A FIRST-ORDER CONDITIONAL PROBABILITY LOGIC WITH ITERATIONS

Miloš Milošević and Zoran Ognjanović

Communicated by Žarko Mijajlović

Abstract. We investigate a first-order conditional probability logic with equality, which is, up to our knowledge, the first treatise of such logic. The logic, denoted LFPOIC=, allows making statements such as: \( CP_{\geq s}(\phi, \theta) \), and \( CP_{\leq t}(\phi, \theta) \), with the intended meaning that the conditional probability of \( \phi \) given \( \theta \) is at least (at most) \( s \). The corresponding syntax, semantic, and axiomatic system are introduced, and Extended completeness theorem is proven.

1. Syntax and semantics

The recent papers \[1, 3, 6\], discuss conditional probability extensions of classic propositional logic, while \[2\] introduces a first-order conditional probability logic in which iterations of conditional probability operators are not allowed. In this paper, we abandon that restriction and also extend logical language by adding equality, which causes changes in the corresponding syntax and semantics. Solving those issues is the main novelty presented in this paper.

Let \([0,1]_Q\) denote the set of all rational numbers from the interval \([0,1]\). The language \( \mathcal{L} \) of the LFPOIC= logic consists of countable sets of variables \( \text{Var} = \{x_1, x_2, \ldots \} \), relation symbols \( R^m \), the relation symbol = which is, of course, interpreted rigidly as equality, and function symbols \( F^n \), where \( m \) and \( n \) are arities of these symbols, logical connectives \( \land \) and \( \neg \), the quantifier \( \forall \), and binary conditional probability operators \( CP_{\geq s} \) and \( CP_{\leq t} \) for all \( s \in [0,1]_Q \), \( t \in [0,1)_Q \). Constants are function symbols whose arity is 0.

Terms and atomic formulas are defined as in the first-order classical logic with equality. The set of formulas \( \text{For}_{FOIC=} \) is the smallest set containing atomic formulas and closed under the following formation rules: if \( \phi \) and \( \theta \) are formulas, then \( \neg \phi \), \( CP_{\geq s}(\phi, \theta) \), \( CP_{\leq t}(\phi, \theta) \), \( \phi \land \theta \) and \( (\forall x)\phi \) are formulas. We use the standard abbreviations for other connectives, while \( P_{\geq s}(\phi) \) denotes \( CP_{\geq s}(\phi, \top) \).

2010 Mathematics Subject Classification: 03B48, 03B04, 03B45.

Partially supported by Ministarstvo prosvete i nauke Republike Srbije under grants III44006 and ON174026.
\( \psi \) is a sentence if no variable is free in \( \psi \). The subset of all sentences is denoted by \( \text{Sent}_{\text{FOICP}} \). We call a set \( T \subset \text{FOICP} \) a theory if \( T \) contains only sentences.

Semantics to the set of \( \text{LFOICP} \)-formulas is given in the possible-world style.

**Definition 1.1.** An \( \text{LFOICP} \)-model is a structure \( M = \langle W, D, I, \text{Prob} \rangle \) where:

- \( W \) is a nonempty set of objects called worlds,
- all worlds have a nonempty set \( D \) as a domain,
- \( I \) associates an interpretation of function and relation symbols with every world \( w \in W \) such that the meanings of the terms are same in all worlds (we say that terms are rigid) and \( I(w)(R_m^w) \) is a subset of \( D^n \),
- \( \text{Prob} \) is a probability assignment which assigns to every \( w \in W \) a probability space \( \text{Prob}(w) = \langle W(w), H(w), \mu(w) \rangle \), where:
  - \( W(w) \) is a nonempty subset of \( W \),
  - \( H(w) \) is an algebra of subsets of \( W(w) \),
  - \( \mu(w) \) is a finitely additive probability measure on \( H(w) \).

The fact that \( \phi \in \text{FOICP} \) holds in a world \( w \) of some \( \text{LFOICP} \)-model \( M \) for a valuation \( v \) of variables is denoted as \( (M, w, v) \models \phi \) and the notation \( [\phi]^w_v = \{ u \in W(w) \mid (M, u, v) \models \phi \} \) is used throughout the paper.

