A FUNCTION DEFINED ON
AN EVEN-DIMENSIONAL REAL SUBMANIFOLD
OF A HERMITIAN MANIFOLD

Masafumi Okumura

Communicated by Míleva Prvanović

Abstract. On an even-dimensional real submanifold of a Hermitian manifold, making use of the fundamental 2-form of the ambient manifold, we define a function. In this paper, we investigate the function in detail in some special submanifolds.

1. Introduction

Let M be an even-dimensional real submanifold of a Hermitian manifold \mathcal{M}. Then, making use of the fundamental 2-form of the ambient manifold, we can define a function f on M. In [4], the present author and Y. Kubo defined the function and using this function, proved that an even-dimensional extrinsic sphere a of Kähler manifold is isometric with a sphere. Even though the final result in [4] is correct, there are some mistakes. In this paper, we correct these as well as investigate more properties of the function.

In Section 2 we recall some general preliminary facts on real submanifold of a Hermitian manifold and in Section 3 we define the function f and give a concrete form of the function. In Section 4 we discuss the function on some kind of real submanifolds and show that in these cases it takes much simple form.

In Section 5 we consider the function on a totally umbilical submanifold and give a differential equation which the function should satisfy, from which we conclude that if the totally umbilical submanifold has parallel mean curvature vector field, the gradient of the function defines an infinitesimal concircular transformation. From this, together with the theorem of Obata [2], we prove that the submanifold M is isometric with a sphere in Euclidean $(n + 1)$-space. This is the correction of the paper [4]. Finally in Section 6 we consider the case that the totally umbilical submanifold is a submanifold of codimension 2 of complex submanifold and

2000 Mathematics Subject Classification: 53C15, 53C25, 53C40.

Key words and phrases: fundamental 2-form, totally umbilical submanifold, mean curvature vector field.
give a concrete form of the second covariant derivative of the function which is a
generalization of the result in [3].

The author wishes to thank the referee who read the manuscript carefully and
pointed out the author’s many careless mistakes.

2. Even dimensional submanifold of a Hermitian manifold

Let \overline{M} be a real $(n+2p)$-dimensional Hermitian manifold with Hermitian struc-
ture (J, \overline{g}), that is, J is the almost complex structure of \overline{M} and \overline{g} the Riemannian
metric of \overline{M} satisfying the Hermitian condition $\overline{g}(JX, JY) = \overline{g}(X, Y)$ for any
$X, Y \in T(\overline{M})$. Let M be an n-dimensional real submanifold of \overline{M} and ι be the
immersion. Then the tangent bundle $T(M)$ is identified with a subbundle of $T(\overline{M})
and the induced Riemannian metric g of M is defined by $g(X, Y) = \overline{g}(\iota X, \iota Y)$ for
$X, Y \in T(M)$, where we use the same ι for the differential map of the immersion ι.
The normal bundle $T^{ot}(M)$ is the subbundle of $T(\overline{M})$ consisting of all $X \in T(\overline{M})$ which
are orthogonal to $T(M)$ with respect to \overline{g}. At each point of M, we choose or-
thonormal local vector fields ξ_1, \ldots, ξ_{2p} in such a way that they belong to $T^{ot}(M)$.
For any $X \in T(M)$ and for $\xi_a (a = 1, \ldots, 2p)$ the transforms $J\iota X$ and $J\xi_a$ are
respectively written in the following forms:

\begin{align}
J\iota X &= \iota F X + \sum_{a=1}^{2p} u_a(X) \xi_a, \\
J\xi_a &= -\iota U_a + \sum_{b=1}^{2p} p_{ab} \xi_b,
\end{align}

where F, p_{ab}, U_a and u_a define respectively an endomorphism of $T(M)$, that of
$T^{ot}(M)$, local tangent vector fields and local 1-forms on M. They satisfy the
relations $u_a(X) = g(U_a, X)$ and $p_{ab} = -p_{ba}$. If $U_a, a = 1, \ldots, 2p$ vanish identi-
cally, the tangent space of M is invariant under J and in this case the submanifold is a
complex manifold with induced almost complex structure.

