ON SEQUENCE-COVERING mssc-IMAGES OF LOCALLY SEPARABLE METRIC SPACES

Nguyen Van Dung

Communicated by Miloš Kurilić

Abstract. We characterize sequence-covering (resp., 1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces by means of \(\sigma \)-locally finite \(cs \)-networks (resp., \(sn \)-networks, \(so \)-networks) consisting of \(\aleph_0 \)-spaces (resp., \(sn \)-second countable spaces, \(so \)-second countable spaces). As the applications, we get characterizations of certain sequence-covering, quotient mssc-images of locally separable metric spaces.

1. Introduction

A study of some images of metric spaces under certain mappings is an important task on general topology. In [12], Li characterized sequence-covering (pseudo-sequence-covering) mssc-images of metric spaces by means of \(\aleph \)-spaces as follows.

Theorem 1.1. [12, Theorem 4] The following are equivalent for a space \(X \).

1. \(X \) is an \(\aleph \)-space.
2. \(X \) is a sequence-covering mssc-image of a metric space.
3. \(X \) is a pseudo-sequence-covering mssc-image of a metric space.

In [18], Lin and Yan characterized compact-covering, quotient \(\pi \)- and mssc-images of metric spaces by means of \(g \)-metrizable spaces, and this result has been proved by a quick and systematic proof in [25].

Theorem 1.2. [18, Corollary 18] The following are equivalent for a space \(X \).

1. \(X \) is a \(g \)-metrizable space.
2. \(X \) is a compact-covering, quotient compact and mssc-image of a metric space.
3. \(X \) is a compact-covering, quotient \(\pi \)- and mssc-image of a metric space.
4. \(X \) is a compact-covering, quotient \(\pi \)- and \(\sigma \)-image of a metric space.

2010 Mathematics Subject Classification: Primary 54E35, 54E40; Secondary 54D55, 54E99.

Key words and phrases: mssc-mapping, sequence-covering, 1-sequence-covering, 2-sequence-covering, \(\sigma \)-locally finite, \(cs \)-network, \(sn \)-network, \(so \)-network.
Related to the characterizations of images of metric spaces, many topologists were engaged in characterizing images of locally separable metric spaces, and some noteworthy results have been shown. In [16], Lin, Liu, and Dai characterized quotient σ-images of locally separable metric spaces. After that, Lin and Yan characterized sequence-covering σ-images of locally separable metric spaces [17]. Ikeda, Liu and Tanaka characterized quotient compact images of locally separable metric spaces [11]. Ge characterized pseudo-sequence-covering compact images of locally separable metric spaces [8]. An and Dung characterized quotient π-images of locally separable metric spaces [1]. In general, it is difficult to obtain nice characterizations of images of locally separable metric spaces (under covering-mappings) instead of metric domains.

Take the above into account, note that \aleph_0-spaces and \mathcal{G}-metrizable spaces are spaces having certain σ-locally finite networks, the following question arises naturally.

Question. How are sequence-covering (1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces characterized by means of σ-locally finite networks?

In this paper, we characterize sequence-covering (resp., 1-sequence-covering, 2-sequence-covering) mssc-images of locally separable metric spaces by means of σ-locally finite cs-networks (resp., sn-networks, so-networks) consisting of \aleph_0-spaces (resp., sn-second countable spaces, so-second countable spaces). As the applications, we get characterizations of certain sequence-covering, quotient mssc-images of locally separable metric spaces. These results make the study of images of locally separable metric spaces more completely.

Throughout this paper, all spaces are regular and T_1, all mappings are continuous and onto, a convergent sequence includes its limit point, and \mathbb{N} denotes the set of all natural numbers. Let $f : X \to Y$ be a mapping, and \mathcal{P} be a family of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{ P : P \in \mathcal{P} \}$, $\bigcap \mathcal{P} = \bigcap \{ P : P \in \mathcal{P} \}$, and $f(\mathcal{P}) = \{ f(P) : P \in \mathcal{P} \}$. We say that a convergent sequence $\{ x_n : n \in \mathbb{N} \} \cup \{ x \}$ converging to x is eventually in A if $\{ x_n : n \geq n_0 \} \cup \{ x \} \subset A$ for some $n_0 \in \mathbb{N}$, and it is frequently in A if $\{ x_{n_k} : k \in \mathbb{N} \} \cup \{ x \} \subset A$ for some subsequence $\{ x_{n_k} : k \in \mathbb{N} \}$ of $\{ x_n : n \in \mathbb{N} \}$.

Definition 1.1. Let \mathcal{P} be a family of subsets of a space X.

1. \mathcal{P} is a network for X [19] if, $\mathcal{P} = \bigcup \{ \mathcal{P}_x : x \in X \}$, where $x \in \bigcap \mathcal{P}_x$, and if $x \in U$ with U open in X, then there exists $P \in \mathcal{P}_x$ such that $x \in P \subset U$ for every $x \in X$. Here, \mathcal{P}_x is a network at x in X.

