UNIVALENT HARMONIC MAPPINGS BETWEEN JORDAN DOMAINS

David Kalaj

Communicated by Miroslav Jevtić

ABSTRACT. We give a classification of univalent harmonic functions of a Jordan domain onto a convex Jordan domain with boundary which does not contain linear segments. It is interesting that the boundary function must be continuous but not necessarily a univalent function, contrary to the case of conformal mappings.

1. Introduction and notation

The complex twice-differentiable function \(w = f(z) = u + iv \) is called harmonic if \(u \) and \(v \) are real harmonic functions. Let be \(f \) a harmonic diffeomorphism. If there is \(k < 1 \) such that \(|f_u| \leq k|f_z| \), then we say that \(f \) is a quasiconformal function (q.c.). We denote by QCH the class of harmonic quasiconformal functions.

The following formula is the Poisson integration formula and it plays a very important role in harmonic function theory. For any bounded harmonic function \(f \) defined on the unit disc \(U \) there is a bounded \(L^1 \) function \(g \) defined on the unit circle \(S^1 \) such that:

\[
f(z) = P[g](z) = \int_0^{2\pi} P(z, \theta) g(e^{i\theta}) \, d\theta
\]

where

\[
P(z, \theta) = \frac{1 - |z|^2}{2\pi |z - e^{i\theta}|^2}
\]

is the Poisson kernel.

Lemma 1.1. [1] If \(g \) is a continuous function then \(f \) has a continuous extension on \(U \).

Lemma 1.2. [3] Let \(\{\varphi_n, n \in \mathbb{N}\} \) be a sequence of non-decreasing functions from \([0, 2\pi]\) to \([-2\pi, 4\pi]\). Then there is a subsequence \((\varphi_{n_k}) \subset (\varphi_n) \) and a function \(\varphi \) such that \(\varphi_{n_k}(x) \to \varphi(x) \) for \(x \in [0, 2\pi] \) and \(\varphi \) is a non-decreasing function.

1991 Mathematics Subject Classification. Primary 30C55, Secondary 31A05.

Key words and phrases. Complex functions, Planar harmonic mappings.
Lemma 1.3. Let $f : U \to V$ be a harmonic mapping of the unit disk U into the Jordan domain V. If $f = P[e^{i\theta}]$ and if there exists a $\theta_0 \in [0, 2\pi]$ such that
\[\lim_{r \to \theta_0} f(e^{i\theta}) = A_0 \quad \text{and} \quad \lim_{\theta \to \theta_0} f(e^{i\theta}) = B_0, \]
then for $\lambda \in [-1, 1]$ we have:
\[\lim_{r \to \infty} f \left(e^{i\theta_0} \left(\frac{Re^{i\lambda\pi/2} - 1}{Re^{i\lambda\pi/2} + 1} \right) \right) = \frac{1}{2} (1 - \lambda) A_0 + \frac{1}{2} (1 + \lambda) B_0. \]

The proof of this lemma follows from definition, but it has some technical difficulties. For details see [9].

Proposition 1.1 (Choquet). Let $f(z) = P[e^{i\varphi(z)}](z)$, such that φ is a non-decreasing 1-1 function and $\varphi(0) = 0$ and $\varphi(2\pi) = 2\pi$. Then f is a univalent harmonic function of the unit disk onto itself.

Note that, this proposition is valid in a more general form. Indeed, only the convexity of the co-domain is important.

Proposition 1.2. Let $f_n : \Omega \to U$ be a sequence of k-q.c. mappings of a Jordan domain Ω into the unit disc U. Also let $f = \lim_{n \to \infty} f_n$; then either:

1. f is constant or
2. f is function with two points value or
3. f is k-q.c.

This proposition is due to Lehto and Virtanen [5].

Proposition 1.3. Let $f_n : U \to V$, be a sequence of harmonic diffeomorphisms of the unit disc U onto a Jordan domain V such that $f_n \to f$. Then:

1. f is univalent of U into V or
2. $f(z) = c + e^{i\varphi} \cdot R(z)$ where R is real harmonic function $\neq 0$ or
3. $f \equiv \text{const}.

