ON A SUBCLASS OF MULTIVALENT CLOSE TO CONVEX FUNCTIONS

Muhammad Arif, Muhammad Ayaz, and Janusz Sokół

Abstract. We introduce a new subclass of multivalent close to convex functions related with Janowski functions and study some of their properties: coefficient estimates, inclusion and inverse inclusion, distortion problems and sufficiency criteria to be in these subclasses.

1. Introduction

Let \(\mathcal{A}(p) \) denote the class of functions \(f(z) \) which are analytic and \(p \)-valent in the region \(\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\} \) and normalized by the condition

\[
f(z) = z^p + \sum_{k=1}^{\infty} a_{k+p} z^{k+p}, \quad (z \in \mathbb{U}).
\]

We write \(\mathcal{A}(1) = \mathcal{A} \). Robertson introduced in \([9]\) the class \(\mathcal{S}^*(\alpha) \) of starlike functions of order \(\alpha \leq 1 \), which are defined by

\[
\mathcal{S}^*(\alpha) := \left\{ f \in \mathcal{A} : \Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad z \in \mathbb{U} \right\}.
\]

By \(\mathcal{S}^* = \mathcal{S}^*(0) \) we denote the subclasses of \(\mathcal{A} \) which consist of univalent starlike functions. An important subclass of analytic functions is the class \(\mathcal{K} \) of close-to-convex functions

\[
\mathcal{K} = \left\{ f \in \mathcal{A} : \exists \beta \in \mathbb{R}, \exists g \in \mathcal{S}^* : \Re \left\{ \frac{zf'(z)}{e^{\beta}g(z)} \right\} > 0, \quad z \in \mathbb{U} \right\}.
\]

Each close-to-convex function is univalent in the unit disc. For two functions \(f(z) \) and \(g(z) \) analytic in \(U \), we say that \(f(z) \) is subordinate to \(g(z) \), denoted by \(f(z) \prec g(z) \), if there is an analytic function \(w(z) \) with \(|w(z)| \leq |z| \) such that \(f(z) = g(w(z)) \). If \(g(z) \) is univalent, then \(f(z) \prec g(z) \) if and only if \(f(0) = g(0) \) and \(f(U) \subset g(U) \).

2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C10, 47B38.
Key words and phrases: close-to-convex functions, Janowski functions, multivalent functions, subordination, starlike functions.
Communicated by Stevan Pilipović.

161
In [11] Sakaguchi introduced the class S^*_a of starlike functions with respect to symmetric points; a function $f(z) \in \mathcal{A}$ belongs to the class S^*_a, if and only if
\[
\frac{zf'(z)}{f(z) - f(-z)} \prec \frac{1 + z}{1 - z}, \quad (z \in \mathbb{U}).
\]
One can easily obtain that the function $(f(z) - f(-z))/2$ is starlike in \mathbb{U} and therefore the functions in S^*_a are close-to-convex. Motivated from Sakaguchi’s work, Gao and Zhou [3] introduced a class K_a. A function $f(z) \in \mathcal{A}$ belongs to the class K_a if it satisfies the subordination
\[
-z^2 f'(z) \prec g(z)g(-z), \quad (z \in \mathbb{U}),
\]
for some $g(z) \in S^*(1/2)$.

In [6] it was introduced the class $K_\gamma(\gamma)$ of functions satisfying
\[
(1.2)
\]
\[
-z^2 f'(z) \prec g(z)g(-z), \quad (z \in \mathbb{U}),
\]
The class $K_\gamma(\gamma)$ has been generalized in several directions, see the references in [7]. Recently, Xu, Srivastava and Li considered in [15] the class $K_\gamma(h)$ of functions satisfying (1.2) with a convex function h instead of q_γ. Şeker introduced in [12] the class $K_\gamma^a(\gamma)$, $k > 1$, of functions defined by (1.2) with
\[
-z^{2-k} \prod_{\nu=0}^{k-1} e^{-\nu} g(e^{\nu} z), \quad g \in S^*((k-1)/k),
\]
instead of $g(z)g(-z)$. Moreover, Wang, Sun and Xu introduced in [14] the class \mathcal{M}_K of meromorphic functions satisfying (1.2) with $\gamma = 1$. See also the references in [14] for the other papers in this topic.

If $f \in A(p)$, $\alpha < 1$ and $\Re \frac{zf'(z)}{f(z)} > p\alpha$, $z \in \mathbb{U}$, then we say that f is in the class $S^*_p(\alpha)$ of p-valent starlike functions of order α. Using the techniques of subordination, we now introduce a subclass of p-valent analytic functions as follows.