2. \mathcal{P} is a cs-network for X [10] if, for each convergent sequence S converging to $x \in U$ with U open in X, S is eventually in $P \subset U$ for some $P \in \mathcal{P}$.

3. \mathcal{P} is a cs^*-network for X [7] if, for each convergent sequence S converging to $x \in U$ with U open in X, S is frequently in $P \subset U$ for some $P \in \mathcal{P}$.

4. \mathcal{P} is a cfp-network for X [26] if, for each compact subset $H \subset U$ with U open in X, there exists a finite subfamily \mathcal{F} of \mathcal{P} such that $H \subset \bigcup \{ C_F : F \in \mathcal{F} \} \subset U$, where C_F is closed and $C_F \subset U$ for every $F \in \mathcal{F}$.
ON SEQUENCE-COVERING MSSC-IMAGES

Definition 1.2. [6] Let X be a space and P be a subset of X.

1. P is a sequential neighborhood of x in X, if whenever S is a convergent sequence converging to x, then S is eventually in P.

2. P is a sequentially open subset of X, if P is a sequential neighborhood of x in X for every $x \in P$.

Definition 1.3. Let $P = \bigcup \{ \mathcal{P}_x : x \in X \}$ be a family of subsets of a space X satisfying that, for each $x \in X$, \mathcal{P}_x is a network at x in X, and if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

1. P is a weak base for X [24], if $G \subset X$ such that for each $x \in G$, there exists $P \in \mathcal{P}_x$ satisfying $P \subset G$, then G is open in X. Here, \mathcal{P}_x is a weak base at x in X.

2. P is an sn-network for X [15], if each member of \mathcal{P}_x is a sequential neighborhood of x in X. Here, \mathcal{P}_x is an sn-network at x in X.

3. P is an so-network for X [15], if each member of \mathcal{P}_x is sequentially open in X. Here, \mathcal{P}_x is an so-network at x in X.

Definition 1.4. Let X be a space.

1. X is a cosmic space [20] (resp., \aleph_0-space [20], sn-second countable space [9], so-second countable space, second countable space [5], R-space [21], g-metrizable space [23]), if X has a countable network (resp., countable cs-network, countable sn-network, countable so-network, countable base, σ-locally finite cs-network, σ-locally finite weak base).

2. X is a sequential space [6], if each sequentially open subset of X is open.

Remark 1.1. [17] (1) For a space, weak base \Rightarrow sn-network \Rightarrow cs-network.

2. An sn-network for a sequential space is a weak base.

Definition 1.5. Let $f : X \to Y$ be a mapping.

1. f is an mssc-mapping [14], if X is a subspace of the product space $\prod_{n \in \mathbb{N}} X_n$ of a family $\{X_n : n \in \mathbb{N}\}$ of metric spaces, and for each $y \in Y$, there exists a sequence $\{V_{y,n} : n \in \mathbb{N}\}$ of open neighborhoods of y in Y such that each $p_n(f^{-1}(V_{y,n}))$ is a compact subset of X_n, where $p_n : \prod_{i \in \mathbb{N}} X_i \to X_n$ is the projection.

2. f is an 1-sequence-covering mapping [15] if, for each $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that whenever $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to y in Y there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

3. f is a 2-sequence-covering mapping [15] if, for each $y \in Y$, $x_y \in f^{-1}(y)$, and sequence $\{y_n : n \in \mathbb{N}\}$ converging to y in Y, there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

4. f is a sequence-covering mapping [22] if, for each convergent sequence S of Y, there exists a convergent sequence L of X such that $f(L) = S$. Note that a sequence-covering mapping is a strong sequence-covering mapping in the sense of [12].

5. f is a pseudo-sequence-covering mapping [11] if, for each convergent sequence S of Y, there exists a compact subset K of X such that $f(K) = S$.
(6) \(f \) is a **sequentially-quotient** mapping \([3]\) if, for each convergent sequence \(S \) of \(Y \), there exists a convergent sequence \(L \) of \(X \) so that \(f(L) \) is a subsequence of \(S \).

(7) \(f \) is a **compact-covering** mapping \([20]\) if, for each compact subset \(K \) of \(Y \), there exists a compact subset \(L \) of \(X \) such that \(f(L) = K \).

(8) \(f \) is a \(\pi \)-**mapping** \([2]\) if, for each \(y \in Y \) and for each neighborhood \(U \) of \(y \) in \(Y \), \(d(f^{-1}(y), X - f^{-1}(U)) > 0 \), where \(X \) is a metric space with a metric \(d \).

(9) \(f \) is a \(\sigma \)-**mapping** \([18]\), if there exists a base \(B \) of \(X \) such that \(f(B) \) is a \(\sigma \)-locally finite family in \(Y \).

Definition 1.6. \([4]\) A space \(X \) is **sequentially separable**, if \(X \) has a countable subset \(D \) such that for each \(x \in X \), there exists a sequence \(\{ x_n : n \in \mathbb{N} \} \) in \(D \) converging to \(x \). Here, the subset \(D \) is a **sequentially dense** subset of \(X \).

For undefined terms, refer to \([5]\) and \([24]\).