Applying J to both side members of (2.1) and (2.2), we find

\begin{align}
F^2 X &= -X + \sum_{a=1}^{2p} u_a(X) U_a, \\
u_a(FX) &= -\sum_{b=1}^{2p} p_{ba} u_b(X), \quad FU_a = -\sum_{b=1}^{2p} p_{ab} U_b, \quad a = 1, \ldots, 2p, \\
\sum_{c=1}^{2p} p_{ac} p_{cb} &= -\delta_{ab} + u_b(U_a), \quad a, b = 1, \ldots, 2p.
\end{align}

We denote by ∇ and ∇ the Riemannian connection of \overline{M} and M respectively and
by D the induced normal connection from ∇ to $T^{ot}(M)$. Then they are related by
the following equations [1]:
(2.6) \(\nabla_{i,X} Y = i \nabla_X Y + h(X, Y) \),

(2.7) \(\nabla_{i,X} \xi_a = -i A_a X + D_X \xi_a, \quad D_X \xi_a = \sum_{b=1}^{2p} s_{ab}(X) \xi_b, \quad a = 1, \ldots, 2p, \)

where \(h \) is the second fundamental form and \(A_a \) is a symmetric linear transformation of \(T(M) \), which is called the shape operator with respect to \(\xi_a \). The last two equations show that \(h(X, Y) = \sum_{a=1}^{2p} g(A_a X, Y) \xi_a \).

The mean curvature vector field \(\mu \) of \(M \) is defined by

(2.8) \(\mu = \frac{1}{n} \sum_{a=1}^{2p} (\text{trace } A_a) \xi_a, \)

and it is well-known that \(\mu \) is independent of the choice of orthonormal normals \(\xi_1, \ldots, \xi_{2p} \). The length of the mean curvature vector field is called the mean curvature of the submanifold and it is given by

(2.9) \(|\mu| = \frac{1}{n} \left\{ \sum_{a=1}^{2p} (\text{trace } A_a)^2 \right\}^{1/2} . \)

Differentiating (2.8) covariantly, we get

\[
nD_X \mu = \sum_{a=1}^{2p} \left\{ X(\text{trace } A_a) \xi_a + \sum_{b=1}^{2p} (\text{trace } A_a) s_{ab}(X) \xi_b \right\},
\]

from which we know that the mean curvature vector field is parallel with respect to the normal connection if and only if

(2.10) \(X(\text{trace } A_a) = \sum_{b=1}^{2p} (\text{trace } A_b) s_{ab}(X), \)

because of the fact that \(s_{ab} = -s_{ba} \).

3. A function defined by the fundamental 2-form of \(\overline{M} \)

Let \(\Omega \) be the fundamental 2-form of the Hermitian manifold \(\overline{M} \), that is, \(\Omega \) is defined by

\[
\Omega(X, Y) = g(JX, Y)
\]

for \(X, Y \in T(\overline{M}) \). We put

(3.1) \(f = \Omega^p(\xi_1, \xi_2, \ldots, \xi_{2p}), \)

where \(\Omega^p \) denotes \(p \)-times exterior product of \(\Omega \). Then we have

Lemma 3.1. \(f \) is independent of the choice of mutually orthonormal normals \(\xi_1, \ldots, \xi_{2p} \).
Proof. Let \(\eta_1, \ldots, \eta_{2p} \) be another choice of mutually orthonormal normals to \(M \). Then we have

\[
\eta_a = \sum_{b=1}^{2p} T^b_a \phi_b,
\]

for some orthogonal matrix \((T^b_a) \in O(2p) \). Denoting by \(S(2p) \) the symmetric group of order \(2p \), we have from (3.2)