Definition 1.1. A function $f(z) \in A(p)$ is said to be in the class $\mathcal{W}_p(t, \lambda, A, B)$, $0 < |t| \leq 1$, $-1 < B < A \leq 1$ and $\lambda \in (0,1)$, if it satisfies
\[
(1.3)
\]
\[
\frac{p z^{p+1} f'(z)}{pg(z)g(tz)} \prec q(z) := \frac{1 + Az}{1 + Bz}
\]
for some $g(z) \in S^*_p(1/2)$ and $F_\lambda(z)$ is defined by $F_\lambda(z) = (1 - \lambda)f(z) + \frac{\lambda}{p} z f'(z)$.

In the literature, various interesting subclasses of this class have been studied from a number of different view points. For example: if we set $t = -1$, $p = 1$ and $\xi = 0$ in Definition [11] we get the class $\mathcal{W}_1(-1, \lambda, A, B) \equiv K_\lambda(\lambda, A, B)$ which was studied recently by Wang and Chen [13] and further for $\lambda = 0$, $A = 1 - 2\gamma$ and $B = -1$, we obtain the class $K_\gamma(\gamma)$ introduced in [6]. For more details of the related work see [11, 12, 4, 8, 12, 15].

The main object of the present paper is to introduce a subclass of p-valent analytic functions and then investigate some useful results including the coefficient...
estimate, sufficiency criteria to be in a class, distortion problem, radius of convexity and inclusion relationship for the new defined class.

To avoid repetition, we shall assume, unless otherwise stated, that \(\lambda \in (0, 1] \), \(-1 \leq B < A \leq 1 \), and \(0 < |t| \leq 1 \).

2. Some properties of the class \(W_p(t, \lambda, A, B) \)

Theorem 2.1. Let \(g_i(z) \in S^*_{p_i}(\alpha_i) \) with \(\alpha_i < 1 \). Then

\[
G(z) = \frac{g_1(t_1 z)g_2(t_2 z)}{t_1^\gamma t_2^\gamma z^\gamma} \in S^*_p(\gamma),
\]

where \(\gamma = \alpha_1 + \alpha_2 - 1 \) and \(0 < |t_i| \leq 1, i = 1, 2 \).

Proof. Let \(g_i(z) \in S^*_p(\alpha_i) \). Then by definition we have

\[
\text{Re} \left(\frac{t_1 z g_1'(t_1 z)}{g_1(t_1 z)} > p_{\alpha_1}, \quad \text{Re} \left(\frac{t_2 z g_2'(t_2 z)}{g_2(t_2 z)} > p_{\alpha_2}, \quad |z| < 1, \ 0 < |t_i| \leq 1.\right.
\]

By logarithmic differentiating (2.1), we obtain that

\[
\frac{zG'(z)}{G(z)} = \frac{t_1 z g_1'(t_1 z)}{g_1(t_1 z)} + \frac{t_2 z g_2'(t_2 z)}{g_2(t_2 z)} - 1.
\]

It follows that

\[
\text{Re} \left(\frac{zG'(z)}{G(z)} \right) = \text{Re} \left(\frac{t_1 z g_1'(t_1 z)}{g_1(t_1 z)} \right) + \text{Re} \left(\frac{t_2 z g_2'(t_2 z)}{g_2(t_2 z)} \right) - 1 > p_{\alpha_1} + p_{\alpha_2} - p = p\gamma.
\]

It implies that \(G(z) \in S^*_p(\gamma) \) and it completes the proof of the theorem. \(\Box \)

Corollary 2.1. If \(g(z) \in S^*_p(1/2) \) and \(0 < |t| < 1 \), then

\[
\frac{g(z)g(tz)}{t^p z^p} \in S^*_p(0) := S^*_p.
\]

Theorem 2.2. If \(-1 < D \), then \(W_p(t, \lambda, A, B) \subset W_p(t, \lambda, C, D) \) if and only if

\[
\left| \frac{1 - CD}{1 - D^2} - \frac{1 - AB}{1 - B^2} \right| \leq \frac{C - D}{1 - D^2} - \frac{A - B}{1 - B^2}.
\]

If \(-1 = D \), then \(W_p(t, \lambda, A, B) \subset W_p(t, \lambda, C, D) \) if and only if

\[
C \geq 1 - \frac{2(1 - A)}{1 - B}.
\]