**Definition 1.2.** Let \( M = \langle W, D, I, \text{Prob} \rangle \) be an \( \text{LFOICP} \)-model and \( v \) be a valuation. The satisfiability of \( \phi \in \text{FOICP} \) in \( w \in W \) for a given valuation \( v \) is defined as follows:

- if \( \phi \) is a classical first-order atomic formula, then \( (M, w, v) \models \phi \) if and only if \( w \models \phi(a_1, \ldots, a_n) \), where \( a_i \), \( i = 1, \ldots, n \), are the names for \( a_i = v(w)(x_i) \), and \( w \) is considered as a classical first-order model,
- if \( \phi \equiv \neg \psi \), then \( (M, w, v) \models \neg \psi \) if and only if \( (M, w, v) \not\models \psi \),
- if \( \phi \equiv \psi \land \theta \), then \( (M, w, v) \models \psi \land \theta \) if and only if \( (M, w, v) \models \psi \) and \( (M, w, v) \models \theta \),
- if \( \phi \equiv (\forall x)\psi(x) \), then \( (M, w, v) \models (\forall x)\psi(x) \) if and only if for every \( d \in D(w) \), \( (M, d, v) \models \psi(d) \), where \( d \) is a name for \( d \),
- if \( \phi \equiv \text{CP}_{\geq s}(\psi, \theta) \), then \( (M, w, v) \models \text{CP}_{\geq s}(\psi, \theta) \) if and only if either
  \[ \mu(w)([\psi]^w_v) = 0, \text{ or } \mu(w)([\psi]^w_v) > 0 \text{ and } \frac{\mu(w)([\psi \land \theta]^w_v)}{\mu(w)([\theta]^w_v)} > s, \]
- if \( \phi \equiv \text{CP}_{\leq s}(\psi, \theta) \), then \( (M, w, v) \models \text{CP}_{\leq s}(\psi, \theta) \) if and only if either
  \[ \mu(w)([\psi]^w_v) = 0 \text{ and } s = 1, \text{ or } \mu(w)([\psi]^w_v) > 0 \text{ and } \frac{\mu(w)([\psi \land \theta]^w_v)}{\mu(w)([\theta]^w_v)} \leq s. \]

We say that a formula \( \phi \) holds in a world \( w \) of an \( \text{LFOICP} \)-model \( M \) and denote it by \( (M, w) \models \phi \) if for every valuation \( v \), \( (M, w, v) \models \phi \).

Since the satisfiability of a sentence \( \phi \) in \( w \) does not depend on the given valuation \( v \), and for all valuations sets \([\phi]^w_v \) coincide we denote the set of all worlds \( u \in W(w) \) of an \( \text{LFOICP} \)-model \( M \) where \( \phi \) holds by \([\phi]^w_u \). We may omit the subscript when the meaning of \([\phi] \) is clear from the context: if it is written \( \mu(w)([\phi]) \), then it is connoted \([\phi] = [\phi]^w_u \).
By the above definition the conditional probability of $\phi$ given $\psi$ is 1 when $\mu(w)([\psi]_w^\tau) = 0$ and we have expanded Kolmogorov’s definition of the conditional probability in a rather usual way following [6] and [7].

**Definition 1.3.** A formula $\phi \in \text{ForFOICP}^-$ is satisfiable if there exist an LFOICP$^-$-model $M$, a world $w$ in $M$, and a valuation $v$ such that $(M,w,v) \models \phi$. A set $T$ of formulas is satisfiable if there exist an LFOICP$^-$-model $M$, some world $w$ in $M$, and a valuation $v$ such that $(M,w,v) \models \phi$, for every $\phi \in T$. A formula $\phi$ is valid if for every LFOICP$^-$-model $M$, and every world $w$ from $M$, $(M,w) \models \phi$.

We focus on the class of models satisfying the requirement that for every $\phi \in \text{Sent}_{\text{LFOICP}^-}$ and every $w$ from a model $M$, $[\phi]_w$ is a measurable set, i.e., $[\phi]_w \in H(w)$, and that class will be denoted by LFOICP$^-_{\text{Meas}}$. Also, we consider the class LFOICP$^-_{\text{Alt}}$ of all LFOICP$^-_{\text{Meas}}$-models having property that for each $w \in W$ every subset of $W(w)$ is $\mu(w)$-measurable.

