ON A CONVERGENT PROCESS OF BERNSTEIN

László Szili and Péter Vértesi

Abstract. Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.

1. Introduction. Preliminary results

1.1. In 1930, Bernstein [1] (cf. [2], too) defined the following convergent interpolatory process on the roots of

\[T_n(x) = \cos(n \arccos x) = \cos n \vartheta, \quad -1 \leq x \leq 1, \quad 0 \leq \vartheta \leq \pi, \quad n = 1, 2, \ldots \]

(Chebyshev polynomials); the roots are

\[x_{kn} = \cos \vartheta_{kn} = \cos \frac{2k - 1}{2n} \pi, \quad k = 1, 2, \ldots, n; \quad n = 1, 2, \ldots. \]

Let \(l, q \) be natural numbers; for simplicity we suppose that \(n = 2lq \). We divide the nodes into \(q \) rows as follows.

\[
\begin{align*}
&x_{1n} & &x_{2n} & &\cdots & &x_{2l,n} \\
x_{2l+1,n} & &x_{2l+2,n} & &\cdots & &x_{4l,n} \\
&\vdots & &\vdots & &\vdots & &\vdots \\
x_{2l(q-1)+1,n} & &x_{2l(q-1)+2,n} & &\cdots & &x_{2lq,n}
\end{align*}
\]

If \(f \in C \) (the set of continuous functions on \([-1, 1])\) and

\[\ell_{kn}(T, x) = \frac{T_n(x)}{T_n(x_{kn})(x - x_{kn})}, \quad k = 1, 2, \ldots, n; \quad n = 1, 2, \ldots \]

are the Lagrange fundamental polynomials based on (1.1) we define the following interpolatory polynomials \(Q_{nl} \) if \(l = 1, 2 \) and 3.

\[Q_{n1}(f, x) = Q_{n1}(f) = \left\{ f_1(\ell_1 + \ell_2) \right\} + \left\{ f_2(\ell_3 + \ell_4) \right\} + \left\{ f_3(\ell_5 + \ell_6) \right\} + \cdots + \left\{ f_{n-1}(\ell_{n-1} + \ell_n) \right\}, \]

2010 Mathematics Subject Classification: 41A05.

Key words and phrases: interpolation, Bernstein process, Jacobi roots.

Dedicated to Professor Giuseppe Mastroianni on the occasion of his retirement.
(1.3) \[Q_{n2}(f, x) \equiv Q_{n2}(f) \]
\[= \{ f_1(t_1 + \ell_4) + f_2(\ell_2 - \ell_4) + f_3(\ell_3 + \ell_4) \} \]
\[+ \{ f_5(\ell_5 + \ell_8) + f_6(\ell_6 - \ell_8) + f_7(\ell_7 + \ell_8) \} \]
\[+ \{ f_9(\ell_9 + \ell_{12}) + f_{10}(\ell_{10} - \ell_{12}) + f_{11}(\ell_{11} + \ell_{12}) \} + \ldots \]
\[+ \{ f_{n-3}(\ell_{n-3} + \ell_n) + f_{n-2}(\ell_{n-2} - \ell_n) + f_{n-1}(\ell_{n-1} + \ell_n) \} \],

(1.4) \[Q_{n3}(f, x) \equiv Q_{n3}(f) \]
\[= \{ f_1(t_1 + \ell_6) + f_2(\ell_2 - \ell_6) + f_3(\ell_3 + \ell_6) + f_4(\ell_4 - \ell_6) + f_5(\ell_5 + \ell_6) \} \]
\[+ \{ f_7(\ell_7 + \ell_6) + f_8(\ell_8 - \ell_12) + f_9(\ell_9 + \ell_12) \}
\[+ f_{10}(\ell_{10} - \ell_12) + f_{11}(\ell_{11} + \ell_12) \} + \ldots \]
\[+ \{ f_{n-5}(\ell_{n-5} + \ell_n) + f_{n-4}(\ell_{n-4} - \ell_n) + f_{n-3}(\ell_{n-3} + \ell_n) \}
\[+ f_{n-2}(\ell_{n-2} - \ell_n) + f_{n-1}(\ell_{n-1} + \ell_n) \} \].