Proof. Condition (1.3) means that for \(z \in U \) the values of the function

\[
H(z) := \frac{t^p z^{p+1} F'(z)}{p g(z) g(tz)}
\]

lie in \(q(U) \) because \(q(z) = (1 + Az)/(1 + Bz) \) is univalent in \(U \). In the case \(B \neq -1 \),

\[
q(U) \text{ is a disc } D(A, B), \text{ with a center } S(A, B) \text{ and a radius } R(A, B)
\]

\[
S(A, B) = \frac{1 - AB}{1 - B^2}, \quad R(A, B) = \frac{A - B}{1 - B^2},
\]
while it is a half-plane for $B = -1$. By simple computation, we can easily obtain that (1.3) is equivalent to

$$\left| \frac{t^p z^{p+1} F'(z)}{pg(z)g(tz)} - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2}, \quad B \neq -1,$$

or

$$(2.4) \quad \text{Re}\left\{ \frac{t^p z^{p+1} F'(z)}{pg(z)g(tz)} \right\} > \frac{1 - A}{2}, \quad B = -1.$$

Therefore, for the case $B \neq -1$ $D \neq -1$, the inclusion relation $W_p(t, \lambda, A, B) \subset W_p(t, \lambda, C, D)$ holds when

$$R(A, B) \leq R(C, D), \quad \text{and} \quad |S(C, D) - S(A, B)| \leq R(C, D) - R(A, B).$$

This is equivalent to

$$\left| \frac{1 - CD}{1 - D^2} - \frac{1 - AB}{1 - B^2} \right| \leq \frac{C - D}{1 - D^2} - \frac{A - B}{1 - B^2}.$$

If $D = -1$, then by (2.4), the inclusion relation $W_p(t, \lambda, A, B) \subset W_p(t, \lambda, C, D)$ holds when $\frac{C - D}{1 - D^2} \leq \frac{A - B}{1 - B^2}$. This is equivalent to (2.2).

Lemma 2.1. If $g(z) \in S_p^*(1/2)$ and it has the form (1.1), then

$$|a_{n+p}t^n + a_{n+p-1}a_{p+1}t^{n-1} + \ldots + a_{p+1}a_{n+p-1}t + a_{n+p}| \leq \frac{2p}{n} \prod_{i=1}^{n-1} \left(1 + \frac{2p}{i} \right).$$

Proof. By virtue of Corollary 2.1, we have $\frac{g(z)g(tz)}{t^{p+1}} \in S_p^*(0)$, and if

$$(2.5) \quad G(z) = \frac{g(z)g(tz)}{t^{p+1}} = z^p + \sum_{k=p+1}^{\infty} c_k z^k,$$

then it is well known that

$$(2.6) \quad |c_{p+n}| \leq \frac{2p}{n} \prod_{i=1}^{n-1} \left(1 + \frac{2p}{i} \right).$$

Substituting the series expansions of $G(z)$ and $g(z)$ in (2.5), we get

$$\left(z^p + \sum_{k=p+1}^{\infty} a_k z^k \right) \left((tz)^p + \sum_{k=p+1}^{\infty} a_k (tz)^k \right) = z^p + \sum_{k=p+1}^{\infty} c_k z^k,$$

Comparing the coefficients of z^{n+p}, we have

$$(2.7) \quad a_{p+n}t^n + a_{p+1}a_{p+n-1}t^{n-1} + a_{p+2}a_{p+n-2}t^{n-2} + \ldots + a_{p+n} = c_{p+n}.$$

Putting the value from (2.6) in (2.7), we get the required result.

Theorem 2.3. Let $f(z) \in W_p(t, \lambda, A, B)$ be of the form (1.1). Then

$$|a_{p+n}| \leq (A - B) \left[1 + \sum_{i=1}^{n-1} \left(\frac{2p}{i} \right) \prod_{j=1}^{i-1} \left(1 + \frac{2p}{j} \right) \right] + \frac{2p}{n} \prod_{i=1}^{n-1} \left(\frac{2p}{i} \right).$$
By using (2.10) and (2.6) we have

\[\frac{zF(z)}{pG(z)} = \frac{1 + Az}{1 + Bz}, \]

where \(G(z) \) is given by (2.8). If we put

\[q(z) = \frac{zF(z)}{pG(z)}, \]

it follows from (2.8) that

\[q(z) = 1 + \sum_{n=1}^{\infty} q_n z^n = 1 + \sum_{n=1}^{\infty} A_n z^n, \quad A_n = (A - B)(-B)^{n-1}. \]