2. Results

First, we characterize sequence-covering mssc-images of locally separable metric spaces by means of \(\sigma \)-locally finite cs-networks.

Theorem 2.1. The following are equivalent for a space \(X \).

1. \(X \) is a sequence-covering mssc-image of a locally separable metric space.
2. \(X \) has a \(\sigma \)-locally finite cs-network consisting of cosmic spaces.
3. \(X \) has a \(\sigma \)-locally finite cs-network consisting of \(\aleph_0 \)-spaces.

Proof. \((1) \Rightarrow (2)\). Let \(f : M \to X \) be a sequence-covering mssc-mapping from a locally separable metric space \(M \) onto \(X \), and \(\{ X_n : n \in \mathbb{N} \} \) be the family of metric spaces satisfying that \(M \) is a subspace of \(\prod_{n \in \mathbb{N}} X_n \), and for each \(x \in X \), there exists a sequence \(\{ V_{x,n} : n \in \mathbb{N} \} \) of open neighborhoods of \(x \) in \(X \) such that each \(\overline{p_n(f^{-1}(V_{x,n}))} \) is a compact subset of \(X_n \), where \(p_n : \prod_{i \in \mathbb{N}} X_i \to X_n \) is the projection. Since \(M \) is locally separable metric, \(M = \bigoplus_{\lambda \in \Lambda} M_\lambda \), where each \(M_\lambda \) is a metric space by \([5]\). Since each \(X_n \) is a metric space, \(X_n \) has a \(\sigma \)-locally finite base \(\mathcal{C}_n = \bigcup \{ \mathcal{C}_{n,i} : i \in \mathbb{N} \} \), where each \(\mathcal{C}_{n,i} \) is locally finite. Assume, if necessary, that \(\mathcal{C}_{n,i} \subseteq \mathcal{C}_{n,i+1} \) for every \(i \in \mathbb{N} \). For each \(n \in \mathbb{N} \), set

9. \(\mathcal{B}_n = \left\{ M \cap \bigcap_{i \leq n} p_i^{-1}(C_i) : \right. \)

\(\left. C_i \in \bigcup_{j \leq n} \mathcal{C}_{i,j}, i \leq n, M \cap \bigcap_{i \leq n} p_i^{-1}(C_i) \subseteq M_\lambda \text{ for some } \lambda \in \Lambda \right\} \)

set \(\mathcal{P}_n = f(\mathcal{B}_n) \), and set \(\mathcal{B} = \bigcup \{ \mathcal{B}_n : n \in \mathbb{N} \} \), \(\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \). Then \(\mathcal{B} \) is a base for \(M \) consisting of separable subsets. Assume, if necessary, that \(\mathcal{B} \) is closed under finite intersections. We shall show that \(\mathcal{P} \) is a \(\sigma \)-locally finite cs-network for \(X \) consisting of cosmic spaces by the following facts (a), (b), and (c).

(a) \(\mathcal{P} \) is a cs-network for \(X \).

Let \(S \) be a convergent sequence being eventually in \(U \) with \(U \) open in \(X \). Since \(f \) is sequence-covering, there exists a convergent sequence \(L \) in \(M \) such that

(b) \(\mathcal{P} \) is a cs-network for \(X \).

Let \(S \) be a convergent sequence being eventually in \(U \) with \(U \) open in \(X \). Since \(f \) is sequence-covering, there exists a convergent sequence \(L \) in \(M \) such that

(c) \(\mathcal{P} \) is a cs-network for \(X \).

Let \(S \) be a convergent sequence being eventually in \(U \) with \(U \) open in \(X \). Since \(f \) is sequence-covering, there exists a convergent sequence \(L \) in \(M \) such that
Therefore, \(x \in \bigcup \{ f_i^{-1}(V_{a,i}) : i \in \mathbb{N} \} \), which is a compact subset of \(X \). If \(f_i^{-1}(V_{a,i}) \) is locally finite, then \(f_i^{-1}(V_{a,i}) \) meets only finitely many members of \(C_i \). Then \(f^{-1}(V_a) \) meets only finitely many members of \(\bigcup_{i \in \mathbb{N}} C_i \). Therefore, \(f^{-1}(V_a) \) meets only finitely many members of \(\bigcup_{i \in \mathbb{N}} C_i \). It follows that \(f^{-1}(V_a) \) meets only finitely many members of \(\mathcal{B}_n \). Hence \(V_a \) meets only finitely many members of \(f(\mathcal{B}_n) \), i.e., \(\mathcal{P}_n \) is locally finite. It follows that \(\mathcal{P} \) is \(\sigma \)-locally finite.

(c) Each \(P \in \mathcal{P} \) is a cosmic space.