The definitions for \(l \geq 4 \) are analogous:

(1.5) \[Q_{nl}(f, x) \equiv Q_{nl}(f) \]
\[= \{ f_1(t_1 + \ell_2l) + f_2(\ell_2 - \ell_2l) + \ldots + f_{2l-1}(\ell_{2l-1} + \ell_2l) \} + \]
\[+ \{ f_{2l+1}(\ell_{2l+1} + \ell_{2l}) + f_{2l+2}(\ell_{2l+2} - \ell_{2l}) + \ldots + f_{4l-1}(\ell_{4l-1} + \ell_4l) \} + \ldots \]
\[+ \{ f_{n-(2l-1)}(\ell_{n-(2l-1)} + \ell_n) + \ldots + f_{n-1}(\ell_{n-1} + \ell_n) \} . \]

You may consult with \cite{1} or \cite{2} (above \(f_k = f(x_{kn}) \) and \(\ell_k \equiv \ell_{kn}(T, x) \); moreover \(q \) is large enough).

If \(N = n + r, n = 2lq, 0 < r < 2l \), the definition of \(Q_{Nl} \) is as follows (cf. \cite{1} or \cite{2})
\[Q_{Nl}(f) := Q_{nl}(f) + \sum_{k=n+1}^{N} f_k \ell_k. \]

1.2. By the above definitions we have with \(e_0(x) \equiv 1 \)

(1.6) \[Q_{nl}(e_0, x) \equiv \sum_{k=1}^{n} \ell_{kn}(T, x) \equiv 1, \]

(1.7) \[Q_{nl}(f, x_{kn}) = f(x_{kn}) \quad \text{if} \quad k \neq 2l, 4l, \ldots, 2lq, \]

i.e. \(Q_{nl} \) interpolates at \(n - q = 2lq - q \) nodes. This number is "very close" to \(n \) if the (fixed) \(l \) is large enough while \(q \) (and \(n \), too) tends to infinity, i.e., for large \(l \) our \(Q_{nl} \) is "very close" to the Lagrange interpolation \(L_{n} \). However, \(Q_{nl} \) converges for every \(f \in C \), when \(n \to \infty \) (cf. Proposition 1.1 and Theorem 2.1), which generally does not hold for \(L_{n} \).

Later we use that (1.6) and (1.7) hold true for arbitrary point system.
1.3. In [1] Bernstein proved

Proposition 1.1. Let \(l \) be a fixed positive integer and \(f \in C \). Then

\[
\lim_{n \to \infty} \|f(x) - Q_{nl}(f, x)\| = 0.
\]

Above, \(\|g(x)\| = \max_{|x| \leq 1} |g(x)|, \) \(g \in C \). Actually, he proved for \(N = n + r \), too; the case when \(N = n + r \) demands only small technical changes in the proof.

1.4. The Bernstein process and its generalizations were exhaustively investigated by Kis (sometimes with coauthors). For more details we suggest the papers [6, 7, 8] and references therein.

2. The Bernstein process for Jacobi abscissas

2.1. The aim of this note is to prove a statement similar to Proposition 1.1 for Jacobi roots. Let the Jacobi polynomials \(P_n^{(\alpha, \beta)}(x) \) be defined by

\[
(1 - x)^{\alpha} (1 + x)^{\beta} P_n^{(\alpha, \beta)}(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left[(1 - x)^{\alpha + n} (1 + x)^{\beta + n} \right] \quad (\alpha, \beta > -1).
\]

