ON THE SOLID HULL
OF THE HARDY–LORENTZ SPACE

Miroljub Jevtić and Miroslav Pavlović

Communicated by Žarko Mijajlović

Abstract. The solid hulls of the Hardy–Lorentz spaces $H^{p,q}$, $0 < p < 1$, $0 < q \leq \infty$ and $H^{p,\infty}$, $0 < p < 1$, as well as of the mixed norm space $H^{p,\infty,\alpha}$, $0 < p \leq 1$, $0 < \alpha < \infty$, are determined.

Introduction

In [JP1] the solid hull of the Hardy space H^p, $0 < p < 1$, is determined. In this article we determine the solid hulls of the Hardy–Lorentz spaces $H^{p,q}$, $0 < p < 1$, $0 < q \leq \infty$ and $H^{p,\infty}$, $0 < p < 1$, as well as of the mixed norm space $H^{p,\infty,\alpha}$, $0 < p \leq 1$, $0 < \alpha < \infty$. Since $H^{p,p} = H^p$ our results generalize [JP1] Theorem 1.

Recall, the Hardy space H^p, $0 < p \leq \infty$, is the space of all functions f holomorphic in the unit disk U, $(f \in H(U))$, for which $\|f\|_p = \lim_{r \to 1} M^p(r,f) < \infty$, where, as usual,

$$M^p(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt \right)^{1/p}, \quad 0 < p < \infty,$$

$$M^\infty(r,f) = \sup_{0 \leq t < 2\pi} |f(re^{it})|.$$

Now we introduce a generalization and refinement of the spaces H^p; the Hardy–Lorentz spaces $H^{p,q}$, $0 < p < \infty$, $0 < q \leq \infty$.

Let σ denotes normalized Lebesgue measure on $T = \partial U$ and let $L^0(\sigma)$ be the space of complex-valued Lebesgue measurable functions on T. For $f \in L^0(\sigma)$ and $s \geq 0$ we write

$$\lambda_f(s) = \sigma(\{\xi \in T : |f(\xi)| > s\})$$

for the distribution function and

$$f^*(s) = \inf(\{t \geq 0 : \lambda_f(t) \leq s\})$$

for the decreasing rearrangement of $|f|$ each taken with respect to σ.

2000 Mathematics Subject Classification: Primary 30D55; Secondary 42A45.

Research supported by the grant ON144010 from MNS, Serbia.

55
The Lorentz functional \(\| \cdot \|_{p,q} \) is defined at \(f \in L^0(\sigma) \) by
\[
\| f \|_{p,q} = \left(\int_0^1 (f^*(s)s^{1/p}) q \frac{ds}{s} \right)^{1/q} \quad \text{for} \quad 0 < q < \infty,
\]
\[
\| f \|_{p,\infty} = \sup \{ f^*(s)s^{1/p} : s \geq 0 \}.
\]
The corresponding Lorentz space is \(L^{p,q}(\sigma) = \{ f \in L^0(\sigma) : \| f \|_{p,q} < \infty \} \). The space \(L^{p,0}(\sigma) \) is separable if and only if \(q \not= \infty \). The class of functions \(f \in L^{p,0}(\sigma) \) satisfying \(\lim_{r \to 0} (f^*(s)s^{1/p}) = 0 \) is a separable closed subspace of \(L^{p,\infty}(\sigma) \), which is denoted by \(L_0^{p,\infty}(\sigma) \).

The Nevanlinna class \(N \) is the subclass of functions \(f \in H(U) \) for which
\[
\sup_{0 < r < 1} \int_T \log^+ |f(r\xi)| \, d\sigma(\xi) < \infty.
\]
Functions in \(N \) are known to have non-tangential limits \(\sigma \)-a.e. on \(T \). Consequently every \(f \in N \) determines a boundary value function which we also denote by \(f \).