Proof. Without loss of generality we may assume that f_n are sense preserving mappings. Let $a_n = \frac{f_n}{f_n*z}$. Then $a_n : U \to U$ is an analytic function. Since $f_n \to f$ one gets $f_n \to f$ and $\frac{f_n}{f_n*z} \to \frac{f}{f*z}$. Because $|f_n| \leq |f_n*z|$ it follows that $|f_n| < |f_n*z|$. If $f_n \equiv 0$, then $f \equiv \text{const}$ which gives (1).

Otherwise $a = \frac{f}{f*z}$ is an analytic function except for some points. Since $|a| \leq 1$, these points are admissible singularities of a. Hence a is analytic on U. If $|a(z)| = 1$ at some point, then there exists a φ such that $a(z) \equiv e^{i\varphi}$. Hence
\[f(z) = c + e^{i\varphi} \sum_{n=1}^{\infty} (a_n e^{-i\varphi} z^n + \overline{a_n} e^{i\varphi} \bar{z}^n) = c + e^{i\varphi} \cdot R(z). \]

In this case (2) is true.

Let us now suppose $|a(z)| < 1$. We are going to prove that (1) holds. Let α, β be distinct points in U such that $|\alpha| < r$, $|\beta| < r$, and $r < 1$. Let $D_r = \{ z : |z| < r \}$. Then the functions $F_n = f_n|_{D_r}$ are q.c. Since $F_n \to f = f|_{D_r}$, from Proposition 1.2 it follows that $F : D_r \to F(D_r)$ is k’ q.c. Consequently $f(\alpha) = F(\alpha) \neq F(\beta) = f(\beta)$. It follows that f is 1-1. This completes the proof. □
2. The main results

Lemma 2.1. Let \(f : U \to V \) be a harmonic sense preserving diffeomorphism of the unit disk \(U \) into a Jordan domain \(V \). Then there exists a function \(\varphi : S \to \partial V \) with at most countably many points of discontinuity, all of them of the first type, such that: \(f = P[\varphi] \).

Proof. Let \(g : V \to U \) be a biholomorphism, which exists by Riemann mapping theorem. Then the function \(F = g \circ f : U \to U \) is a sense preserving diffeomorphism. Let \(U_n = \{z : |z| < \frac{n}{n-1}\} \), \(\Delta_n = F^{-1}(U_n) \) and let \(g_n \) be a biholomorphism of the Jordan domain \(U \) onto the domain \(\Delta_n \) such that \(g_n(0) = 0 \), and \(g'_n(0) > 0 \). Without loss of generality we can suppose \(0 \in \Delta_n \) because the last relation holds for \(n \) large enough. Then the function:

\[
F_n = \frac{n}{n-1} F \circ g_n = \frac{n}{n-1} g \circ f \circ g_n : U \to \overline{U}
\]

is a sense preserving homeomorphism. Let \(\varphi_n = F_n|_S \) and let \((\varphi_n) \) be a convergent subsequence of \((\varphi_n) \) which exists because of Lemma 1.1. Then \(\varphi_n(e^{i\theta}) = e^{\varphi_n(\theta)} \) where \(\varphi_n(\theta) \) is a monotone non-decreasing function. Let \(\varphi_0 = \lim \varphi_n \). Then \(\varphi_0 \) is a monotone non-decreasing function. Hence

\[
\lim_{k \to \infty} \frac{n_k}{n_k - 1} g \circ f \circ g_{n_k}|_S \to \varphi_0 \text{ if } k \to \infty.
\]

And consequently

\[
\lim_{k \to \infty} f \circ g_{n_k}(e^{i\theta}) = g^{-1}(\varphi_0(e^{i\theta})) \text{ for all } \theta
\]

because \(g \) is a homeomorphism from \(\overline{V} \) onto \(\overline{U} \). Since \(\varphi_k = f \circ g_{n_k}|_S \) is continuous and \(f \circ g_{n_k} \) is a harmonic function then from Lebesgue’s Dominated Convergence Theorem, (because the function \(g^{-1} \circ \varphi_0 \) is bounded), we obtain: \(f \circ g_{n_k} = P[\varphi_k] \to P[g^{-1} \circ \varphi_0] \), as \(k \to \infty \). It follows that the sequence \(g_{n_k} \) is convergent. Let \(\varphi_0(z) = \lim k \to \infty g_{n_k}(z) \). Since \(\varphi_0 \) is a conformal mapping from the unit disk onto itself which satisfies \(\varphi_0(0) = 0 \), and \(\varphi_0'(0) > 0 \) it follows that \(\varphi_0 \) is id. Hence \(f = P[g^{-1} \circ \varphi_0] = P[\varphi] \), where \(g^{-1} \) is continuous and \(\varphi_0 \) is a monotone non-decreasing function. Hence, it has no more than countably many points of discontinuity, which are of the first type. The lemma is proved.