For the roots \(x_{k_1}^{(\alpha, \beta)} = \cos \vartheta_{k_1}^{(\alpha, \beta)}, 0 < \vartheta_{k_1}^{(\alpha, \beta)} < \pi, \) of \(P_n^{(\alpha, \beta)}(x) \) we have

\[
-1 < x_{\alpha, \beta}^{(\alpha, \beta)} < x_{\alpha, \beta}^{(\alpha, \beta)} < \cdots < x_{\alpha, \beta}^{(\alpha, \beta)} < 1.
\]

Let

\[
\ell_{k_1}^{(\alpha, \beta)}(x) = \frac{P_n^{(\alpha, \beta)}(x)}{P_n^{(\alpha, \beta)}(x_{k_1})}(x_{k_1} - x_{k_1}).
\]

For a fixed positive integer \(l \), we define \(Q_{nl}^{(\alpha, \beta)}(f, x) \) according to (1.2)–(1.5); now \(\ell_k \) and \(f_k \) stand for \(\ell_k^{(\alpha, \beta)}(x) \) and \(f(x_{\alpha, \beta}^{(\alpha, \beta)}) \), respectively. As we noticed we have the properties analogous to (1.6) and (1.7) for \(Q_{nl}^{(\alpha, \beta)}(f, x) \), too.

2.2. We prove (compare with Vétesi [3] dealing with Lagrange interpolation)

Theorem 2.1. Let \(l \) be a fixed positive integer, \(n = 2\ell q \) \((q = 1, 2, \ldots) \) and \(f \in C \). Then

\[
\lim_{n \to \infty} \|f(x) - Q_{nl}^{(\alpha, \beta)}(f, x)\| = 0
\]

for any processes \(Q_{nl}^{(\alpha, \beta)} \) supposing \(-1 < \alpha, \beta < 0.5\).

Our statement follows from the next more informative pointwise estimations (compare with the result in Vétesi [4] on Lagrange interpolation).

Theorem 2.2. Let \(l \) be fixed natural number. Then for arbitrary fixed \(\alpha, \beta > -1 \) and \(f \in C \)

\[
\left| Q_{nl}^{(\alpha, \beta)}(f, x) - f(x) \right| = O(1) \sum_{i=1}^{n} \omega \left(f; \frac{\sqrt{1 - x^2}}{n^2} - \frac{x^2}{n^2} \right) \frac{1}{i^\gamma}
\]

uniformly in \(n \) and \(x \in [-1, 1] \), where \(\gamma = \min(2; 1.5 - \alpha; 1.5 - \beta) \). \((\omega(f; t) \) is the modulus of continuity of \(f(x) \).)
2.3. It is easy to get (2.1) using Theorem 2.2. Indeed, let

\[\varepsilon_n = \begin{cases} \frac{1}{4} \log n & \text{if } -1 < \alpha, \beta \leq -0.5, \\ n^\delta & \text{if } \max(\alpha, \beta) =: \delta > -0.5. \end{cases} \]

We have by (2.2)

\[\|Q_{nl}(f, x) - f(x)\| = O(1)\omega(f; \varepsilon_n) \]

if \(f \in C \), whence we obtain (2.1).

2.4. Another consequence of Theorem 2.2 is the following

Corollary 2.1. If \(-1 < \alpha, \beta \leq -0.5 \) and \(\omega(f; t) \sim t^\varrho \) \((0 < \varrho < 0.5) \) then for \(f \in C \)

\[|Q_{nl}(f, x) - f(x)| = O(1)\left[\left(\frac{1}{n} \sqrt{1 - x^2} \right)^\gamma + \frac{1}{n^\gamma} \right] \]

uniformly for \(n \) and \(|x| \leq 1 \). This formula of Timan type can be obtained by simple calculation.

Other estimations showing the connections between the parameters \(\gamma \in (0, 2] \) and \(\varrho \in (0, 1] \) are as follows

\[|Q_{nl}(f, x) - f(x)| = O(1) \left\{ \begin{array}{ll} \left(\frac{1}{n} \sqrt{1 - x^2} \right)^\gamma & \text{if } 0 < \varrho < \frac{1}{2}(\gamma - 1), \\ n^{-2\varrho} \log n & \text{if } \varrho = \frac{1}{2}(\gamma - 1), \\ n^{\gamma - 1} & \text{if } \frac{1}{2}(\gamma - 1) < \varrho < \gamma - 1; \end{array} \right. \]

uniformly for \(n \) and \(|x| \leq 1 \). These formulae can be obtained by simple calculation.