**Definition 1.4.** A probabilistic $k$-nested implication $\Phi_k(\tau, (\theta_i)_{i<\omega})$ for the formula $\tau$ based on the sequence $(\theta_i)_{i<\omega}$ of formulas is defined by recursion:

$$
\Phi_0(\tau, (\theta_i)_{i<\omega}) \equiv \theta_0 \rightarrow \tau,
\Phi_{k+1}(\tau, (\theta_i)_{i<\omega}) \equiv \theta_{k+1} \rightarrow P_{\geq 1}(\Phi_k(\tau, (\theta_i)_{i<\omega})).
$$

For example $\Phi_3(\tau, (\theta_i)_{i<\omega}) \equiv \theta_3 \rightarrow P_{\geq 1}(\theta_2 \rightarrow P_{\geq 1}(\theta_1 \rightarrow P_{\geq 1}(\theta_0 \rightarrow \tau)))$.

2. Axioms

The axiomatic system $\text{Ax}_{\text{LFOICP}}$ for LFOICP contains the following axiom schemata:

- **Axiom 1** all the axioms of the classical propositional logic,

- **Axiom 2** $\forall x(\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \forall x\psi)$, where $x$ is not a free variable in $\phi$ and $\phi, \psi \in \text{ForFOICP}$,

- **Axiom 3** $\forall x\phi(x) \rightarrow \phi(t)$, where $\phi(t)$ is obtained by substitution of all free occurrences of $x$ in the first-order formula $\phi(x)$ by the term $t$ which is free for $x$ in $\phi(x)$,

- **Axiom 4** $\forall x(x = x)$,

- **Axiom 5** $\forall x\forall y(x = y \rightarrow (\phi(x,x) \leftrightarrow \phi(x,y)))$, for $\phi \in \text{ForFOICP}$,

- **Axiom 6** $CP_{\geq 0}(\phi, \theta)$,

- **Axiom 7** $CP_{<s}(\phi, \theta) \rightarrow CP_{\leq s}(\phi, \theta)$,

- **Axiom 8** $CP_{\leq s}(\phi, \theta) \rightarrow CP_{<t}(\phi, \theta), t > s$,

- **Axiom 9** $P_{\geq 0}(\theta) \rightarrow (CP_{\geq s}(\phi, \theta) \leftrightarrow CP_{<1-s}(\neg \phi, \theta))$,

- **Axiom 10** $(P_{\geq s}(\phi) \land P_{\geq 1}(\theta) \land P_{\geq 1}(\neg(\phi \land \theta))) \rightarrow P_{\geq \min(1,s+t)}(\phi \lor \theta)$,

- **Axiom 11** $(P_{\leq s}(\phi) \land P_{<t}(\theta)) \rightarrow P_{<s+t}(\phi \lor \theta), s + t \leq 1$,

- **Axiom 12** $P_{=0}(\theta) \rightarrow CP_{=1}(\phi, \theta)$,

- **Axiom 13** $(P_{=t}(\theta) \land P_{\leq s}(\phi \land \theta)) \rightarrow CP_{\leq \min(t,1)}(\phi, \theta), t \neq 0$,

- **Axiom 14** $(P_{\leq 1}(\theta) \land P_{\leq s}(\phi \land \theta)) \rightarrow CP_{\leq \min(t,1)}(\phi, \theta), t \neq 0$

and inference rules:

- **Rule 1** modus ponens,

- **Rule 2** $\phi \over \forall x\phi$, $\phi \in \text{ForFOICP}$,
Rule 3 \[ \frac{\phi}{P_{\geq 1}(\phi)}, \phi \in \text{For}_{\text{FOICP}}, \]

Rule 4 \[ \frac{\Phi_k(CP_{\geq s-\frac{1}{n}}(\psi, \chi), (\theta_i)_{i<\omega})}{\Phi_k(CP_{\geq s}(\psi, \chi), (\theta_i)_{i<\omega})}, \text{for every integer } n \geq 1, \]

Rule 5 \[ \frac{\Phi_k(CP_{\leq s+\frac{1}{n}}(\psi, \chi), (\theta_i)_{i<\omega})}{\Phi_k(CP_{\leq s}(\psi, \chi), (\theta_i)_{i<\omega})}, \text{for every integer } n \geq 1. \]