Theorem 2.1. Let \(f : U \to \Omega \) be a harmonic diffeomorphism of the unit disk \(U \) onto a Jordan domain \(\Omega \) with boundary which contains no linear segments. Then the function \(f \) has a continuous extension from \(\overline{U} \) onto \(\overline{\Omega} \).

Proof. Follows from Lemma 1.2, Lemma 1.3 and homeomorphic properties of diffeomorphisms.

Remark 2.1. If a homeomorphism \(f \) reverses sense, then the homeomorphism \(\overline{f} \) preserves sense.

Corollary 2.1. Let \(f : \Omega \to V \) be a harmonic diffeomorphism of a Jordan domain \(\Omega \) onto a strict convex bounded domain \(V \). Then \(f \) has a continuous extension of \(\overline{\Omega} \) onto \(\overline{V} \).
Proof. Let \(\varphi : U \to \Omega \) be a conformal diffeomorphism of the unit disk \(U \) onto the Jordan domain \(\Omega \). Then \(F = f \circ \varphi : U \to \Omega \) is a harmonic diffeomorphism. Hence, the corollary follows from Carathéodory’s theorem and Theorem 2.1.

Remark 2.2. It is a natural question, whether the extension of this harmonic diffeomorphism is a homeomorphism. The answer to this question, in the general case, is negative.

Indeed, the next theorem holds.

Theorem 2.2. Let \(g_n \) be a convergent sequence of homeomorphisms between the unit circle and the convex Jordan domain \(\gamma = \text{int} \Omega \). Let \(g = \lim_{n \to \infty} g_n \) be a non constant and a non two valued function and let \(\text{conv}(g(S^1)) = \Omega \). Then \(f(z) = P[g](z) \) is a harmonic diffeomorphism of the unit disk onto \(\Omega \).

Proof. By Choquet’s theorem it follows that the functions \(f_n = P[g_n] \) is a univalent function from the unit disk onto \(\Omega \). On the other hand, because the family \(f_n \) is normal it has a convergent subsequence \(f_{n_k} \). Let \(f = \lim_{n \to \infty} f_{n_k} = P[g] \). Because \(g \) is not constant and it is a two-valued function, according to Proposition 1.3 it follows that it is univalent. (The function \(\theta \to e^{\ell}(\theta) \) has at last three value points.) On the other hand, because \(\text{conv}(f(S^1)) = \Omega \), it follows that \(f(U) = \Omega \).

Corollary 2.2. The harmonic function \(f : U \to U \) is a sense preserving diffeomorphism of the unit disk \(U \) onto itself if \(f = P[e^{\ell}(\theta)] \) where \(\ell \) is a continuous non-decreasing function such that \(\ell(0) = a \) and \(\ell(2\pi) = 2\pi + a \), \(a \in (-2\pi, 2\pi) \).

The proof follows from Theorem 2.1 and Theorem 2.2.

Example 2.1. Let \(\varphi(\theta) = \theta + k \sin \theta, \theta \in [0, 2\pi], 0 < k < 1 \). Then the function \(f = P[e^{\ell}(\theta)] \) is a harmonic diffeomorphism of the unit disk onto itself such that if \(0 < k < 1 \) it is quasiconformal.

For the proof of the last assertion in the example, see [8].

Remark 2.3. In a private conversation I learned that A. Lyzzaik and W. Hengartner have similar unpublished results.

3. Acknowledgement

I would like to thank Miodrag Mateljevic for the questions and suggestions on the subject of Harmonic functions, arisen in the seminar of Complex Analysis in Belgrade.

References

[4] W. Hengartner, G. Schober, Univalent harmonic mappings with given dilatation, Indiana University, ????

Prirodno-matematicki fakultet, 81001 Podgorica, p.p. 211
Yugoslavia

david@rc.pmf.ug.ac.yu

(Received 04 05 1999)