Thus
\[
f(\xi) = \lim_{r \to 1} f(r\xi) \quad \sigma \text{-a.e.} \quad \xi \in T.
\]
The Smirnov class \(N^+ \) is the subclass of \(N \) consisting of those functions \(f \) for which
\[
\lim_{r \to 1} \int_T \log^+ |f(r\xi)| \, d\sigma(\xi) = \int_T \log^+ |f(\xi)| \, d\sigma(\xi).
\]

We define the Hardy–Lorentz space \(H^{p,q} \), \(0 < p < \infty \), \(0 < q \leq \infty \), to be the space of functions \(f \in N^+ \) with boundary value function in \(L^{p,q}(\sigma) \) and we put \(\| f \|_{H^{p,q}} = \| f \|_{p,q} \). The functions in \(H^{p,\infty} \) with a boundary value function in \(L_0^{p,\infty}(\sigma) \) form a closed subspace of \(H^{p,\infty} \), which is denoted by \(H_0^{p,\infty} \). The cases of major interest are of course \(p = q \) and \(q = \infty \); indeed \(H^{p,p} \) is nothing but \(H^p \), and \(H^{p,\infty} \) is the weak-\(H^p \).

The mixed norm space \(H^{p,q,\alpha} \), \(0 < p \leq \infty \), \(0 < q, \alpha < \infty \), consists of all \(f \in H(U) \) for which
\[
\| f \|_{H^{p,q,\alpha}} = \| f \|_{p,q,\alpha} = \left(\int_0^1 (1-r)^{\alpha-1} M_p(r, f) \, dr \right)^{1/q} < \infty.
\]
\(H^{p,q,\alpha} \) can also be defined when \(q = \infty \), in which case it is sometimes known as the weighted Hardy space \(H^{p,\infty,\alpha} \), and consists of all \(f \in H(U) \) for which
\[
\| f \|_{p,\infty,\alpha} = \sup_{0 < r < 1} (1-r)^\alpha M_p(r, f) < \infty.
\]
The functions in \(H^{p,\infty,\alpha} \), \(\alpha > 0 \) for which \(\lim_{r \to 1} (1-r)^\alpha M_p(r, f) = 0 \) form a closed subspace which is denoted by \(H_0^{p,\infty,\alpha} \).

Throughout this paper, we identify the holomorphic function \(f(z) = \sum_{k=0}^\infty \hat{f}(k)z^k \) with its sequence of Taylor coefficients \(\{ \hat{f}(k) \}_{k=0}^\infty \).

If \(f(z) = \sum_{k=0}^\infty \hat{f}(k)z^k \) belongs to \(H^{p,q} \), then
\[
\hat{f}(k) = O((k+1)^{(1/p)-1}) \quad \text{if} \quad 0 < p < 1 \quad \text{and} \quad 0 < q \leq \infty.
\]
(See [Al] and [Co] for this result.)
In this paper we find the strongest condition that the moduli of an $H^{p,q}$, $0 < p < 1$, $0 < q \leq \infty$, satisfy. Our result shows that the estimate (1) is optimal only if $q = \infty$.

To state our results in a form of theorems we need to introduce some more notations.

A sequence space X is solid if $\{b_n\} \in X$ whenever $\{a_n\} \in X$ and $|b_n| \leq |a_n|$. More generally, we define $S(X)$, the solid hull of X. Explicitly,

$$S(X) = \{\{\lambda_n\} : \exists \{a_n\} \in X \text{ such that } |\lambda_n| \leq |a_n|\}.$$

A complex sequence $\{a_n\}$ is of class $l(p,q)$, $0 < p, q \leq \infty$, if

$$\|\{a_n\}\|_{l(p,q)} = \|\{a_n\}\|_{l(p,q)} = \sum_{n=0}^{\infty} \left(\sum_{k \in I_n} |a_k|^p \right)^{q/p} < \infty,$$

where $I_0 = \{0\}$, $I_n = \{k \in N : 2^{n-1} \leq k < 2^n\}$, $n = 1, 2, \ldots$ In the case where p or q is infinite, replace the corresponding sum by a supremum. Note that $l(p,p) = l^p$.

For $t \in R$ we write D^t for the sequence $\{(n+1)^t\}$, for all $n \geq 0$. If $\lambda = \{\lambda_n\}$ is a sequence and X a sequence space, we write $\lambda X = \{\{\lambda_n x_n\} : \{x_n\} \in X\}$; thus, for example, $\{a_n\} \in D^t l^\infty$ if and only if $|a_n| = O(n^t)$.

We are now ready to state our first result.

Theorem 1. If $0 < p < 1$ and $0 < q \leq \infty$, then $S(H^{p,q}) = D^{(1/p) - 1} l(\infty, q)$.