Let us discuss the system $Ax_{\text{LFOICP}}$. The axioms 1–5 and the rules 1 and 2 correspond to the classical first-order reasoning, while the axioms 6–14 concern the probabilistic part of our system. Axiom 6 announces the nonnegativity and Axioms 7 and 8 the monotonicity of the conditional probability. Axiom 9 claims that $CP_{\geq s}(\phi, \theta)$ and $CP_{\leq 1-s}(-\phi, \theta)$ are equivalent if the condition has a positive probability. Axioms 10 and 11 correspond to the finite additivity of measures, while Axioms 12–14 describe the relationship between the conditional and absolute probability. Rule 3 is a form of modal necessitation. Rules 4 and 5 are the generalization of the infinitary rules which correspond to the Archimedean rule for real numbers, and do not occur in the previous papers.

**Definition 2.1.** $\phi \in \text{For}_{\text{FOICP}}$ is a theorem, which we denote by $\vdash \phi$, if there exists a denumerable sequence of formulas $\phi_0, \phi_1, \ldots, \phi$ called the proof, such that each member of the sequence is an instance of some axiom schemata or is obtained from the previous formulas using an inference rule.

$\phi$ is deducible from a set of sentences $T$ ($T \vdash \phi$) if there is an at most countable sequence of formulas $\phi_0, \phi_1, \ldots, \phi$ called the proof, such that each member of the sequence is an instance of some axiom schemata, or is contained in $T$ or is obtained from the previous formulas using an inference rule, with the exception that the inference rule 3 can be applied to the theorems only.

**Definition 2.2.** A theory $T$ is consistent if there is at least one formula from $\text{For}_{\text{FOICP}}$ which cannot be deduced from $T$. A theory $T$ is maximal consistent if it is consistent and for each $\phi \in \text{Sent}_{\text{FOICP}}$, either $\phi \in T$ or $\neg \phi \in T$.

The set of all formulas which are deducible from $T$ is called the deductive closure of $T$ and denoted by $Cn(T)$. A theory $T$ is deductively closed if $T = Cn(T)$.

**3. Soundness and completeness**

Some of the following results can be proved in the way analogous to ones presented in [4, 6, 7], so we emphasize only the main differences and new ideas.

**Theorem 3.1 (Soundness).** The axiomatic system $Ax_{\text{LFOICP}}$ is sound with respect to the class of $\text{LFOICP}_{\text{Meas}}$-models.

**Proof.** Axioms 4 and 5 are obviously valid (for the validity of the latter axiom the assumption about constant domains and rigidity of terms is essential), and it remains to prove, using the induction on $k$, that rule R4 produces a valid formula from a set of valid premises. In fact we are going to show that if in a world $w$ of some model $M$ for a given valuation $v$ holds $\Phi_k(CP_{\geq s-\frac{1}{n}}(\psi, \chi), (\theta_i)_{i<\omega})$, for every
Then: applied. If $σ$ then $T = 1$, meaning that for each world $W$ we conclude $(M, w, v) = (\Psi, \chi, (θ_i)_{i<ω})$, and for each $n \geq 1$, and

$$\text{Theorem 3.2 (Deduction theorem). If } T \text{ is a theory and } φ, ψ \in \text{Sent}_\text{LFOICP}^=, \text{then } T ∪ \{φ\} ⊢ ψ \text{ if and only if } T ⊢ φ → ψ.$$

The proof of Deduction theorem for LFOICP$^=$ differs from the proof of the corresponding theorem presented in [4, 5, 7] in the case when infinitary rules are applied. If $σ = Φ_k(CP_{\geq s}(ψ, \chi), (θ_i)_{i<ω})$ is obtained from $T ∪ \{φ\}$ using rule R4, then:

1. $T ∪ \{φ\} ⊢ θ_k → P_{≥1}(Φ_{k-1}(CP_{≥s−1}(ψ, \chi), (θ_i)_{i<ω}))$, for each integer $n \geq 1$
2. $T ⊢ (φ ∧ θ_k) → P_{≥1}(Φ_{k-1}(CP_{≥s−1}(ψ, \chi), (θ_i)_{i<ω}))$, for $n \geq 1$, by the induction hypothesis and using an instance of the classical propositional tautology $(p → (q → r)) ↔ ((p ∧ q) → r)$
   For $i ≠ k$ the sequence $(θ_i)_{i<ω}$ coincides with $(θ_i)_{i<ω}$, and $θ_k = φ ∧ θ_k$. Introducing that notation we obtain
3. $T ⊢ (φ ∧ θ_k) → P_{≥1}(Φ_{k-1}(CP_{≥s}(ψ, \chi), (θ_i)_{i<ω}))$, by the application of the rule R4 on 2
4. $T ⊢ φ → (θ_k → P_{≥1}(Φ_{k-1}(CP_{≥s}(ψ, \chi), (θ_i)_{i<ω})))$

The next corollary follows from several applications of the previous theorem, and makes more evident the necessity of imposing rigidness of terms.