2.5. It is interesting to compare (2.2) to

\[|H_n^{(\alpha, \beta)}(f; x) - f(x)| = O(1) \sum_{i=1}^{n} \omega \left(f; \frac{1}{n} \sqrt{1 - x^2} i + \frac{1}{n^2} i^{2\gamma - 1} \right) (x \in [-1, 1]) \]

where \(H_n^{(\alpha, \beta)}(f; x) \) is the Hermite–Fejér interpolatory polynomial of degree \(\leq 2n - 1 \) defined by \(H_n^{(\alpha, \beta)}(f; x_{kn}^{(\alpha, \beta)}) = f(x_{kn}^{(\alpha, \beta)}) \), \(H_n^{(\alpha, \beta)}(f; x_{kn}^{(\alpha, \beta)}) = 0 \) \((k = 1, 2, \ldots, n), f \in C \) and \(\eta = \max\{-0.5, \alpha, \beta\} \) (see [5, 2.1]).

3. Proof of Theorem 2.2

We apply the main idea from [4]. Let \(x = \cos \vartheta, x \in [-1, 1], \vartheta \in [0, \pi] \) and define the index \(j = j(n) \) by \(\min_{1 \leq k \leq n} |x - x_{kn}^{(\alpha, \beta)}| = |x - x_{jn}^{(\alpha, \beta)}| \).
3.1. First let \(l = 1 \). By (1.5) and (1.6) we can write

\[
Q_{nl}^{(\alpha, \beta)}(f, x) - f(x) = \sum_{k=1}^{q} \left\{ f(x_{2k-1}^{(\alpha, \beta)}) - f(x) \right\} \left(\ell_{2k-1}^{(\alpha, \beta)}(x) + \ell_{2k}^{(\alpha, \beta)}(x) \right)
\]

\[
= \sum_{k=1}^{q} \cdots + \sum_{k>q} \cdots = \sum_{l} + \sum_{II}.
\]

Now we use Lemma 4.1 of [3], which says the following: Let \(-1 < \alpha, \beta \) and \(\varepsilon, \eta > 0 \) be fixed. If \(k \geq M, \) \(\theta_{kn}^{(\alpha, \beta)} \leq \pi - \varepsilon, \) then for any \(x \in [-1 + \eta, 1] \) we have

\[
|\ell_{kn}^{(\alpha, \beta)}(x) + \ell_{k+1,n}^{(\alpha, \beta)}(x)| = O(1) \left| \ell_{kn}^{(\alpha, \beta)}(x) \right| \left[\frac{1}{k} + \frac{k}{(k+j)(|k-j|+1)} \right]
\]

uniformly in \(x \) and \(k \).

We note that instead of \(\ell_{kn}^{(\alpha, \beta)}(x) \) of [3] one can write \(\ell_{k+1,n}^{(\alpha, \beta)}(x) \). Moreover (3.2) obviously holds true if \(1 \leq k \leq M \) (maybe with another \(O(1) \)).

From (3.1) with obvious short notations we have

\[
\sum_{l} = O(1) \sum_{k=1}^{q} |f(x_{2k-1}) - f(x)|
\]

\[
\times \left(|\ell_{2k-1}(x)| \left[\frac{1}{2k-1} + \frac{2k-1}{(2k-1+j)(|2k-1-j|+1)} \right] \right)
\]

if \(\alpha, \beta > -1 \) and \(\varepsilon, \eta > 0 \) are fixed.