The function \((1 + Az)/(1 + Bz)\) is convex univalent, hence applying the well known Rogosinski result \([10]\), we obtain

\[|q_n| \leq A_1 = A - B, \quad n = 1, 2, \ldots. \]

Now by putting the series expansions of \(f(z) \), \(G(z) \) and \(q(z) \) in (2.9) and then comparing the coefficients of \(z^n+p \), we obtain

\[\frac{1}{p}(p + n\lambda)(p + n)a_{p+n} = c_{p+n} + q_{p+1}c_{p+n-1} + \cdots + q_{p+n-1}c_{p+1} + q_{p+n}. \]

By using (2.10) and (2.6) we have

\[\frac{1}{p}(p + n\lambda)(p + n)|a_{p+n}| \leq (A - B)(|c_{p+n-1}| + \cdots + |c_{p+1}| + 1) + |c_{p+n}| \]

\[\leq (A - B) \left[1 + \sum_{i=1}^{n-1} |c_{p+i}| \right] + \left(\frac{2p}{n} \right) \prod_{i=1}^{n-1} \left(1 + \frac{2p}{i} \right) \]

\[\leq (A - B) \left[1 + \sum_{i=1}^{n-1} \left(\frac{2p}{i} \right)^{i-1} \prod_{j=1}^{i-1} \left(1 + \frac{2p}{j} \right) + \left(\frac{2p}{n} \right) \prod_{i=1}^{n-1} \left(1 + \frac{2p}{i} \right) \right]. \]

This completes the proof. \(\square \)

Theorem 2.4. If \(g(z) \in \mathcal{S}_p^+(1/2) \) and \(f(z) \in A(p) \) is of the form (1.4), and if it satisfies the condition

\[\frac{1 + A}{2} - \sum_{n=1}^{\infty} \frac{(1 + n\lambda/p)(p + n)}{p} |a_{p+n}| - \frac{1 - A}{2} \sum_{n=1}^{\infty} |c_{p+n}| > 0, \]

where \(c_{p+n} \) is given by

\[G(z) = \frac{g(z)g(tz)}{trzp} = z^p + \sum_{n=1}^{\infty} c_{p+n} z^{p+n}, \]

then \(f(z) \in \mathcal{W}_p(t, \lambda, A, -1). \) Moreover, if it satisfies the condition

\[\frac{A - B}{1 + B} \sum_{n=1}^{\infty} \left\{ \frac{(1 + n\lambda/p)(p + n)}{p} |a_{p+n}| + \left(\frac{A - B}{1 - B^2} + \frac{1 - AB}{1 - B^2} \right) |c_{p+n}| \right\} > 0, \]

then \(f(z) \in \mathcal{W}_p(t, \lambda, A, B), B > -1. \)
Proof. To prove that \(f(z) \in W_p(t, \lambda, A, -1) \), it is enough to show that
\[
\left| \frac{zF'_1(z)}{pG(z)} \right| > \frac{1 - A}{2}, \quad z \in \mathbb{U}
\]
or equivalently to show that
\[
\left| \frac{F'_1(z)}{pz^{p-1}} - \frac{(1 - A)G(z)}{2z^p} \right| > 0, \quad z \in \mathbb{U}.
\]
We have
\[
\left| \frac{F'_1(z)}{pz^{p-1}} - \frac{(1 - A)G(z)}{2z^p} \right|
\]
\[
= \left| 1 + \sum_{n=1}^{\infty} \frac{(1 + n\lambda/p)(p + n)}{p} a_{p+n}z^n \right| - \frac{(1 - A)}{2} \left(1 + \sum_{n=1}^{\infty} c_{p+n}z^n\right)
\]
\[
\geq 1 - \sum_{n=1}^{\infty} \frac{(1 + n\lambda/p)(p + n)}{p} a_{p+n}z^n - \frac{(1 - A)}{2} \left(1 + \sum_{n=1}^{\infty} c_{p+n}z^n\right)
\]
\[
= \frac{1 + A}{2} - \sum_{n=1}^{\infty} \frac{(1 + n\lambda/p)(p + n)}{p} a_{p+n}z^n - \frac{1 - A}{2} \sum_{n=1}^{\infty} c_{p+n}z^n \geq 0
\]
by (2.11). For the case \(B > -1 \) it suffices to show that
\[
\left| \frac{zF'_1(z) - S(A, B)}{pG(z)} \right| < R(A, B),
\]
where \(S(A, B) \) and \(R(A, B) \) are given in (2.3). This is equivalent to
\[
\left| \frac{F'_1(z)}{pz^{p-1}} - \frac{G(z)S(A, B)}{z^p} \right| < \left| \frac{G(z)R(A, B)}{z^p} \right|, \quad z \in \mathbb{U}.
\]
We have
\[
\left| \frac{G(z)R(A, B)}{z^p} \right|
\]
\[
= \left| \frac{F'_1(z)}{pz^{p-1}} - \frac{G(z)S(A, B)}{z^p} \right|
\]
\[
= \left| R(A, B) \left(1 + \sum_{n=1}^{\infty} c_{p+n}z^n\right) \right|
\]
\[
= \left| 1 + \sum_{n=1}^{\infty} \frac{(1 + n\lambda/p)(p + n)}{p} a_{p+n}z^n - S(A, B)1 + \sum_{n=1}^{\infty} c_{p+n}z^n \right|
\]
\[
= \left| R(A, B) \left(1 + \sum_{n=1}^{\infty} c_{p+n}z^n\right) \right|
\]
\[
= \left| \frac{B(A - B)}{1 - B^2} + \sum_{n=1}^{\infty} \left\{ \frac{(1 + n\lambda/p)(p + n)}{p} a_{p+n} - S(A, B)c_k \right\} z^n \right|
\]
shown in Corollary 2.1 that $G\ w$ where \Box by (2.12).

