Let
\[f(s) = \sum_{n=1}^{\infty} a_n e^{s \cdot n}, \]
where \(0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n < \ldots \), \(\lambda_n \to \infty \) as \(n \to \infty \), \(s = \sigma + it \) (\(\sigma, t \) being reals) and \(\{a_n\}_{1}^{\infty} \) any sequence of complex numbers, be a Dirichlet series. Further, let
\[\limsup_{n \to \infty} \frac{n}{\lambda_n} = D < \infty, \]
\[\limsup_{n \to \infty} (\lambda_{n+1} - \lambda_n) = h > 0, \]
and
\[\limsup_{n \to \infty} \log \frac{|a_n|}{\lambda_n} = -\infty. \]
Then the series in (1.1) represents an entire function \(f(s) \). We denote by \(X \) the set of all entire functions \(f(s) \) having representation (1.1) and satisfying the conditions (1.2)–(1.4). By giving different topologies on the set \(X \), Kamthan [4] and Hussain and Kamthan [2] have studied various topological properties of these spaces. Hence we define, for any nondecreasing sequence \(\{r_i\} \) of positive numbers, \(r_i \to \infty \),
\[\|f\|_{r_i} = \sum_{n=1}^{\infty} |a_n| e^{r_i \cdot n}, \quad i = 1, 2, \ldots, \]
where \(f \in X \). Then from (1.4), \(\|f\|_{r_i} \) exists for each \(i \) and is a norm on \(X \). Further, \(\|f\|_{r_i} \leq \|f\|_{r_{i+1}} \). With these countable number of norms, a metric \(d \) is defined on \(X \) as:
\[d(f, g) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\|f - g\|_{r_i}}{1 + \|f - g\|_{r_i}}, \quad f, g \in X. \]

Received: April 19, 1991.
Further, following functions are defined for each \(f \in X \), namely
\[
p(f) = \sup_{n \geq 1} |a_n|^{1/\lambda_n} ;
\]
\[
\|f\|_i = \sup_{n \leq i} \left(|a_n|^{1/\lambda_n} \right).
\]
Then \(p(f) \) and \(\|f\|_i \) are para-norms on \(X \). Let
\[
s(f, g) = \sum_{i=1}^\infty \frac{1}{2^i} \frac{\|f-g\|_i}{1+\|f-g\|_i}.
\]
It was shown [2, Lemma 1] that the three topologies induced by \(d \), \(s \) and \(p \) on \(X \) are equivalent. Many other properties of these spaces were also obtained (see [2], pp. 206–209).

For the space of entire functions of finite Ritt order \([6]\) and type, yet another norm \(\|f\|_q \) and hence a metric \(\lambda \) was introduced and the properties of this space \(X_\lambda \) were studied.

Let, for \(f \in X \),
\[
M(\sigma; f) \equiv M(\sigma) = \sup_{-\infty < t < \infty} |f(\sigma + it)| ,
\]
then \(M(\sigma) \) is called the maximum modulus of \(f(s) \). The Ritt order of \(f(s) \) is defined as
\[
\limsup_{\sigma \to \infty} \frac{\log \log M(\sigma)}{\sigma} = \rho , \quad 0 \leq \rho \leq \infty .
\]
For \(\rho < \infty \), the entire function \(f \) is said to be of finite order. A function \(\rho(\sigma) \) is said to be proximate order [3] if
\[
\rho(\sigma) \to \rho \quad \text{as} \quad \sigma \to \infty , \quad 0 < \rho < \infty ,
\]
\[
\sigma \rho'(\sigma) \to 0 \quad \text{as} \quad \sigma \to \infty .
\]
For \(f \in X \), define
\[
\limsup_{\sigma \to \infty} \frac{\log M(\sigma)}{e^{\sigma \rho(\sigma)}} \leq A < \infty .
\]
Then it was proved [3] that (1.13) holds if and only if
\[
\limsup_{n \to \infty} \phi(\lambda_n) |a_n|^{1/\lambda_n} \leq (A e \rho)^{1/\rho} ,
\]
where \(\phi(t) \) is the unique solution of the equation \(t = \exp[\sigma \rho(\sigma)] \).
SPACES OF ENTIRE FUNCTIONS OF SLOW GROWTH

(Apparently the inequality (4.1) and the definition of $\phi(t)$ contain some misprints in [2, pp. 209–210]).