\[
f' = \Omega^p(\eta_1, \ldots, \eta_{2p}) = \sum_{\sigma \in S(2p)} T^{\sigma(1)}_1 T^{\sigma(2)}_2 \cdots T^{\sigma(2p)}_2 \Omega^p(\xi_{\sigma(1)}, \xi_{\sigma(2)}, \ldots, \xi_{\sigma(2p)})
\]

\[
= \sum_{\sigma \in S(2p)} T^{\sigma(1)}_1 T^{\sigma(2)}_2 \cdots T^{\sigma(2p)}_2 \operatorname{sgn}(\sigma) \Omega^p(\xi_1, \xi_2, \ldots, \xi_{2p})
\]

\[
= \det(T^b_a) \Omega^p(\xi_1, \ldots, \xi_{2p}) = f.
\]

This shows that \(f \) is independent of the choice of normals. \(\square \)

Now we discuss the function \(f \) more concretely. The number \(A \) of the terms in the expansion of \(f \) as a sum of product \(\Omega(\xi_{a_1}, \xi_{a_2}) \Omega(\xi_{a_3}, \xi_{a_4}) \cdots \Omega(\xi_{a_{2p-1}}, \xi_{a_{2p}}) \) is

\[
\binom{2p}{2} \binom{2p-2}{2} \cdots \binom{2}{2} \binom{2p}{2} = \frac{(2p)!}{2^p},
\]

and the number \(B \) of different factorization of \(\Omega(\xi_{a_1}, \xi_{a_2}) \Omega(\xi_{a_3}, \xi_{a_4}) \cdots \Omega(\xi_{a_{2p-1}}, \xi_{a_{2p}}) \) is \((2p)! \). Hence, in the expansion, there are \(A/B = p! \). Hence we can write

\[
f = p! \sum \Omega(\xi_{a_1}, \xi_{a_2}) \cdots \Omega(\xi_{a_{2p-1}}, \xi_{a_{2p}}),
\]

where \(\sum \) means the sum of all such combinations of \(a_{2i-1}, a_{2i} \in \{1, 2, \ldots, 2p\} \) that \(a_{2i-1} < a_{2i} \).

4. Complex submanifolds, CR submanifolds of CR dimension \(\frac{n-2}{2} \)

Let \(M \) be a complex submanifold of a Hermitian manifold \(\overline{M} \). Since the normal space \(T^x_p(M) \) of \(x \in M \) is \(J \)-invariant subspace of \(T^x_\overline{M} \) as well as the tangent space \(T^x(M) \), we can choose an orthonormal basis of \(T^x_p(M) \) in such a way that \((\xi_{2a})_x = J(\xi_{2a-1})_x, a = 1, \ldots, p \) and extend them to local fields \(\xi_1, \ldots, \xi_{2p} \). Then we have

\[
\Omega(\xi_{2a-1}, \xi_{2b-1}) = \overline{\Omega}(\xi_{2a-1}, \xi_{2b-1}) = \overline{\Omega}(\xi_{2a}, \xi_{2b-1}) = 0,
\]

\[
\Omega(\xi_{2a-1}, \xi_{2b}) = \overline{\Omega}(\xi_{2a-1}, \xi_{2b}) = \overline{\Omega}(\xi_{2a}, \xi_{2b}) = \delta_{ab}.
\]

Thus in (3.3), \(\Omega(\xi_{a1}, \xi_{a2}) \cdots \Omega(\xi_{a_{2p-1}}, \xi_{a_{2p}}) = 0 \), except

\[
\Omega(\xi_1, \xi_2) \Omega(\xi_3, \xi_4) \cdots \Omega(\xi_{2p-1}, \xi_{2p}) = 1.
\]