In particular, $S(H^p) = D^{(1/p) - 1} l(\infty, p)$, $0 < p < 1$. This was proved in [JP1].

Also, $S(H^{p,\infty}) = D^{(1/p) - 1} l^\infty$ means that the estimate (1) valid for the Taylor coefficients of an $H^{p,\infty}$, $0 < p < 1$, function is sharp.

Our second result is as follows:

Theorem 2. If $0 < p < 1$, then $S(H_0^{p,\infty}) = D^{(1/p) - 1} c_0$, where c_0 is the space of all null sequences.

Our method of proving Theorem 1 and Theorem 2 depend upon nested embedding [Le Theorem 4.1] for Hardy–Lorentz spaces. Thus, the strategy is to trap $H^{p,q}$ between a pair of mixed norm spaces and then deduce the results for $H^{p,q}$ from the corresponding results for the mixed norm spaces. Our Theorem 1 will follow from the following two theorems:

Theorem L. [Le] Let $0 < p_0 < p < s \leq \infty$, $0 < q \leq t \leq \infty$ and $\beta > (1/p_0) - (1/p)$. Then

$$D^{-\beta} H_0^{p_0,q,\beta+(1/p_0) - (1/p)} \subset H^{p,q} \subset H_0^{s,q,(1/p)-(1/s)},$$

$$D^{-\beta} H_0^{p_0,\infty,\beta+(1/p_0) - (1/p)} \subset H_0^{p,\infty,(1/p)-(1/s)}.$$

Theorem JP 1. [JP1] If $0 < p \leq 1$, $0 < q \leq \infty$ and $0 < \alpha < \infty$, then $S(H_0^{p,q,\alpha}) = D^{(1/p) - 1} l(\infty, q)$.

To prove Theorem 2 we first determine the solid hull of the space $H_0^{p,\infty,\alpha}$, $0 < p \leq 1$, $0 < \alpha < \infty$. More precisely, we prove

Theorem 3. If $0 < p \leq 1$ and $0 < \alpha < \infty$, then $S(H_0^{p,\infty,\alpha}) = D^{(1/p) - 1} c_0$.

Given two vector spaces X, Y of sequences we denote by (X, Y) the space of multipliers from X to Y. More precisely,

$$(X, Y) = \{ \lambda = \{ \lambda_n \} : \{ \lambda_n a_n \} \in Y, \text{ for every } \{a_n\} \in X \}.$$

As an application of our results we calculate multipliers $(H^{p,q}, l(u,v))$, $0 < p < 1$, $0 < q \leq \infty$, $(H_0^{p,\infty}, l(u,v))$, $0 < p < 1$, and $(H^{p,\infty}, X)$, $0 < p < 1$, where X is a solid space. These results extend some of the results obtained by Lengfield [LE] Section 5.

1. The solid hull of the Hardy–Lorentz space $H^{p,q}$, $0 < p < 1$, $0 < q \leq \infty$

Proof of Theorem 1. Let $0 < p < 1$. Choose p_0 and s so that $p_0 < p < s \leq 1$ and a real number β so that $\beta + (1/p) - (1/p_0) > 0$. As an easy consequence of Theorem JP we have

$$S(D^{-\beta}H^{p_0,q;\beta+(1/p)-(1/p_0)}) = D^{(1/p)-1}(\infty, q).$$

Also, by Theorem JP,

$$S(H^{p,q}(1/p)-(1/s)) = D^{(1/p)-1}(\infty, q),$$

and consequently $S(H^{p,q}) = D^{(1/p)-1}(\infty, q)$, by Theorem L.

2. The solid hull of mixed norm space $H_0^{p,\infty;\alpha}$, $0 < p \leq 1$, $0 < \alpha < \infty$

If $f(z) = \sum_{k=0}^{\infty} \hat{f}(k)z^k$ and $g(z) = \sum_{k=0}^{\infty} \hat{g}(k)z^k$ are holomorphic functions in U, then the function $f \ast g$ is defined by $(f \ast g)(z) = \sum_{k=0}^{\infty} \hat{f}(k)\hat{g}(k)z^k$.

The main tool for proving Theorem 3 are polynomials W_n, $n \geq 0$, constructed in [JPT] and [JPS]. Recall the construction and some of their properties.