**Corollary 3.1.** $x = y → P_{≥1}(x = y)$ is a theorem of LFOICP$^=$.

**Proof.** We deduce as follows:

1) ⊢ ∀x∀y(x = y → (P_{≥1}(x = x) ↔ P_{≥1}(x = y))) is an instance of A5,
2) ⊢ P_{≥1}(x = x) → (x = y ↔ P_{≥1}(x = y)), is obtained from 1) using A3 and Deduction theorem, and an instance of a propositional tautology $(p → (q → r)) ↔ ((q → p) → r)$,
3) ⊢ P_{≥1}(x = x), using A4, A3, Deduction theorem and R3,
5) ⊢ x = y → P_{≥1}(x = y), from 4) and 3) using Modus ponens. □

**Lemma 3.1.** a) For all $s, t \in [0, 1]_Q$ and $φ, θ ∈ \text{For}_\text{LFOICP}$, if $s ≤ t$, then

$$⊢ CP_{≥1}(φ, θ) → CP_{≥s}(φ, θ).$$
b) For all \( s, t \in [0, 1] \cup \{0\}, t \neq 0 \) and \( \phi, \theta \in \text{For}_{\text{FOICP}} \), holds \( \vdash (P_{\text{inv}}(\theta) \land P_{=s}(\phi \land \theta)) \rightarrow \text{CP}_{=\min(\epsilon, 1)}(\phi, \theta) \).

c) \( \vdash P_{=1}(\phi \rightarrow \theta) \rightarrow (P_{=s}(\phi) \rightarrow P_{=s}(\theta)) \) for all \( \phi, \theta \in \text{For}_{\text{FOICP}} \).

d) \( P_{=1}(\phi_1), P_{=1}(\phi_2) \vdash P_{=1}(\phi_1 \lor \phi_2) \land P_{=1}(\phi_1 \land \phi_2) \).

**Proof.** As an illustration we prove d), while the other statements are left to the reader. We deduce as follows:
1) \( \vdash P_{=1}(\phi_1 \rightarrow (\phi_1 \lor \phi_2)) \), applying Rule 3 to an instance of a propositional tautology,
2) \( \vdash P_{=1}(\phi_1 \rightarrow (\phi_1 \lor \phi_2)) \rightarrow (P_{=1}(\phi_1) \rightarrow P_{=1}(\phi_1 \lor \phi_2)) \), by c) of this lemma,
3) \( P_{=1}(\phi_1) \vdash P_{=1}(\phi_1 \lor \phi_2) \), from 1) and 2) using R1 and Deduction theorem,
4) \( \vdash P_{=1}(\phi_1 \rightarrow \neg P_{\leq 0}(\phi_1)) \), an instance of A9,
5) \( \vdash P_{<s}(\neg \phi_1) \rightarrow P_{<s}(\neg \phi_1 \land \phi_2) \), using similar arguments as above and contraposition,
6) \( P_{\leq 0}(\neg \phi_1) \vdash P_{<s}(\neg \phi_1), \) for every \( n \geq 0 \), by A8,
7) \( P_{\leq 0}(\neg \phi_1) \vdash P_{<s}(\neg \phi_1 \land \phi_2), \) for every \( n > 0 \), from 5) and 6), and by A7,
8) \( P_{\leq 0}(\neg \phi_1) \vdash P_{\leq 0}(\neg \phi_1 \land \phi_2), \) from 7) using R5,
9) \( \vdash P_{=1}(\neg \phi_1 \lor \phi_2) \lor (\phi_1 \land \phi_2)) \rightarrow (P_{\geq 0}(\neg \phi_1 \land \phi_2) \lor P_{>1}(\phi_1 \land \phi_2)) \), by A11 and contraposition,
10) \( \vdash P_{=1}(\phi_2) \rightarrow P_{=1}(\neg \phi_1 \land \phi_2) \lor (\phi_1 \land \phi_2) \), using the previous clause of this lemma,
11) \( P_{>1}(\phi_2) \vdash P_{>0}(\neg \phi_1 \land \phi_2) \lor P_{>1}(\phi_1 \land \phi_2) \), from 9) and 10),
12) \( P_{=1}(\phi_1) \vdash P_{\leq 0}(\neg \phi_1 \land \phi_2), \) from 4) and 8),
13) \( P_{=1}(\phi_1), P_{=1}(\phi_2) \vdash P_{=1}(\phi_1 \land \phi_2), \) from 11) and 12). \( \square \)