Hence, from (3.3) \(f = p! \). Thus we have

Proposition 4.1. For a complex submanifold \(M \) we have \(f = p! \).
Now we consider a CR submanifold M of CR dimension $(n - 2)/2$ in a Hermitian manifold M. By definition, at each point $x \in M$, the real dimension of the holomorphic tangent space $H_x(M) = JT_x(M) \cap T_x(M)$ is $n - 2$. We choose an orthonormal basis e_1, e_2, \ldots, e_n of $T_x(M)$ in such a way that $e_1, e_2, \ldots, e_{n-2} \in H_x(M)$. Then $Je_j \in T_x(M), (j = 1, \ldots, n - 2)$ and

$$Je_{n-1} = \lambda e_n + \eta_1, \quad Je_n = -\lambda e_{n-1} + \eta_2,$$

where η_1 and η_2 denote the normal part of Je_{n-1} and Je_n respectively. We note that η_1 and η_2 never vanish. In fact, if, for example, η_1 vanishes at a point $x \in M$, from the first equation of (4.1) it follows that $Je_{n-1} \in T_x(M)$. This shows that the real dimension of $H_x(M)$ at x is greater than $n - 2$. This is a contradiction.

We choose orthonormal normal vectors $\xi_1, \xi_2, \ldots, \xi_{2p}$ to M in such a way that ξ_1 and ξ_2 are in the direction of η_1 and η_2 respectively, that is, $\xi_1 = \eta_1/|\eta_1|$, $\xi_2 = \eta_2/|\eta_2|$. Then we have for $a = 3, \ldots, 2p$,

$$\overline{\pi}(J\xi_a, tX) = -\overline{\pi}(\xi_a, JtX) = 0,$$

$$\overline{\pi}(J\xi_a, \xi_1) = -\overline{\pi}(\xi_a, J\xi_1) = 0,$$

$$\overline{\pi}(J\xi_a, \xi_2) = -\overline{\pi}(\xi_a, J\xi_2) = 0,$$

because of (4.1). These equations show that the subspace span$\{\xi_3, \ldots, \xi_{2p}\}$ of $T^\perp(M)$ is J-invariant and therefore we choose such an orthonormal basis of span$\{\xi_3, \ldots, \xi_{2p}\}$ that $\xi_{2a} = J\xi_{2a-1}, a = 2, \ldots, p$. By choosing these orthonormal normals, it follows that, for $a, b \geq 2$:

$$\Omega(\xi_{2a-1}, \xi_{2b-1}) = \overline{\pi}(J\xi_{2a-1}, \xi_{2b-1}) = \overline{\pi}(\xi_{2a}, \xi_{2b-1}) = 0,$$

$$\Omega(\xi_{2a-1}, \xi_{2b}) = \overline{\pi}(J\xi_{2a-1}, \xi_{2b}) = \overline{\pi}(\xi_{2a}, \xi_{2b}) = \delta_{ab},$$

and for $a \geq 3$:

$$\Omega(\xi_1, \xi_a) = \overline{\pi}(J\xi_1, \xi_a) = 0, \quad \Omega(\xi_2, \xi_a) = \overline{\pi}(J\xi_2, \xi_a) = 0.$$

Hence in (3.3), only the term $\Omega(\xi_1, \xi_2)\Omega(\xi_3, \xi_4) \cdots \Omega(\xi_{2p-1}, \xi_{2p})$ does not vanish and consequently we have

Proposition 4.2. For a CR submanifold M of CR dimension $(n - 2)/2$ we have $f = p\Omega(\xi_1, \xi_2)$.

Next let M be a real submanifold of codimension 2 of a complex submanifold M' of a Hermitian manifold \overline{M}. We choose orthonormal normals to M in \overline{M} in such a way that $\xi_1, \xi_2 \in T(M')$ and $\xi_3, \ldots, \xi_{2p} \in T^\perp(M')$. As M' is a complex submanifold, $T^\perp(M')$ is J-invariant. Hence, in entirely the same argument as in the case that M is CR submanifold of CR dimension $(n - 2)/2$, we have

Proposition 4.3. For a real submanifold of codimension 2 of a complex submanifold of a Hermitian manifold we have $f = p\Omega(\xi_1, \xi_2)$.
5. Totally umbilical submanifold of a Kähler manifold

Let M be a submanifold of \overline{M}. If at each point of M there exist differentiable functions ρ_a, $a = 1, 2, \ldots, 2p$, satisfying

$$A_aX = \rho_aX$$

for any $X \in T(M)$, we call the submanifold a totally umbilical submanifold. In this case $\rho_a = (\text{trace } A_a)/n$, that is,

$$A_aX = \frac{1}{n}(\text{trace } A_a)X.$$

First we consider the function f on a typical example of a totally umbilical submanifold.