Let $\omega: R \rightarrow R$ be a nonincreasing function of class C^∞ such that $\omega(t) = 1$, for $t \leq 1$, and $\omega(t) = 0$, for $t \geq 2$. We define polynomials $W_n = W_\omega^n$, $n \geq 0$, in the following way:

$$W_0(z) = \sum_{k=0}^{\infty} \omega(k)z^k \quad \text{and} \quad W_n(z) = \sum_{k=2^{n-1}}^{2^{n+1}-1} \varphi\left(\frac{k}{2^{n-1}}\right)z^k, \quad \text{for } n \geq 1,$$

where $\varphi(t) = \omega(t/2) - \omega(t)$, $t \in R$.

The coefficients $W_n(k)$ of these polynomials have the following properties:

(4) \quad \text{supp}(W_n) \subset [2^{n-1}, 2^{n+1}]; \\
(5) \quad 0 \leq W_n(k) \leq 1, \quad \text{for all } k, \\
(6) \quad \sum_{n=0}^{\infty} W_n(k) = 1, \quad \text{for all } k, \\
(7) \quad W_n(k) + W_{n+1}(k) = 1, \quad \text{for } 2^n \leq k \leq 2^{n+1}, \ n \geq 0.
Property (5) implies that
\[f(z) = \sum_{n=0}^{\infty} (W_n \ast f)(z), \quad f \in H(U), \]
the series being uniformly convergent on compact subsets of \(U \).

If \(0 < p < 1 \), then there exists a constant \(C > 0 \) depending only on \(p \) such that
\[\|W_n\|_p^p \leq C_p 2^{-n(1-p)}, \quad n \geq 0. \]

Proof of Theorem 3. Let \(f \in H_0^{p,\infty,\alpha} \), \(0 < p < 1 \), \(0 < \alpha < \infty \). By using the familiar inequality
\[M_p(r, f) \geq C(1 - r)^{(1/p) - 1} M_1(r^2, f), \quad 0 < p \leq 1, \]
(see [Du Theorem 5.9]), we obtain
\[\sup_{k \in \mathcal{I}_n} |\hat{f}(k)| r^{2k} \leq M_1(r^2, f) \leq CM_p(r, f)(1 - r)^{1/(1/p)}, \quad 0 < r < 1. \]

Now we take \(r_n = 1 - 2^{-n} \) and let \(n \to \infty \), to get \(\{\hat{f}(k)\} \in D^{(1/p) - 1}c_0 \). Thus \(H_0^{p,\infty,\alpha} \subset D^{(1/p) - 1}c_0 \).

To show that \(D^{(1/p) - 1}c_0 \) is the solid hull of \(H_0^{p,\infty,\alpha} \), it is enough to prove that if \(\{a_n\} \in D^{(1/p) - 1}c_0 \), then there exists \(\{b_n\} \in H_0^{p,\infty,\alpha} \) such that \(|b_n| \geq |a_n| \), for all \(n \).

Let \(\{a_n\} \in D^{(1/p) - 1}c_0 \). Define
\[g(z) = \sum_{j=0}^{\infty} B_j(W_j(z) + W_{j+1}(z)) = \sum_{k=0}^{\infty} c_k z^k, \]
where \(B_j = \sup_{2^j \leq k < 2^{j+1}} |a_k| \). Using (4) and (8) we find that
\[M_p(r, g) \leq \sum_{j=0}^{\infty} B_j^p (M_p^p(r, W_j) + M_p^p(r, W_{j+1})) \leq C \left(B_0^p + \sum_{j=1}^{\infty} B_j^p 2^{2j-1 - j(1/p)} \right) \]
Set \(B_j^p 2^{-j(\alpha p + 1 - p)} = \lambda_j \). Then
\[M_p^p(r, g) \leq C \left(\lambda_0 + \sum_{j=1}^{\infty} \lambda_j r^{2j-1} 2^{j(\alpha p)} \right), \]
where \(\lambda_j \to 0 \), as \(j \to \infty \). From this it easily follows that \((1 - r)^{\alpha p} M_p^p(r, g) \to 0 \), as \(r \to 1 \). Thus \(g \in H_0^{p,\infty,\alpha} \).