**Lemma 3.2.** Let \( T \) be a consistent theory. Then:

a) for every formula \( \phi \in \text{For}_{\text{FOICP}} \), either \( T \cup \{ \phi \} \) or \( T \cup \{ \neg \phi \} \) is consistent;
b) if \( \neg \Phi_k(\text{CP}_{\leq s}(\psi, \chi), (\theta_i)_{i<\omega}) \in T \), then there exists an integer \( n > \frac{1}{k} \) such that \( T \cup \{ \theta_k \rightarrow \neg \Phi_{k-1}(\text{CP}_{\leq s-\frac{1}{k}}(\psi, \chi), (\theta_i)_{i<\omega}) \} \) is consistent. Also, if \( \neg \Phi_k(\text{CP}_{\leq s}(\psi, \chi), (\theta_i)_{i<\omega}) \in T \), then there exists an integer \( n > \frac{1}{k} \) such that \( T \cup \{ \theta_k \rightarrow \neg \Phi_{k-1}(\text{CP}_{\leq s+\frac{1}{k}}(\psi, \chi), (\theta_i)_{i<\omega}) \} \) is a consistent theory.

**Definition 3.1.** A set \( T \) of formulas is saturated if for each formula of the form \( \neg (\forall x) \phi(x) \) which is contained in \( T \) there exists a term \( t \) such that \( \neg \phi(t) \in T \).

In order to prove the completeness theorem, the following theorem that states that every consistent theory \( T \) can be extended to a saturated maximal consistent theory \( T^* \) in some broader language is needed.

**Theorem 3.3.** Let \( T \) be a consistent set of sentences in the first-order probability language \( \mathcal{L} \), and \( C \) a countably infinite set of new constant symbols. Then \( T \) can be extended to a saturated maximal consistent theory \( T^* \) in the language \( \mathcal{L}^* = \mathcal{L} \cup C \).

**Proof.** Let \( \phi_0, \phi_1, \ldots \), be an enumeration of all sentences in \( \mathcal{L}^* \). We define a sequence of theories \( T_i, i \in \omega \) as follows:
1) \( T_0 = T \),
2) if $T_i \cup \{ \phi_i \}$ is consistent, then $T_{i+1} = T_i \cup \{ \phi_i \}$, otherwise $T_{i+1} = T_i \cup \{ \neg\phi_i \}$.
3) if the set $T_{i+1}$ is obtained by adding a formula of the form $\neg(\forall x)\psi(x)$ to the set $T_i$, then for some $c \in C$ which does not occur in any of the formulas $\phi_0, \ldots, \phi_i$, we add $\neg\psi(c)$ to $T_{i+1}$ such that $T_{i+1}$ remains consistent.
4) if a formula of the form $\neg\Phi_k(CP_{\geq s}(\psi, \chi), (\theta_i)_{i<\omega})$ is added, then for some positive integer $n$, $\theta_n \rightarrow \neg\Phi_{k-1}(CP_{\geq s-1}(\psi, \chi), (\theta_i)_{i<\omega})$ is also added to $T_{i+1}$, so that $T_{i+1}$ is consistent.
5) if a formula of the form $\neg\Phi_k(CP_{\geq s}(\psi, \chi), (\theta_i)_{i<\omega})$ is added, then for some positive integer $m$, $\theta_m \rightarrow \neg\Phi_{k-1}(CP_{\geq s+1}(\psi, \chi), (\theta_i)_{i<\omega})$ is also added to $T_{i+1}$, so that $T_{i+1}$ is consistent.
6) $T^* = \bigcup_{i<\omega} T_i$.