Now by using (2.14) in (2.13), we obtain the required result. \Box

(2.14)

Applying [5] Theorem 2.5. Let $f(z) \in W_p(t, 0, A, B)$. Then
\[
\frac{1 - Ar}{1 - Br} \leq \frac{(1 - r)^{2p}}{(1 + r^2)^n} \leq |f'(z)| \leq \frac{1 + Ar}{1 + Br} \frac{(1 + r)^{2p}}{r^{2p} + 1}.
\]

Proof. Suppose that $f(z) \in W_p(t, 0, A, B)$. Then by using definition of subordination between analytic functions, we can write
\[
(2.13) \quad \frac{1 - Ar}{1 - Br} \leq \frac{1 - A|w(z)|}{1 - B|w(z)|} \leq \frac{|z f'(z)|}{pG(z)} \leq \frac{1 + A|w(z)|}{1 + B|w(z)|} \leq \frac{1 + Ar}{1 + Br}.
\]

where $w(z)$ is the Schwarz function with $w(0) = 0$, $|w(z)| < |z| = r$. Now it is shown in Corollary 2.1 that $G(z) = \frac{g(z)(t(z))}{r^{2p} + 1} \in S^*_p(0)$, thus we have
\[
(2.14) \quad \frac{r^p}{(1 + r)^{2p}} \leq |G(z)| \leq \frac{r^p}{(1 - r)^{2p}}.
\]

Now by using (2.14) in (2.13), we obtain the required result. \Box

Theorem 2.6. Let $f(z) \in W_p(t, 0, 1, B)$. Then
\[
1 + \frac{zf''(z)}{f'(z)} > 0, \quad |z| < r_0,
\]

where r_0 is the smallest positive root of the equation
\[
(2.15) \quad p(1 - r)^2(1 - Br) - r(1 + r)(1 - B) = 0.
\]

Proof. Suppose $f(z) \in W_p(t, 0, 1, B)$ and let
\[
\frac{zf'(z)}{pG(z)} = q(w(z)) := s(z), \quad |w(z)| < |z|.
\]

where $q(z)$ is given in (1.3). Logarithmic differentiation gives us
\[
(2.16) \quad 1 + \frac{zf''(z)}{f'(z)} = \frac{zG'(z)}{G(z)} + \frac{zs'(z)}{s(z)}
\]

Applying [5] Theorem 3] we have
\[
(2.17) \quad \Re \frac{zs'(z)}{s(z)} > -\frac{(1 - B)r}{(1 - r)(1 - Br)}, \quad |z| < r.
\]
Moreover, $G(z) \in S^*_p(0)$, so

$$\text{Re} \left\{ \frac{zG''(z)}{pG(z)} \right\} > \frac{1 - r^p}{1 + r^p}, \quad |z| < r. \quad \text{(2.18)}$$

Applying (2.17) and (2.18) in (2.16), we obtain

$$\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > p \frac{1 - r^p}{1 + r^p} \frac{(1 - B)r}{(1 - r)(1 - Br)}$$

$$= \frac{p(1 - r)^2(1 - Br) - r(1 + r)(1 - B)}{(1 - r^2)(1 - Br)}$$

and this is positive for $r < r_0$, where r_0 is described in (2.15). \qed

References