_q \mu_q(5E)
\]

for any disk \(E \) such that \(6E \subset D \). The constant \(C_q \) depends only on \(q \).

If \(E \) is a disk of radius \(R \), then \(rE \) denotes the concentric disk of radius \(rR \).

Proof. By translation the proof is reduced to the case where \(E \) is centered at 0. Then since \(\mu(E) = \nu((1/r)E) \), where \(\nu \) is the Riesz measure of the function \(u(rz) \), we can assume that the radius of \(E \) is fixed. e.g., \(E = \varepsilon D \) with \(\varepsilon = 1/6 \). Assuming this we use the simple inequalities

\[
(I(r, u) - u(0))^q \leq (I(r, u))^q - u(0)^q
\]

and \((I(r, u))^q \leq I(r, u^q) \), which hold because \(q > 1 \), to deduce from (2.1) (applied to \(u \) and \(u^q \) that

\[
(2.3) \quad \left(\frac{1}{2\pi} \int_D \log \frac{r}{|z|} d\mu(z) \right)^q \leq \frac{1}{2\pi} \int_D \log \frac{r}{|z|} d\mu_q(z).
\]

Putting \(r = 4\varepsilon \) we get

\[
(2.4) \quad \mu(2\varepsilon D)^q \leq C \int_{2\varepsilon D} |z|^{-1} d\mu_q(z),
\]

where we have used the estimates \(\log(4\varepsilon/|z|) \geq \log 2 \) for \(|z| < 2\varepsilon \) and \(\log(4\varepsilon/|z|) \leq 1/|z| \). Thus to prove (2.2) we have to eliminate \(|z|^{-1} \) in the integral. To do this we change the ‘center’ of (2.4) and we get

\[
\mu(2\varepsilon D_a)^q \leq C \int_{4\varepsilon D_a} |z-a|^{-1} d\mu_q(z)
\]

for \(a \in \varepsilon D \), where \(D_a = \{ z : |z-a| < 1 \} \). Since \(\varepsilon D \subset 2\varepsilon D_a \) and \(4\varepsilon D_a \subset 5\varepsilon D \) we have

\[
\mu(\varepsilon D)^q \leq C \int_{4\varepsilon D_a} |z-a|^{-1} d\mu_q(z).
\]

Now we integrate this inequality over \(\varepsilon D \) with respect to \(dm(a) \) and use Fubini’s theorem. This concludes the proof because

\[
\sup_{\varepsilon \in D} \int_{\varepsilon D} |z-a|^{-1} dm(a) < \infty.
\]

\(\square \)
3. Proof of Theorem 1.1

Theorem 1.1 is a consequence of the following.

Theorem 3.1. Let \(u \geq 0 \) be a subharmonic function in \(D \) and let \(\mu \) be the Riesz measure of \(u \). If \(q \geq 1 \) and \(I(u^q) < \infty \), then there holds the inequality

\[
\left(1 - |z|\right)^{-1} (\mu(E_\varepsilon(z)))^q \, dm \leq C_q (I(u^q) - u(0)^q),
\]

where \(\varepsilon = 1/6 \) and

\[
E_\varepsilon(z) = \{w : |w - z| < \varepsilon(1 - |z|)\}.
\]

If in addition \(u \) is \(C^2 \) and \(\Delta u \) is subharmonic, then

\[
\mu(E_\varepsilon(z)) = \int_{E_\varepsilon(z)} \Delta u \, dm \geq \pi \varepsilon^2 (1 - |z|)^2 \Delta u(z)
\]

because of the sub-mean-value property of \(\Delta u \), and this shows that (3.1) implies (1.2).

Proof. It follows from (2.2) that

\[
\int_D \left(1 - |z|\right)^{-1} (\mu(E_\varepsilon(z)))^q \, dm \int_D \left(1 - |z|\right)^{-1} \mu_q(E_{5\varepsilon}(z)) \, dm(z).
\]

Next we write

\[
\mu_q(E_{5\varepsilon}(z)) = \int_{E_{5\varepsilon}(z)} \, dm_q(w)
\]

and use Fubini’s theorem to conclude that the right hand side of (3.2) is equal to

\[
\int_D dm_q(w) \int_{G(w)} \left(1 - |z|\right)^{-1} \, dm(z),
\]

where \(G(w) = \{z : |z - w| < 5\varepsilon(1 - |z|)\} \). Since \(z \in G(w) \) implies \(|z| - |w| < 5\varepsilon (1 - |z|) \), whence \(|z| < (1 + 5\varepsilon)(1 - |z|) \), we have

\[
\int_{G(w)} \left(1 - |z|\right)^{-1} \, dm(z) \leq (1 + 5\varepsilon) m(G(w)) \left(1 - |w|\right)^{-1}.
\]