$T^*$ has required properties. $\square$

The next corollary summarizes some obvious properties of saturated maximal consistent theories.

**Corollary 3.2.** Let $T$ be a saturated maximal consistent theory in $\mathcal{L}$ and $\phi, \psi \in \text{Sent}_\mathcal{L}$. Then:

a) if $T \vdash \phi$, then $\phi \in T$, i.e. every saturated maximal consistent theory is deductively closed;

b) if $t = \sup\{r \mid P_{\geq r}(\phi) \in T\}$ and $t \in [0, 1]_\mathbb{Q}$, then $P_{\geq t}(\phi), P_{<t}(\phi) \in T$.

**Definition 3.2.** A cut theory $P_T$ corresponding to a theory $T$ in the language $\mathcal{L}$ is the set of sentences $P_T = \{ \phi \in \text{Sent}_{\text{FOICP}} \mid P_{\geq 1}(\phi) \in T\}$.

**Lemma 3.3.** If $P_T \vdash \psi$, then $T \vdash P_{\geq 1}(\psi)$.

**Proof.** We use the transfinite induction on the length of the proof for $\psi$ from $P_T$. If the proof is finite $\psi_1, \ldots, \psi_l, \psi$ and $T \vdash P_{\geq 1}(\psi_i)$ for each $i = 1, \ldots, l$, then:

1) $\psi_1 \land \ldots \land \psi_l \vdash \psi$
2) $\vdash P_{\geq 1}(\psi_1 \land \ldots \land \psi_l) \rightarrow \psi)$, by Rule 3
3) $\vdash P_{\geq 1}(\psi_1 \land \ldots \land \psi_l) \rightarrow P_{\geq 1}(\psi)$, by Lemma 3.1
4) $P_{\geq 1}(\psi_1 \land \ldots \land \psi_l) \vdash P_{\geq 1}(\psi)$, from 2) and 3) using R1 and Deduction theorem
5) $P_{\geq 1}(\psi_1), \ldots, P_{\geq 1}(\psi_l) \vdash P_{\geq 1}(\psi_1 \land \ldots \land \psi_l)$, by Lemma 3.1
6) $T \vdash P_{\geq 1}(\psi)$

We consider the case when the proof is infinite $\psi_1, \ldots, \psi$. Suppose that some $\psi_j$ is of the form $\Phi_k(CP_{\geq s}(\psi, \chi), (\theta_i)_{i<\omega})$, and is obtained by an application of infinitary rule R4 to formulas $\Phi_k(CP_{\geq s-\frac{1}{n}}(\psi, \chi), (\theta_i)_{i<\omega})$, $n \geq 1$, which occur in the proof sequence before $\psi_j$. Thus, by the induction hypothesis, we have that $T \vdash P_{\geq 1}(\Phi_k(CP_{\geq s-\frac{1}{n}}(\psi, \chi), (\theta_i)_{i<\omega}))$ for every $n \geq 1$, and since $(T \rightarrow p) \leftrightarrow p$ is a tautology, using R4, we conclude $T \vdash P_{\geq 1}(\psi)$. $\square$

The canonical model $M$ for a consistent theory $T$ is defined as follows. From the set $\mathcal{T}$ of all maximal saturated extensions in the expanded language $\mathcal{L}^*$ we pick one which is an extension of $T$, denote it by $T_1$, and set that the world $w_1$ is $T_1$. Note
that $P_{T_1}$ is a consistent theory, since $\top$, $P_{\geq 1}(\top)$, $P_{\geq 1}(\top) \iff P_{\leq 0}(\bot)$ are contained in every maximal theory, $T_1$ included, and $P_{T_1} \vdash \bot$ would imply $T_1 \vdash P_{\geq 1}(\bot)$ contradicting consistency of $T_1$. The corresponding probability space $\text{Prob}(w_1)$ is determined with

$$W(w_1) = \{ T^* \in T \mid P_{T_1}^c \subseteq T^* \}, \quad \phi_{w_1} = \{ u \in W(w_1) \mid \phi \in u \},$$

$$H(w_1) = \{ [\phi]_{w_1} \mid \phi \in \text{Sent}_L \}, \quad \mu(w_1)([\phi]_{w_1}) = \{ s \mid P_{\geq s}(\phi) \in w_1 \}.$$  