For each $f \in X$, define

$$
\|f\|_q = \sum_{n=1}^{\infty} |a_n| \left\{ \frac{\phi(\lambda_n)}{[(A + \frac{1}{q}) e^{1/\rho}]^{1/\rho}} \right\}^{\lambda n},
$$

where $q = 1, 2, \ldots$. For $q_1 \leq q_2$, $\|f\|_{q_1} \leq \|f\|_{q_2}$. It was proved that $\|f\|_q$, $q = 1, 2, \ldots$, induces on X a unique topology such that X becomes a convex topological vector space, where this topology is given by the metric λ,

$$
\lambda(f, g) = \sum_{q=1}^{\infty} \frac{1}{2^q} \frac{\|f - g\|_q}{1 + \|f - g\|_q}.
$$

This space was denoted by X_λ. Various properties of this space were studied [2, pp. 209–216].

It is evident that if $\rho = 0$, then the definition of the norm $\|f\|_q$ and proximate order $\rho(\sigma)$ is not possible. It is the aim of this paper to give a metric on the space of entire functions of zero order thereby studying some properties of this space.

2 – For an entire function $f(s)$ represented by (1.1), for which ρ defined by (1.10) is equal to zero, we define following Rahman [5]

\begin{equation}
\limsup_{\sigma \to \infty} \frac{\log \log M(\sigma)}{\log \sigma} = \rho^*, \quad 1 \leq \rho^* \leq \infty.
\end{equation}

Then ρ^* is said to be the logarithmic order of $f(s)$. For $1 < \rho^* < \infty$, we define the logarithmic proximate order [1] $\rho^*(\sigma)$ as a continuous piecewise differentiable function for $\sigma \geq \sigma_0$ such that

\begin{equation}
\rho^*(\sigma) \to \rho^* \quad \text{as} \quad \sigma \to \infty,
\end{equation}

\begin{equation}
\sigma \log \sigma, \rho^*(\sigma) \to 0 \quad \text{as} \quad \sigma \to \infty.
\end{equation}

Then the logarithmic type T^* of f with respect to proximate order $\rho^*(\sigma)$ is defined as [7]:

\begin{equation}
\limsup_{\sigma \to \infty} \frac{\log M(\sigma)}{\sigma^{T^*}} = T^*^*, \quad 0 < T^* < \infty.
\end{equation}

It was proved by one of the authors [7] that $f(s)$ is of logarithmic order ρ^*, $1 < \rho^* < \infty$, and logarithmic type T^*, $0 < T^* < \infty$, if and only if

\begin{equation}
\limsup_{n \to \infty} \frac{\lambda_n \phi(\lambda_n)}{\log |a_n|^{-1}} = \frac{\rho^*}{(\rho^* - 1)} \left(\rho^* T^* \right)^{1/(\rho^* - 1)},
\end{equation}

where
where \(\phi(t) \) is the unique solution of the equation \(t = \sigma^{\rho^*(\sigma)^{-1}} \).

We now denote by \(X \) the set of all entire functions \(f(s) \) given by (1.1), satisfying (1.2) to (1.4), for which

\[
\lim_{\sigma \to \infty} \frac{\log M(\sigma)}{\sigma^{\rho^*(\sigma)}} \leq T^* < \infty, \quad 1 < \rho^* < \infty.
\]

Then from (2.5), we have

\[
\lim_{n \to \infty} \frac{\lambda_n \phi(\lambda_n)}{\log |a_n|^{-1}} \leq \left(\frac{\rho^*}{\rho^* - 1} \right) \left(\rho^* T^* \right)^{1/(\rho^* - 1)}.
\]

In all our further discussion, we shall denote \((\rho^*/(\rho^* - 1))(\rho^* - 1) \) by the constant \(K \). Then from (2.7) we have

\[
|a_n| < \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K, \rho^*(T^* + \varepsilon)\}^{1/(\rho^* - 1)}} \right],
\]

where \(\varepsilon > 0 \) is arbitrary and \(n > n_0 \).

Now, for each \(f \in X \), let us define

\[
\|f\|_q = \sum_{n=1}^{\infty} |a_n| \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K, \rho^*(T^* + \varepsilon)\}^{1/(\rho^* - 1)}} \right],
\]

where \(q = 1, 2, 3, \ldots \). In view of (2.8), \(\|f\|_q \) exists and for \(q_1 \leq q_2, \|f\|_{q_1} \leq \|f\|_{q_2} \). This norm induces a metric topology on \(X \).

We define

\[
\lambda(f, g) = \sum_{q=1}^{\infty} \frac{1}{2^q} \cdot \frac{\|f - g\|_q}{1 + \|f - g\|_q}.
\]

The space \(X \) with the above metric \(\lambda \) will be denoted by \(X_\lambda \).

Now we prove

Theorem 1. The space \(X_\lambda \) is a Fréchet space.