By (3.3) we get as in [3]: If \(\gamma = \min(2; 1.5 - \alpha; 1.5 - \beta) \), then

\[
\sum_{k=1}^{n-1} |f(x_{2k-1}) - f(x)| |\ell_{2k-1}(x) + \ell_{2k}(x)| = O(1) \sum_{i=1}^{n} \omega \left(f; \frac{\sin \frac{i}{n}}{n \frac{i^2}{n^2}} \right) \frac{1}{i^{\gamma}}
\]

uniformly in \(x \in [-1, 1]; \) see [3] 4.10, where \(\sum |f - f_k| |\ell_k^{k-1}| \) (which by (3.2), is analogous to \(\sum |f - f_k| |\ell_k + \ell_{k+1}| \)) is estimated.

Let us remark that getting (3.1) we have to define \(J = [\varrho_{j+1,n}^{(\alpha, \beta)}, \varrho_{j+1,n}^{(\alpha, \beta)}] \) and for \(r = 1, 2, \ldots \)

\[
I_r = [\varrho_{j-r,n}^{(\alpha, \beta)}, \varrho_{j-r,n}^{(\alpha, \beta)}], \quad K_r = [\varrho_{j+2r-1,n}^{(\alpha, \beta)}, \varrho_{j+2r,n}^{(\alpha, \beta)}]
\]

instead of the definition (4.2) of [4].

From the above formulas we obtain our theorem for \(l = 1 \).

3.2. Now let \(l = 2 \). By (1.3) and (1.6) we get

\[
Q_{n2}(f) - f = \{(f_1 - f)(\ell_1 + \ell_4) + (f_2 - f)(\ell_2 - \ell_4) + (f_3 - f)(\ell_3 + \ell_4)\}
\]

\[
+ \{(f_5 - f)(\ell_5 + \ell_8) + (f_6 - f)(\ell_6 - \ell_8) + (f_7 - f)(\ell_7 + \ell_8)\}^1_2 + \cdots.
\]
In $\{\cdots\}_1$,
\[
|\ell_1 + \ell_4| = |(\ell_1 + \ell_2) - (\ell_2 + \ell_3) + (\ell_3 + \ell_4)| \leq |\ell_1 + \ell_2| + |\ell_2 + \ell_3| + |\ell_3 + \ell_4| \\
\leq c \sum_{k=1}^3 |\ell_k(x)| \left(\frac{1}{k} + \frac{k}{|k + j|(|k - j| + 1)} \right) \\
\leq c \left\{ |\ell_s(x)| \left[\frac{1}{s} + \frac{s}{|s + j|(|s - j| + 1)} \right] \right\}_{s=k=1}.
\]

Here we used \(3.2\) and that $|\ell_k(x) \cdot \ell_{k+1}^{-1}| \sim 1$ for any k whenever $0 \leq m \leq C$.

Similar considerations are valid for the second term in $\{\cdots\}_1$ by $\ell_2 - \ell_4 = (\ell_2 + \ell_3) - (\ell_3 + \ell_4)$.

Taking into account that $|f_k - f| \leq c\omega \left(\frac{\sin \vartheta}{n} i + \frac{i^2}{n^2} \right)$ whenever $i = |k - j| + m$ (see \(4.4\)); $0 \leq m \leq C$), we get that
\[
|\{\cdots\}_1| \leq c\omega \left(\frac{\sin \vartheta}{n} i + \frac{i^2}{n^2} \right) \left(|\ell_s(x)| \left[\frac{1}{s} + \frac{s}{|s + j|(|s - j| + 1)} \right] \right)_{s=1}.
\]

Using this last estimation and similar ones for $\{\cdots\}_2, \{\cdots\}_3, \ldots$, we can get \(3.4\).

If $l > 2$, the argument is similar. We may omit the further details. \(\square\)

Acknowledgement. The authors thank the referee for the careful work. Some of the referee’s advices are in the paper.

References

Department of Numerical Analysis, Loránd Eötvös University
Budapest, Hungary
szili@caesar.elte.hu

Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences
Budapest, Hungary
veter@renyi.hu