And since \((1 + 5\varepsilon)(1 - |z|) < 1 - |w| \) for \(z \in G(w) \), we have \(m(G(w)) \leq C' (1 - |w|)^2 \), where \(C' = \pi (5\varepsilon/(1 - 5\varepsilon))^2 \). Combining the previous results we see that

\[
\int_D \left(1 - |z|\right)^{-1} (\mu(E_\varepsilon(z)))^q \, dm \leq C_q \int_D (1 - |w|) \, dm_q(w).
\]

This finishes the proof of (3.1) because of Lemma 2.1 and the inequality \(1 - |w| \leq \log(1/|w|) \).
\(\square \)
4. The case \(q < 1 \)

Theorem 4.1. Let \(0 < q < 1 \) and let \(u \geq 0 \) be a \(C^2 \)-function such that \(u^q \) and \(\Delta u \) are subharmonic. If \(\int_D (1 - |z|)^{2q-1} (\Delta u)^q \, dm < \infty \), then \(I(u^q) < \infty \) and there holds the inequality

\[
I(u^q) - u(0)^q \leq C_q \int_D (1 - |z|)^{2q-1} (\Delta u)^q \, dm.
\]

Observe that, in contrast to the case \(q > 1 \), the function \(u^q \) need not be smooth.

Proof. Fix \(\varepsilon < 1/6 \). Applying Lemma 2.2 to the pair \(u^q, (u^q)^{1/q} \) we get, because \(1/q > 1 \),

\[
\mu_q(E_{\varepsilon}(z)) \leq C_q (\mu(E_{\varepsilon}(z)))^{q},
\]

where \(\mu_q \) and \(\mu \) are the Riesz measure of \(u^q \) and \(u \). On the other hand

\[
(\mu(E_{\varepsilon}(z)))^{q} = \left(\int_{E_{\varepsilon}(z)} \Delta u \, dm \right)^q
\leq C' (1 - |z|)^{2q} \sup \{(\Delta u(w))^q : w \in E_{\varepsilon}(z)\}.
\]

The function \((\Delta u)^q\) need not be subharmonic. Nevertheless, by a result of Hardy and Littlewood [2] and Fefferman and Stein [1], it possesses a weak form of the sub-mean-value property, namely

\[
(\Delta u(z))^q \leq \frac{C}{m(E)} \int_E (\Delta u)^q \, dm,
\]

where \(E \subseteq D \) is any disk centered at \(z \), and \(C \) depends only on \(q \). Using (4.3) one shows that

\[
\sup_{E_{\varepsilon}(z)} (\Delta u)^q \leq C'' (1 - |z|)^{-2} \int_{E_{\varepsilon}(z)} (\Delta u)^q \, dm.
\]

It follows that

\[
\int_D (1 - |z|)^{-1} \mu_q(E_{\varepsilon}(z)) \, dm(z) \leq C \int_D (1 - |z|)^{2q-3} \, dm(z) \int_{E_{\varepsilon}(z)} (\Delta u)^q \, dm,
\]

where \(C \) depends only on \(q \). Hence, as in the proof of Theorem 3.1,

\[
\int_D (1 - |z|) \, d\mu_q(z) \leq C_q \int_D (1 - |z|)^{2q-1} (\Delta u)^q \, dm.
\]

This implies that \(I(u^q) < \infty \) because of Lemma 2.1 applied to \(u^q \).

In order to prove (4.1) additional work is needed. We rewrite (2.3) as

\[
\left(\frac{1}{2\pi} \int_{rD} \log \frac{r}{|z|} \, d\mu_q(z) \right)^q \leq \frac{1}{2\pi} \int_{rD} \log \frac{r}{|z|} \, d\mu(z).
\]

Hence

\[
\int_{\varepsilon D} \log \varepsilon |z| \, d\mu_q(z) \leq C \sup_{\varepsilon D} (\Delta u)^q \leq C' \int_{2\varepsilon D} (\Delta u)^q \, dm,
\]
where we have used (4.3). Now it is easy to show that (4.4) remains true if we replace the left integral by
\[
\frac{1}{2\pi} \int_{\mathbb{D}} \log \frac{1}{|z|} \, d\mu_q(z) = I(u^q) - u(0)^q.
\]

\[\square\]

References

Matematicki fakultet
Studentski trg 16
11001 Beograd, p.p. 550
Yugoslavia
pavlovic@matf.bg.ac.yu

(Received 25 02 1999)