\textbf{Example 1.} Let \overline{M} be a complex space $\mathbb{C}^{(n+2)/2}$ with complex coordinates $z^\lambda = x^\lambda + \sqrt{-1}y^\lambda$, ($\lambda = 1, \ldots, q = (n + 2)/2$). An n-dimensional sphere S^n defined by

$$S^n = \left\{ (x^\lambda, y^\lambda) \mid \sum_{\lambda=1}^{q} (x^\lambda)^2 + (y^\lambda)^2 = 1, \ y^q = 0 \right\}$$

is a totally umbilical submanifold of codimension 2 of $\mathbb{C}^{(n+2)/2}$. We choose mutually orthonormal vector fields ξ_1 and ξ_2 to S^n as

$$\xi_1 = \sum_{\lambda=1}^{q} \left(x^\lambda \frac{\partial}{\partial x^\lambda} + y^\lambda \frac{\partial}{\partial y^\lambda} \right), \quad \xi_2 = \frac{\partial}{\partial y^q}.$$

Then $J\xi_2 = -\partial/\partial x^q$. Since codimension is 2, the function $f = \Omega(\xi_1, \xi_2) = -\overline{\Omega}(\xi_1, J\xi_2) = x^q$. Thus, in this case, f is the level function of the last real coordinate.

From now on we assume that the ambient manifold \overline{M} is a Kähler manifold. Then J is covariant constant and therefore $\nabla_X \Omega = 0$. So, from (2.7):

$$g(\text{grad} f, Y) = Y(\Omega^p(\xi_1, \ldots, \xi_2)) = \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \nabla_\xi_a, \xi_a, \xi_{a+1}, \ldots, \xi_{2p}) = \frac{2p}{2} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, -iA_a Y + \sum_{b=1}^{2p} s_{ab}(Y) \xi_b, \xi_{a+1}, \ldots, \xi_{2p})$$

(5.3)

$$= -\sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, iA_a Y, \xi_{a+1}, \ldots, \xi_{2p}),$$

because Ω^p is a $2p$-form and s_{ab} are skew-symmetric with respect to a and b. Then it follows that

$$g(\nabla_X \text{grad} f, Y) = X(g(\text{grad} f, Y)) - g(\text{grad} f, \nabla_X Y) = -X \left(\sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, iA_a Y, \xi_{a+1}, \ldots, \xi_{2p}) \right) - g(\text{grad} f, \nabla_X Y)$$
\[
\begin{align*}
&= - \sum_{b=1}^{a-1} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \nabla_X \xi_b, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \xi_{2p}) \\
&\quad - \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \nabla_X \iota^* A_a Y, \xi_a + 1, \ldots, \xi_{2p}) \\
&\quad - \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \nabla_X \xi_b, \ldots, \xi_{2p}) \\
&\quad - g(\text{grad} f, \nabla_X Y).
\end{align*}
\]