Set \(P = f(B) \) for some \(B \in \mathcal{B} \). Since \(B \) is separable, \(P \) is cosmic.

\[\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \]
\[\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \] be a \(\sigma \)-locally finite \(cs \)-network for \(X \) consisting of cosmic spaces. Every locally finite family in a Lindelöf space is countable. Hence for each \(P \in \mathcal{P} \), \(\{ P \cap P' : P' \in \mathcal{P} \} \) is countable, and obviously it is a \(cs \)-network for \(P \).

\[\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \] be a \(\sigma \)-locally finite \(cs \)-network for \(X \) consisting of \(\aleph_0 \)-spaces, where each \(\mathcal{P}_n = \{ P_{\alpha_n} : \alpha_n \in A_n \} \) is a locally finite family. For each \(n \in \mathbb{N} \), since each \(P_{\alpha_n} \) is a \(\aleph_0 \)-space, \(P_{\alpha_n} \) has a countable \(cs \)-network \(\mathcal{P}_{\alpha_n} = \{ P_{\alpha_{n,i}} : i \geq n \} \). For each \(i \geq n \), set

\[Q_{\alpha_{n,i}} = \{ P_{\alpha_n} \cup \{ P_{\alpha_{n,j}} : n \leq j \leq i \} = \{ Q_\beta : \beta \in B_{\alpha_{n,i}} \}, \]

where \(B_{\alpha_{n,i}} \) is finite, and set

\[Q_i = \{ X \} \cup \bigcup \{ Q_{\alpha_{j,i}} : \alpha_j \in A_j, j \leq i \} = \{ Q_\beta : \beta \in B_i \}, \]

where \(B_i = \{ \beta_0 \} \cup \bigcup \{ B_{\alpha_{j,i}} : \alpha_j \in A_j, j \leq i \} \) with \(Q_\beta = X \). Since each \(\mathcal{P}_i \) is locally finite and each \(Q_{\alpha_{j,i}} \) is finite, \(Q_i \) is locally finite. Endow \(B_i \) with the discrete topology, then \(B_i \) is a metric space. Set

\[M = \{ b = (\beta_i) \in \prod_{i \in \mathbb{N}} B_i : \text{there exists } n \in \mathbb{N} \text{ and } \alpha_n \in A_n \text{ such that } Q_{\beta_i} = X \text{ if } i < n, Q_{\beta_i} \in Q_{\alpha_{n,i}} \text{ if } i \geq n, \text{ and } \{ Q_{\beta_i} : i \geq n \} \text{ forms a network at a point } x_b \in P_{\alpha_n} \}. \]

Then \(M \), which is a subspace of the product space \(\prod_{i \in \mathbb{N}} B_i \), is a metric space. Since \(X \) is \(T_1 \) and regular, \(x_b \) is unique for every \(b \in M \). We define \(f : M \to X \) by \(f(b) = x_b \) for every \(b \in M \).

(a) \(f \) is onto.

For each \(x \in X \), there exists \(n \in \mathbb{N} \) and \(\alpha_n \in A_n \) such that \(x \in P_{\alpha_n} \). Since \(\mathcal{P}_{\alpha_n} \) is a countable \(cs \)-network for \(P_{\alpha_n} \), \((\mathcal{P}_{\alpha_n})_x \) is a countable network at \(x \) in \(P_{\alpha_n} \). We may assume that \((\mathcal{P}_{\alpha_n})_x = \{ P_{x,j} : j \in \mathbb{N} \} \), where \(P_{x,j} \in Q_{\alpha_{n,i}(j)} \) with some \(i(j) \in \mathbb{N} \) satisfying \(i(j) < i(j + 1) \). For each \(i \in \mathbb{N} \), take \(Q_{\beta_i} \) as follows.
(i) $i < n$: $Q_{\beta_i} = X$,
(ii) $i \geq n$: $Q_{\beta_i} = P_{\alpha, j}$ if $i = i(j)$ for some $j \in \mathbb{N}$, and otherwise, $Q_{\beta_i} = P_{\alpha}$. Then $\{Q_{\beta_i} : i \geq n\} \subseteq \{P_{\alpha}\}$. Therefore, $\{Q_{\beta_i} : i \geq n\}$ forms a network at $x = f(b)$, i.e., f is onto.

(b) f is continuous.

For each $b = (\beta_i) \in M$ and $x = f(b) \in U$ open in X. Then $x = f(b) \in Q_{\beta_k}$ for some $k \in \mathbb{N}$. Let $U_b = \{c = (\gamma_i) \in M : \gamma_k = \beta_k\}$. Then U_b is open in M, and $b \in U_b$. For each $c \in U_b$, we find $f(c) \in Q_{\gamma_k} \subseteq U_b$. It implies that $f(U_b) \subseteq U$, i.e., f is continuous.

(c) M is locally separable.