To prove that \(|c_k| \geq |a_k| \), \(k = 1, 2, \ldots \), choose \(n \) so that \(2^n \leq k < 2^{n+1} \). It follows from (7)
\[c_k = \sum_{j=0}^{\infty} B_j(W_j(k) + W_{j+1}(k)) \geq B_n(W_n(k) + W_{n+1}(k)) \]
\[= B_n = \sup_{2^n \leq j < 2^{n+1}} |a_j| \geq |a_k|. \]
Now the function \(h(z) = \sum_{n=0}^{\infty} b_n z^n \), where \(b_0 = a_0 \) and \(b_n = c_n \), for \(n \geq 1 \), belongs to \(H_0^{p,\infty,\alpha} \) and \(|b_n| \geq |a_n| \) for all \(n \geq 0 \). This finishes the proof of Theorem 3. \(\square \)
3. The solid hull of the space
\(H_0^{p,\infty}, \ 0 < p < 1 \)

Proof of Theorem 2. Let \(0 < p < 1 \). Choose \(p_0 \) and \(s \) so that \(p_0 < p < s \leq 1 \) and \(\beta \in R \) so that \(\beta + (1/p) - (1/p_0) > 0 \). Then
\[
S\left(D^{-\beta} H_0^{p_0,\infty,\beta+(1/p)−(1/p_0)}\right) = D^{(1/p)−1} c_0,
\]
\[
S\left(H_0^{s,\infty,(1/p)−(1/s)}\right) = D^{(1/p)−1} c_0,
\]
by Theorem 3. By Theorem L we have \(S(H_0^{p,\infty}) = D^{(1/p)−1} c_0 \). \(\square \)

4. Applications to multipliers

As it was noticed in the introduction, another objective of this paper is to extend some of the results given in [Le Section 5].

The next lemma due to Kellog (see [K]) (who states it for exponents no smaller than 1, but it then follows for all exponents, since \(\{\lambda_n\} \in (l(a,b), (l(c,d))) \) if and only if \(\{\lambda_n^{(1/\ell)}\} \in (l(at, bt), (l(ct, dt))) \).

Lemma 1. If \(0 < a, b, c, d \leq \infty \), then \((l(a,b), l(c,d)) = (l(a \circ c, b \circ d)) \), where \(a \circ c = \infty \) if \(a \leq c \), \(b \circ d = \infty \), if \(b \leq d \), and
\[
\frac{1}{a \circ c} = \frac{1}{c} - \frac{1}{a}, \text{ for } 0 < c < a,
\]
\[
\frac{1}{b \circ d} = \frac{1}{d} - \frac{1}{b}, \text{ for } 0 < d < b.
\]

In particular, \((l, l(u,v)) = l(u,v) \). Also, it is known that \((c_0, l(u,v)) = l(u,v) \).

In [AS] it is proved that if \(X \) is any solid space and \(A \) any vector space of sequences, then \((A, X) = (S(A), X) \).

Since \(l(u,v) \) are solid spaces, we have \((H_0^{p,q}, l(u,v)) = (S(H_0^{p,q}), l(u,v)) \) and \((H_0^{p,\infty}, l(u,v)) = (S(H_0^{p,\infty}), l(u,v)) \). Using this, Lemma 1, Theorem 1 and Theorem 2 we get

Theorem 4. Let \(0 < p < 1 \) and \(0 < q \leq \infty \). Then
\[
(H_0^{p,q}, l(u,v)) = D^{1−(1/p)} l(u, q \circ v).
\]

Theorem 5. Let \(0 < p < 1 \). Then
\[
(H_0^{p,\infty}, l(u,v)) = D^{1−(1/p)} l(u, v).
\]

In particular, \((H^{p,\infty}, l(u,v)) = D^{1−(1/p)} l(u, v) \). In fact more is true.

Theorem 6. Let \(0 < p < 1 \) and let \(X \) be a solid space. Then
\[
(H^{p,\infty}, X) = D^{1−(1/p)} X.
\]

Proof. Since \(X \) is a solid space, we have \((l, X) = X \). Hence, using Theorem 1 we get
\[
(H^{p,\infty}, X) = (S(H^{p,\infty}), X) = (D^{(1/p)−1} l, X)
= D^{1−(1/p)} (l, X) = D^{1−(1/p)} X. \quad \square
\]
References

Matematički fakultet
Studentski trg 16
11000 Beograd, p.p. 550
Serbia
jevtic@matf.bg.ac.yu
pavlovic@matf.bg.ac.yu

(Received 12 05 2008)