Substituting (2.7) into the above equation and making use of the fact that
\[
g(\text{grad} f, \nabla_X Y) = - \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* A_a \nabla_X Y, \xi_a + 1, \ldots, \xi_{2p}),
\]
we have
\[
g(\nabla_X \text{grad} f, Y) = \sum_{b=1}^{a-1} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \iota^* A_b X, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \xi_{2p}) \\
- \sum_{b=1}^{a-1} \sum_{a=1}^{2p} s_{bc}(X) \Omega^p(\xi_1, \ldots, \xi_{b-1}, \xi_c, \xi_{b+1}, \ldots, \iota^* A_a Y, \ldots, \xi_{2p}) \\
- \sum_{a=1}^{2p} \sum_{b=1}^{a-1} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \xi_{2p}) \\
- \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} s_{bc}(X) \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \xi_c, \xi_{b+1}, \ldots, \xi_{2p}) \\
+ \sum_{a=1}^{2p} \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \iota^* A_b X, \ldots, \xi_{2p}) \\
- \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} s_{bc}(X) \Omega^p(\xi_1, \ldots, \xi_{b-1}, \xi_b, \xi_{b+1}, \ldots, \iota^* A_a Y, \ldots, \xi_{2p}) \\
= \sum_{b=1}^{a-1} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \iota^* A_b X, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \xi_{2p}) \\
- \sum_{b=1}^{a-1} \sum_{a=1}^{2p} s_{bc}(X) \Omega^p(\xi_1, \ldots, \xi_{b-1}, \xi_b, \xi_{b+1}, \ldots, \iota^* A_a Y, \ldots, \xi_{2p}) \\
- \sum_{a=1}^{2p} \sum_{b=a+1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* (\nabla_X A_a) Y, \xi_a + 1, \ldots, \xi_{2p}) - \sum_{a=1}^{2p} g(A_a^2 Y, X) \\
+ \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, \iota^* A_a Y, \xi_a + 1, \ldots, \iota^* A_b X, \ldots, \xi_{2p})
\]
\[
- \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} s_{ba}(X) \Omega^p(\xi_1, \ldots, t A_a Y, \ldots, \xi_{b-1}, \xi_a, \xi_{b+1}, \ldots, \xi_{2p}) \\
= \sum_{b=1}^{a-1} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, t A_b X, \ldots, \xi_{a-1}, t A_a Y, \xi_a, \ldots, \xi_{2p}) \\
+ \sum_{b=1}^{a-1} \sum_{a=1}^{2p} s_{ba}(X) \Omega^p(\xi_1, \ldots, \xi_{b-1}, t A_a Y, \xi_b, \ldots, \xi_{a-1}, \xi_a, \ldots, \xi_{2p}) \\
- \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, t (\nabla X A_a) Y, \xi_{a+1}, \ldots, \xi_{2p}) - \sum_{a=1}^{2p} g(A^2_a Y, X)f \\
+ \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} \Omega^p(\xi_1, \ldots, \xi_{a-1}, t A_a Y, \xi_a, \ldots, t A_b X, \ldots, \xi_{2p}) \\
+ \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} s_{ba}(X) \Omega^p(\xi_1, \ldots, \xi_{a-1}, t A_a Y, \xi_a, \ldots, \xi_{b-1}, \ldots, \xi_{2p}).
\]

If \(M \) is a totally umbilical submanifold, by (5.1), it follows that

\[
(5.4) \quad g(\text{grad} f, Y) = -\sum_{a=1}^{2p} \rho_a \Omega^p(\xi_1, \ldots, \xi_{a-1}, t Y, \xi_a, \ldots, \xi_{2p})
\]