Let $b = (\beta_i) \in M$. Then there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that $Q_{\beta_i} = X$ if $i < n$, $Q_{\beta_i} \subseteq Q_{\alpha_n,i}$ if $i \geq n$, and $\{Q_{\beta_i} : i \geq n\}$ forms a network at a point x_b in P_{α_n}. Set $M_b = \{c = (\gamma_i) \in M : \gamma_n = \alpha_n\}$. Then M_b is open in M, and $b \in M_b$. For each $c = (\gamma_i) \in M_b$, there exists $m \in \mathbb{N}$ and $\alpha_m \in A_m$ such that $Q_{\gamma_i} = X$ if $i < m$, $Q_{\gamma_i} \subseteq Q_{\alpha_m,i}$ if $i \geq m$, and $\{Q_{\gamma_i} : i \geq m\}$ forms a network at a point x_c in P_{α_m}. It follows from $Q_{\gamma_i} = Q_{\beta_i}$ that $P_{\alpha_n} \cap P_{\alpha_m} \neq \emptyset$. Since P_{α_n} is an \aleph_0-space and P_{α_m} is locally finite, $C_m = \{\alpha_m \in A_m : P_{\alpha_m} \cap P_{\alpha_n} \neq \emptyset\}$ is countable for every $m \in \mathbb{N}$. Then $E_i = \{(\beta_i) \cup \left(\bigcup\{B_{\alpha_{j,i}} : \alpha_j \in C_j, j \leq i\}\right)\}$ is countable. It implies that $\{\beta_i\} \times \cdots \times \{\beta_{n-1}\} \times \prod_{i \geq n} E_i$, M_b is separable. Therefore, M is locally separable.

(d) f is an mssc-mapping.

For each $x \in X$ and each $i \in \mathbb{N}$, since P_i is locally finite, there exists an open neighborhood $V_{x,i}$ of x in X such that $D_i = \{\alpha_i \in A_i : P_{\alpha_i} \cap V_{x,i} \neq \emptyset\}$ is finite. Then $E_i = \{(\beta_i) \cup \left(\bigcup\{B_{\alpha_{j,i}} : \alpha_j \in D_j, j \leq i\}\right)\}$ is finite. Since $p_i(f^{-1}(V_{x,i})) \subseteq F_i$, $p_i(f^{-1}(V_{x,i}))$ is compact. It implies that f is an mssc-mapping.

(e) f is sequence-covering.

For each convergent sequence S in X, since P is a σ-locally finite cs-network for X, there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that S is eventually in $P_{\alpha_n} \subseteq P_n$. Then $L_{\alpha_n} = S \cap P_{\alpha_n}$ is a convergent sequence in P_{α_n}. For each $i \geq n$, we find that $\bigcup\{Q_{\alpha_{n,i}} : i \geq n\}$ is a σ-locally finite cs-network for P_{α_n} satisfying $P_{\alpha_n} \subseteq Q_{\alpha_{n,i}} \subseteq Q_{\alpha_{n,i+1}}$. It follows from the proof (3)\Rightarrow(2) of [13] Theorem 5.1] that there exists a convergent sequence H_{α_n} in M_{α_n} such that $f_{\alpha_n}(H_{\alpha_n}) = L_{\alpha_n}$, where

$$M_{\alpha_n} = \{c = (\gamma_i)_{i \geq n} \in \prod_{i \geq n} B_{\alpha_{n,i}} : \{Q_{\gamma_i} : i \geq n\} \text{ forms a network at a point } x_c \text{ in } P_{\alpha_n}\},$$

and $f_{\alpha_n} : M_{\alpha_n} \to P_{\alpha_n}$ defined by $f_{\alpha_n}(c) = x_c$ for every $c \in M_{\alpha_n}$. For each $c = (\gamma_i)_{i \geq n} \in H_{\alpha_n}$, set $h_c = (\beta_i)_{i \in \mathbb{N}}$, where $Q_{\beta_i} = X$ if $i < n$ and $\beta_i = \gamma_i$ if $i \geq n$, and set $H = \{h_c : c \in H_{\alpha_n}\}$. Then H is a convergent sequence in M and $f(H) = L_{\alpha_n}$. Since S is eventually in P_{α_n}, $S - P_{\alpha_n}$ is finite. Then $S - P_{\alpha_n} = f(F)$ with some finite subset F of M. Set $L = H \cup F$, then L is a convergent sequence in M satisfying $f(L) = S$. It implies that f is sequence-covering. □
Remark 2.1. The argument for cs-networks in the proof (2) \(\Rightarrow (3) \) of Theorem 2.1 cannot apply to cfp-networks.

Corollary 2.1. The following are equivalent for a space \(X \).

1. \(X \) is a sequence-covering, quotient mssc-image of a locally separable metric space.
2. \(X \) is a sequential space having a \(\sigma \)-locally finite cs-network consisting of cosmic spaces.
3. \(X \) is a sequential space having a \(\sigma \)-locally finite cs-network consisting of \(\aleph_n \)-spaces.

Proof. (1) \(\Rightarrow (2) \). Since \(X \) is a quotient image of a locally separable metric space, \(X \) is a sequential space by [6] Proposition 1.2. Then \(X \) is a sequential space having a \(\sigma \)-locally finite cs-network consisting of cosmic spaces by Theorem 2.1. (2) \(\Rightarrow (3) \). As in the proof (2) \(\Rightarrow (3) \) of Theorem 2.1.

Next, we characterize 1-sequence-covering mssc-images of locally separable metric spaces by means of \(\sigma \)-locally finite sn-networks.

Theorem 2.2. The following are equivalent for a space \(X \).