For each element from $W(w_1)$ we proceed with this procedure and so on. Let $\mathcal{C}$ be the set of all constants from $L^\ast$. The relation $\sim$ on $\mathcal{C}$ is defined by $c_i \sim c_j$ iff $T_1 \vdash c_i = c_j$, is an equivalence relation. Domain of the canonical model is $D = \mathcal{C}/\sim$ and its elements are classes of equivalence $c^\ast$. For $w \in W$, $I(w)$ is an interpretation such that:

- for every symbol of constant $c_j$, $I(w)(c_j) = c^\ast$ iff $c_j = c \in w$,
- for every function symbol $F^m_i$, $I(w)(F^m_i)$ is a function from $D^m$ to $D$ mapping $(c_1^1, \ldots, c_m^1)$ to $c_{m+1}^j$ iff $F^m_i(c_1, \ldots, c_m) = c_{m+1} \in w$,
- for every relation symbol $R^m_i$

$$I(w)(R^m_i) = \{(c_1^1, \ldots, c_m^1) \in D^m \mid R^m_i(c_1, \ldots, c_m) \in w\}.$$  

Corollary 1 guarantees that terms are rigidly interpreted, cause $t_1 = t_2 \in T_1$, $\vdash t_1 = t_2 \rightarrow P_{\geq 1}(t_1 = t_2)$ implies $t_1 = t_2 \in P_{T_1}^c$. It remains to be proved that $M = \langle W, D, I, \text{Prob} \rangle$ is really an LFOICP$_{\text{Meas}}$-model showing that $H(w)$ is an algebra of subsets of $W(w)$, $\mu(w)$ is a finitely additive measure, and $(M, w) \models \phi$ iff $\phi \in w$. Here we provide the proof for one fact, namely we prove that $[\phi]_w \subseteq [\psi]_w$ implies $\mu(w)([\phi]_w) \leq \mu(w)([\psi]_w)$. For every $u \in W(w)$, if $\phi \in u$ then $\psi \in u$, and since $u$ is a maximal theory, it means that $\phi \rightarrow \psi \in u$. Thus, $P_w^- \cup \{ \neg(\phi \rightarrow \psi) \}$ is not a consistent theory, and according to Deduction theorem $P_w^- \vdash \phi \rightarrow \psi$. Using Lemma 3.3 we obtain $w \vdash P_{\geq 1}(\phi \rightarrow \psi)$, and by Lemma 3.1 and Deduction theorem $w \vdash P_{\geq s}(\phi) \rightarrow P_{\geq s}(\psi)$. We summarize these facts in two following lemmas:

**Lemma 3.4.** Let $M = \langle W, D, I, \text{Prob} \rangle$ be as above, $w \in W$ and let $\phi, \psi$ be sentences from $\text{Sent}_{\text{FOICP}}$. Then, the following hold:

a) $H(w)$ is an algebra of subsets of $W(w)$,

b) if $[\phi] = [\psi]$, then $\mu(w)([\phi]) = \mu(w)([\psi])$,

c) if $[\phi] = [\psi]$, then $P_{\geq s}(\phi) \in w$ iff $P_{\geq s}(\psi) \in w$, and $P_{\leq s}(\phi) \in w$ iff $P_{\leq s}(\psi) \in w$,

d) $\mu(w)$ is a finitely additive measure.

**Lemma 3.5.** $M = \langle W, D, I, \text{Prob} \rangle$, defined as above, is an LFOICP$_{\text{Meas}}$-model.

**Theorem 3.4** (Extended completeness theorem for LFOICP$_{\text{Meas}}$). A theory $T$ is consistent if and only if it has an LFOICP$_{\text{Meas}}$-model.

**Proof.** The direction from right to left follows from the soundness theorem. The theory $T$ can be extended to some saturated maximal consistent theory $w$ in the expanded language $L^\ast$, and for the canonical model $M$ holds $(M, w) \models T$.  \( \Box \)
Theorem 3.5 (Extended completeness theorem for LFOICP_{\text{All}}). A theory $T$ is consistent if and only if it has an LFOICP_{\text{All}-model}.

Proof. Applying the extension theorem for additive measures from [5], it is possible to obtain finitely additive measures on the power set of $W$ whose restrictions are $\mu(w)$ from the weak canonical model $M$. □

References