and

\[
g(\nabla_X \text{grad} f, Y) = \sum_{b=1}^{a-1} \sum_{a=1}^{2p} \rho_a \rho_b \Omega^p(\xi_1, \ldots, t X, \ldots, \xi_{a-1}, t Y, \xi_a, \ldots, \xi_{2p}) \\
+ \sum_{b=1}^{a-1} \sum_{a=1}^{2p} \rho_a s_{ba}(X) \Omega^p(\xi_1, \ldots, \xi_{b-1}, t Y, \xi_b, \ldots, \xi_{2p}) \\
- \sum_{a=1}^{2p} (X \rho_a) \Omega^p(\xi_1, \ldots, \xi_{a-1}, t Y, \xi_a, \ldots, \xi_{2p}) - \left(\sum_{a=1}^{2p} \rho^2_a \right) g(X, Y)f \\
+ \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} \rho_a \rho_b \Omega^p(\xi_1, \ldots, \xi_{a-1}, t Y, \xi_a, \ldots, t X, \ldots, \xi_{2p}) \\
+ \sum_{b=a+1}^{2p} \sum_{a=1}^{2p} \rho_a s_{ba}(X) \Omega^p(\xi_1, \ldots, \xi_{b-1}, t Y, \xi_b, \ldots, \xi_{2p}) \\
= -\sum_{a=1}^{2p} (X \rho_a) \Omega^p(\xi_1, \ldots, \xi_{a-1}, t Y, \xi_a, \ldots, \xi_{2p}) - \left(\sum_{a=1}^{2p} \rho^2_a \right) f g(X, Y) \\
+ \sum_{a=1}^{2p} \sum_{b=1}^{a-1} \rho_b s_{ab}(X) \Omega^p(\xi_1, \ldots, \xi_{a-1}, t Y, \xi_a, \ldots, \xi_{2p})
\]
\[
+ \sum_{a=0}^{2p} \sum_{b=1}^{2p} \rho_a s_{ab}(X) \Omega^p(\xi_1, \ldots, \xi_{a-1}, Y, \xi_{a+1}, \ldots, \xi_{2p})
\]
\[= -\sum_{a=1}^{2p} (X \rho_a) \Omega^p(\xi_1, \ldots, \xi_{a-1}, Y, \xi_{a+1}, \ldots, \xi_{2p}) - \left(\sum_{a=1}^{2p} \beta_a^2 \right) g(X, Y)
\]
\[+ \sum_{a=1}^{2p} \sum_{b=1}^{2p} \rho_a s_{ab}(X) \Omega^p(\xi_1, \ldots, \xi_{a-1}, Y, \xi_{a+1}, \ldots, \xi_{2p}),
\]
because of \(s_{ab} = 0 \). Thus we have
\[
g(\nabla_X \text{grad} f, Y) = -\left(\sum_{a=1}^{2p} \beta_a^2 \right) g(X, Y)
\]
(5.5)
\[-\sum_{a=1}^{2p} \left(X \rho_a - \sum_{b=1}^{2p} \rho_b s_{ab}(X) \right) \Omega^p(\xi_1, \ldots, \xi_{a-1}, Y, \xi_{a+1}, \ldots, \xi_{2p})
\]
Hence we obtain
\[
g(\nabla_X \text{grad} f, Y) = -\left(\sum_{a=1}^{2p} \beta_a^2 \right) g(X, Y).
\]
(5.6)

In connection with the function which satisfies (5.6), Obata [2] proved that in an \(n \)-dimensional complete, connected Riemannian manifold \(M \), if there exists a function \(f \) satisfying
\[
g(\nabla_X \text{grad} f, Y) = -k^2 g(X, Y),
\]
for some constant \(k \), \(M \) is isometric with a sphere of radius \(1/k \) in the Euclidean \((n+1) \)-space. Further, it can be easily proved that if the mean curvature vector field is parallel with respect to the normal connection, then \(| \mu \) is constant and since \(\sum_{a=1}^{2p} \beta_a^2 = |\mu|^2 \), it follows:

Theorem 5.2. [4] Let \(M \) be an even dimensional complete, connected totally umbilical submanifold of a Kähler manifold. If the mean curvature vector field is parallel with respect to the normal connection, then \(M \) is isometric with a sphere of radius \(1/|\mu| \).