1. \(X \) is an 1-sequence-covering mssc-image of a locally separable metric space.
2. \(X \) has a \(\sigma \)-locally finite sn-network consisting of cosmic spaces.
3. \(X \) has a \(\sigma \)-locally finite sn-network consisting of \(\aleph_n \)-second countable spaces.

Proof. (1) \(\Rightarrow (2) \). Let \(f : M \rightarrow X \) be an 1-sequence-covering mssc-mapping from a locally separable metric space \(M \) onto \(X \). For each \(x \in X \), let \(a_x \in f^{-1}(x) \) satisfying that whenever \(\{x_n : n \in \mathbb{N}\} \) is a sequence converging to \(x \) in \(X \) there exists a sequence \(\{a_n : n \in \mathbb{N}\} \) converging to \(a_x \) in \(M \) with each \(a_n \in f^{-1}(x_n) \). By using notations in the proof (1) \(\Rightarrow (2) \) of Theorem 2.1, again, let \(Q_x = \{P \in \mathcal{P} : P = f(B) \text{ with } a_x \in B \in \mathcal{B}\} \), and let \(Q = \bigcup \{Q_x : x \in X\} \). We shall prove that \(Q \) is a \(\sigma \)-locally finite sn-network for \(X \) consisting of cosmic spaces by the following facts (a), (b), (c) for every \(x \in X \), and (d), (e).

(a) \(Q_x \) is a network at \(x \) in \(X \).

It is clear that \(x \in \bigcap Q_x \). Let \(x \in U \) with \(U \) open in \(X \), then \(x \in f^{-1}(U) \).

(b) If \(Q_1, Q_2 \in Q_x \), then \(Q \subset Q_1 \cap Q_2 \) for some \(Q \in Q_x \).

Set \(Q_1 = f(B_1), Q_2 = f(B_2) \), where \(B_1, B_2 \in B \) with \(a_x \in B_1 \) and \(a_x \in B_2 \).

(c) Since \(B \) is a base for \(M \), \(a_x \in B \in f^{-1}(U) \) for some \(B \in B \). Set \(Q = f(B) \), then \(Q \in Q_x \) and \(Q \subset Q_1 \cap Q_2 \).
(c) Each $Q \in \mathcal{Q}_x$ is a sequential neighborhood of x.

Set $Q = f(B)$ with $a_x \in B \in \mathcal{B}$. For each convergent sequence S converging to x, there exists a convergent sequence L converging to a_x in M such that $f(L) = S$. Since L is eventually in B, S is eventually in Q. It implies that Q is a sequential neighborhood of x.

(d) \mathcal{Q} is σ-locally finite.

Since $Q \subset \mathcal{P}$ and \mathcal{P} is σ-locally finite, \mathcal{Q} is σ-locally finite.

(e) Each $Q \in \mathcal{Q}$ is a cosmic space.

Set $Q = f(B)$ for some $B \in \mathcal{B}$. Since B is separable, Q is cosmic.

(2) \Rightarrow (3). As in the proof (2) \Rightarrow (3) of Theorem 2.1

(3) \Rightarrow (1). Let $\mathcal{P} = \bigcup \{P_n : n \in \mathbb{N}\}$ be a σ-locally finite sn-network for X consisting of \aleph_0-spaces. By using notations and arguments in the proof (3) of Theorem 2.1 again, since each sn-network is also a cs-network, it suffices to prove that the mapping f is 1-sequence-covering.

For each $x \in X$, since \mathcal{P} is a σ-locally finite sn-network for X, there exists $n \in \mathbb{N}$ and $\alpha_n \in A_n$ such that P_{α_n} is a sequential neighborhood of x. Then $\bigcup \{Q_{\alpha_n,i} : i \geq n\}$ is a σ-locally finite sn-network for P_{α_n}. It implies that f_{α_n} is 1-sequence-covering by [13] Theorem 2.1. Hence, there exists $c_x = (\gamma_{x,i})_{i \geq n} \in f_{\alpha_n}^{-1}(x)$ such that whenever $\{x_m : m \in \mathbb{N}\}$ is a sequence converging to x in P_{α_n}, there exists a sequence $\{c_m : m \in \mathbb{N}\}$ converging to c_x in M_{α_n} with each $c_m \in f_{\alpha_n}^{-1}(x_m)$. Set $b_x = (\beta_{x,i})$, where $Q_{\beta_{x,i}} \supset x$ if $i < n$ and $\beta_{x,i} = \gamma_{x,i}$ if $i \geq n$, then $b_x \in f^{-1}(x)$. Let $\{y_m : m \in \mathbb{N}\}$ be a sequence in X converging to x. Since P_{α_n} is a sequential neighborhood of x, there exists $m_0 \in \mathbb{N}$ such that $\{y_m : m \geq m_0\} \subset P_{\alpha_n}$ is a sequence converging to x in P_{α_n}. Then there exists a sequence $\{c_m : m \geq m_0\}$ in M_{α_n} converging to c_x and $c_m \in f_{\alpha_n}^{-1}(y_m)$ for each $m \geq m_0$. For each $c_m = (\gamma_{m,i})_{i \geq n}$, set $b_m = (\beta_{m,i})$, where $Q_{\beta_{m,i}} \supset x$ if $i < n$ and $\beta_{m,i} = \gamma_{m,i}$ if $i \geq n$. Then $b_m \in M$ and $f(b_m) = y_m$ for each $m \geq m_0$. For each $m < m_0$, take some $b_m \in f^{-1}(y_m)$. Then $\{b_m : m \in \mathbb{N}\}$ is a sequence in M converging to b_x and $b_m \in f^{-1}(y_m)$ for each $m \in \mathbb{N}$. It implies that f is 1-sequence-covering.

□

Corollary 2.2. The following are equivalent for a space X.

(1) X is an 1-sequence-covering, quotient mssc-image of a locally separable metric space.

(2) X has a σ-locally finite weak base consisting of cosmic spaces.

(3) X has a σ-locally finite weak base consisting of sn-second countable spaces.

Proof. (1) \Rightarrow (2). Since X is a quotient image of a locally separable metric space, X is a sequential space by [6] Proposition 1.2. Then X is a sequential space having a σ-locally finite sn-network \mathcal{P} consisting of cosmic spaces by Theorem 2.2. It follows from Remark [11] that \mathcal{P} is a weak base for X. Therefore, X has a σ-locally finite weak base consisting of cosmic spaces.

(2) \Rightarrow (3). Since X has a σ-locally weak base, X is a sequential space. It follows from Theorem 2.2 that X is a sequential space having a σ-locally finite sn-network \mathcal{P} consisting of sn-second countable spaces. By Remark [11] \mathcal{P} is a weak base for X. It implies that X has a σ-locally finite weak base consisting of sn-second countable spaces.
It follows from Theorem 2.2 that X is an 1-sequence-covering mssc-image of a locally separable metric space under some mapping f. Since X has a σ-locally finite weak base, X is a sequential space. Then f is an 1-sequence-covering mapping onto a sequential space, and so f is a quotient mapping by [17, Lemma 3.5]. It implies that X is an 1-sequence-covering, quotient mssc-image of a locally separable metric space.

\textbf{Remark 2.2.} We can replace "cosmic spaces" in Theorem 2.2 and Corollary 2.2 by "\aleph_0-spaces".

In the following, we characterize 2-sequence-covering mssc-images of locally separable metric spaces by means of σ-locally finite so-networks.

\textbf{Theorem 2.3.} The following are equivalent for a space X.

1. X is a 2-sequence-covering mssc-image of a locally separable metric space.
2. X has a σ-locally finite so-network consisting of cosmic spaces.
3. X has a σ-locally finite so-network consisting of σ-second countable spaces.

\textbf{Proof.} \([1] \Rightarrow [2]\). Let $f : M \to X$ be a 2-sequence-covering mssc-mapping from a locally separable metric space M onto X. For each $x \in X$, by using notations in the proof of Theorem 2.1 again, let $\mathcal{B}_x = \{B \in \mathcal{B} : f^{-1}(x) \cap B \neq \emptyset\}$, and let \mathcal{R}_x be the family of all finite intersections of members of $f(\mathcal{B}_x)$. We shall prove that $\mathcal{R} = \bigcup \{\mathcal{R}_x : x \in X\}$ is a σ-locally finite so-network for X consisting of cosmic spaces by the following facts (a), (b), (c) for every $x \in X$ and (d), (e).

(a) \mathcal{R}_x is a network at x in X.
(b) This is obvious because \mathcal{B}_x is a base for $f^{-1}(x)$.
(c) If $R_1, R_2 \in \mathcal{R}_x$, then $R \subseteq R_1 \cap R_2$ for some $R \in \mathcal{R}_x$.
(d) Each $R \in \mathcal{R}_x$ is sequentially open.
(e) Let $B \in \mathcal{B}_x$, $y \in f(B)$, and S be a convergent sequence converging to y. Since $y \in f(B)$, $f^{-1}(y) \cap B \neq \emptyset$. Take some $a_y \in f^{-1}(y) \cap B$. Then there exists a convergent sequence L converging to a_y in M such that $f(L) = S$. Since L is eventually in B, S is eventually in $f(B)$. It implies that $f(B)$ is sequentially open, i.e., every member of $f(\mathcal{B}_x)$ is sequentially open. Because R is some finite intersection of members of $f(\mathcal{B}_x)$, we find that R is sequentially open.
(f) \mathcal{R} is σ-locally finite.
(g) Since $\bigcup \{f(\mathcal{B}_x) : x \in X\} \subseteq \mathcal{P}$ and \mathcal{P} is σ-locally finite, $\bigcup \{f(\mathcal{B}_x) : x \in X\}$ is σ-locally finite. It implies that \mathcal{R} is σ-locally finite.
(h) Each $R \in \mathcal{R}$ is a cosmic space.
(i) For each $B \in \mathcal{B}_x$, since B is separable, $f(B)$ is cosmic, i.e., every member of $f(\mathcal{B}_x)$ is cosmic. It implies that R is cosmic.