6. Totally umbilical submanifold which is a submanifold of codimension 2 of a complex submanifold

Here, let \(M \) be a submanifold of codimension 2 of a complex submanifold \(M' \) of a Kähler manifold \(\overline{M} \). Then, in entirely the same argument which we used to get Proposition 4.3, it follows that
\[
\Omega^p(Y, \xi_2, \xi_3, \ldots, \xi_{2p}) = p\Omega(Y, \xi_2), \quad \Omega^p(\xi_1, Y, \xi_3, \ldots, \xi_{2p}) = p\Omega(\xi_1, Y)
\]
(6.1)
(6.2) \[\Omega^p(\xi_1, \xi_2, \ldots, \xi_{a-1}, Y, \xi_{a+1}, \ldots, \xi_{2p}) = 0, \quad (a = 3, \ldots, 2p), \]
where we have chosen orthonormal normals \(\xi_1, \ldots, \xi_{2p} \) to \(M \) such that \(\xi_1, \xi_2 \in T(M') \) and \(\xi_3, \ldots, \xi_{2p} \) are normal to \(M' \).

Since the tangent space of a complex submanifold \(M' \) is \(J \)-invariant, for \(\xi_1 \) and \(\xi_2 \), we have

\[J\xi_1 = -iU_1 + \lambda_1 \xi_2, \quad J\xi_2 = -iU_2 - \lambda_1 \xi_1, \quad \lambda = \Omega(\xi_1, \xi_2), \]

(6.4) \[g(U_1, U_1) = g(U_2, U_2) = 1 - \lambda^2, \quad g(U_1, U_2) = 0, \quad U_a = 0 \quad (a = 3, \ldots, 2p), \]

(6.5) \[J_1 X = iF X + u^1(X) \xi_1 + u^2(X) \xi_2, \]

(6.6) \[\Omega(\xi_1, \xi_2, Y) = g(U_2, Y), \Omega(\xi_1, iY) = -g(U_1, Y). \]

Now we assume that \(M \) is totally umbilical in \(\overline{M} \). Then, from (6.1), (6.2) and (6.6), (5.5) becomes

(6.7) \[g(\nabla_X \text{grad} f, Y) = -|\mu|^2 fg(X, Y) - p^1((D_X p_1)g(U_2, Y) - (D_X p_2)g(U_1, Y)) \]

where \(D_X p_1 = X p_1 - p_2 s_{12}(X) \) and \(D_X p_2 = X p_2 - p_1 s_{21}(X) \). Since the left-hand member of (6.7) is symmetric with respect to \(X, Y \), it follows that

\[(D_X p_1)g(U_2, Y) - (D_X p_2)g(U_1, Y) = (D_Y p_1)g(U_2, X) - (D_Y p_2)g(U_1, X). \]

Substituting \(Y \) in the last equation for \(U_2 \) and making use of (6.4), we have

\[(1 - \lambda^2) D_X p_1 = (D_{U_2} p_1)g(U_2, X) - (D_{U_2} p_2)g(U_2, X). \]

Similarly, we have

\[(1 - \lambda^2) D_X p_2 = (D_{U_1} p_2)g(U_1, X) - (D_{U_1} p_1)g(U_2, X). \]

Hence (6.7) becomes

(6.8) \[g(\nabla_X \text{grad} f, Y) = -|\mu|^2 fg(X, Y) + \sum_{i,j=1}^2 a_{ij} g(U_i, X) g(U_j, Y), \]

for some functions \(a_{ij} \) such that they vanish when the mean curvature vector field is parallel with respect to the normal connection. Thus we have a generalization of the result in [3]:

Theorem 6.1. Let \(M \) be a submanifold of codimension 2 of a complex submanifold \(M' \) of a Kähler manifold \(\overline{M} \). If \(M \) is totally umbilical as a submanifold of \(\overline{M} \), the function \(f \) satisfies (6.8) for some \(a_{ij} \), \(i, j = 1, 2 \), where \(a_{ij} \) are such functions that they vanish when the mean curvature vector field is parallel with respect to the normal connection.

References

A FUNCTION DEFINED ON A REAL SUBMANIFOLD

Saitama University
255 Shimo-Ookubo
Saitama city
Saitama, Japan

(address for correspondence)

5-25-25, Minami-Hotta, Tama-ku,
Kawasaki Japan
mokumurabh@diom.ne.jp

(Received 25 06 2003)
(Revised 18 11 2003)