($[2] \Rightarrow [3]$). As in the proof of Theorem 2.1 again, since each so-network is also a cs-network, it suffices to prove that the mapping f is 2-sequence-covering.
For each \(x \in X \) and each \(b_x \in f^{-1}(x) \), let \(b_x = (\beta_{x,i}) \). Then there exists some \(n \in \mathbb{N} \) and \(\alpha_n \in A_n \) such that \(Q_{\beta_{x,i}} = X \) if \(i < n \), \(Q_{\beta_{x,i}} \in Q_{\alpha_n,i} \) if \(i \geq n \), and \(\{Q_{\beta_{x,i}} : i \geq n\} \) forms a network at \(x \) in \(P_{\alpha_n} \). Set \(c_x = (\beta_{x,i})_{i \geq n} \), then \(c_x \in f_{\alpha_n}^{-1}(x) \). Since \(\{Q_{\alpha_n,i} : i \geq n\} \) is a \(\sigma \)-locally finite so-network for \(P_{\alpha_n} \), \(f_{\alpha_n} \) is a 2-sequence-covering by [13] Theorem 3.1. Let \(\{x_m : m \in \mathbb{N}\} \) be a sequence converging to \(x \) in \(X \). Since \(P_{\alpha_n} \) is sequentially open, there exists \(n_0 \in \mathbb{N} \) such that \(\{x_m : m \geq n_0\} \) is a sequence converging to \(x \) in \(P_{\alpha_n} \). Then there exists a sequence \(\{c_m : m \geq m_0\} \) in \(M_{\alpha_n} \) converging to \(c_x \) and \(c_m \in f_{\alpha_n}^{-1}(x_m) \) for each \(m \geq m_0 \). For each \(c_m = (\gamma_{m,i})_{i \geq n}, \) set \(b_m = (\beta_{m,i}) \), where \(Q_{\beta_{m,i}} = X \) if \(i < n \), and \(\beta_{m,i} = \gamma_{m,i} \) if \(i \geq n \). Then \(b_m \in M \) and \(f(b_m) = x_m \) for each \(m \geq m_0 \). For each \(m < m_0 \), take some \(b_m \in f^{-1}(x_m) \). Then \(\{b_m : m \in \mathbb{N}\} \) is a sequence in \(M \) converging to \(b_x \) and \(b_m \in f^{-1}(x_m) \) for each \(m \in \mathbb{N} \). It implies that \(f \) is 2-sequence-covering.

Corollary 2.3. The following are equivalent for a space \(X \).

1. \(X \) is a 2-sequence-covering, quotient mssc-image of a locally separable metric space.
2. \(X \) has a \(\sigma \)-locally finite base consisting of cosmic spaces.
3. \(X \) has a \(\sigma \)-locally finite base consisting of second countable spaces.

Proof. \([1] \Rightarrow [2] \). Since \(X \) is a quotient image of a locally separable metric space, \(X \) is a sequential space by [6] Proposition 1.2. It follows from Theorem 2.3 that \(X \) is a sequential space having a \(\sigma \)-locally finite so-network \(\mathcal{P} \) consisting of cosmic spaces. For each \(P \in \mathcal{P} \), since \(X \) is sequential and \(P \) is sequential open, \(P \) is open in \(X \). Hence \(\mathcal{P} \) is a \(\sigma \)-locally finite base for \(X \) consisting of cosmic spaces.

\([2] \Rightarrow [3] \). It follows from Theorem 2.3 that \(X \) has a \(\sigma \)-locally finite so-network \(\mathcal{P} \) consisting of so-second countable spaces. Since \(X \) has a \(\sigma \)-locally finite base, \(X \) is sequential. It implies that every \(P \in \mathcal{P} \) is open. Then \(\mathcal{P} \) is a \(\sigma \)-locally finite base consisting of so-second countable spaces.

Let \(P \in \mathcal{P} \) and \(Q \) be a countable so-network for \(P \). Since \(P \) is open, \(P \) is a sequential space by [6] Proposition 1.9. Then every \(Q \in \mathcal{Q} \) is open in \(P \). Hence \(\mathcal{Q} \) is a countable base for \(P \). It implies that \(P \) is a second countable space.

By the above, \(X \) has a \(\sigma \)-locally finite base consisting of second countable spaces.

\([3] \Rightarrow [1] \). It follows from Theorem 2.3 that \(X \) is a 2-sequence-covering mssc-image of a locally separable metric space under some mapping \(f \). Since \(X \) has a \(\sigma \)-locally finite base, \(X \) is sequential. Then \(f \) is a 2-sequence-covering mapping onto a sequential space, and so \(f \) is a quotient mapping by [17] Lemma 3.5. It implies that \(X \) is a 2-sequence-covering, quotient mssc-image of a locally separable metric space.

Remark 2.3. We can replace “cosmic spaces” in Theorem 2.3 and Corollary 2.3 by “\(R_0 \)-spaces”, or “\(sn \)-second countable spaces”.

References

Mathematics Faculty
Dongthap University
Caolanh City
Dongthap Province
Vietnam
nguyendungtc@yahoo.com
nvdung@staff.dthu.edu.vn