Proof: It is sufficient to show that \(X_\lambda \) is complete. Hence, let \(\{f_\alpha\} \) be a \(\lambda \)-Cauchy sequence in \(X \). Therefore, for any given \(\varepsilon > 0 \) there exists \(n_0 = n_0(\varepsilon) \) such that

\[
\|f_\alpha - f_\beta\|_q < \varepsilon \quad \forall \alpha, \beta > n_0, \quad q \geq 1.
\]

Denoting \(f_\alpha(s) = \sum_{n=1}^{\infty} a_n^{(\alpha)} e^{s \lambda_n}, f_\beta(s) = \sum_{n=1}^{\infty} a_n^{(\beta)} e^{s \lambda_n} \), we have therefore

\[
\sum_{n=1}^{\infty} |a_n^{(\alpha)} - a_n^{(\beta)}| \cdot \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K, \rho^*(T^* + \varepsilon)\}^{1/(\rho^* - 1)}} \right] < \varepsilon
\]

for all \(\alpha, \beta > n_0 \).
for \(\alpha, \beta > n_0, q \geq 1\). Hence we obviously have

\[|a^{(\alpha)}_n - a^{(\beta)}_n| < \varepsilon\quad \forall \alpha, \beta > n_0, \]

i.e., \(\{a^{(\alpha)}_n\}\) is a Cauchy sequence of complex numbers for each fixed \(n = 1, 2, \ldots\). Hence

\[\lim_{\alpha \to \infty} a^{(\alpha)}_n = a_n, \quad n = 1, 2, \ldots. \]

Now letting \(\beta \to \infty\) in (2.9), we have for \(\alpha > n_0, \)

\[(2.10) \quad \sum_{n=1}^{\infty} |a^{(\alpha)}_n| \cdot \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right] < \varepsilon. \]

Taking \(\alpha = n_0\), we get for a fixed \(q\),

\[|a^{(n_0)}_n| \cdot \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right] \leq |a^{(n_0)}_n| \cdot \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right] + \varepsilon. \]

Now, \(f^{(n_0)} = \sum_{n=1}^{\infty} a^{(n_0)}_n e^{s \lambda_n} \in X_\lambda\), hence the condition (2.8) is satisfied. For arbitrary \(p > q\), we have

\[|a^{(n_0)}_n| < \exp \left[\frac{-\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right] \] for arbitrarily large \(n\).

Hence we have

\[|a_n| \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right] < \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right] + \varepsilon. \]

Since \(\varepsilon > 0\) is arbitrary and the first term on the R.H.S. \(\to 0\) as \(n \to \infty\), we find that the sequence \(\{a_n\}\) satisfies (2.8). Then \(f(s) = \sum_{n=1}^{\infty} a_n e^{s \lambda_n}\) belongs to \(X_\lambda\). \(\blacksquare\)

Now, from (2.10), we have for \(q = 1, 2, \ldots\), \(\|f_\alpha - f\|_q < \varepsilon\). Hence

\[\lambda(f_\alpha, f) = \sum_{q=1}^{\infty} \frac{1}{2^q} \frac{\|f_\alpha - f\|_q}{1 + \|f_\alpha - f\|_q} \leq \frac{\varepsilon}{(1 + \varepsilon)} \sum_{q=1}^{\infty} \frac{1}{2^q} = \frac{\varepsilon}{(1 + \varepsilon)} \quad \varepsilon. \]

Since the above inequality holds for all \(\alpha > n_0\), we finally get \(f_\alpha \to f\) where \(f \in X_\lambda\). Hence \(X_\lambda\) is complete. This proves Theorem 1. \(\blacksquare\)
Now, we characterize the linear continuous functionals on X_λ. We prove

Theorem 2. A continuous linear functional ψ on X_λ is of the form

$$\psi(f) = \sum_{n=1}^{\infty} a_n C_n$$

if and only if

$$|C_n| \leq A \exp\left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^s + \frac{1}{q})\}^{1/(\rho^*-1)}}\right]$$

(2.11)

for all $n \geq 1$, $q \geq 1$, where A is a finite, positive number, $f = f(s) = \sum_{n=1}^{\infty} a_n e^{s,\lambda_n}$ and λ_1 is sufficiently large.

Proof: Let $\psi \in X_\lambda'$. Then for any sequence $\{f_m\} \in X_\lambda$ such that $f_m \to f$, we have $\psi(f_m) \to \psi(f)$ as $m \to \infty$. Now let

$$f(s) = \sum_{n=1}^{\infty} a_n e^{s,\lambda_n},$$

where a_n's satisfy (2.8). Then $f \in X_\lambda$. Also, let

$$f_m(s) = \sum_{n=1}^{m} a_n e^{s,\lambda_n}.$$

Then $f_m \in X_\lambda$ for $m = 1, 2, \ldots$. Let q be any fixed positive integer and let $0 < \varepsilon < \frac{1}{q}$. From (2.8), we can find an integer m such that

$$|a_n| < \exp\left[\frac{-\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^s + \varepsilon)\}^{1/(\rho^*-1)}}\right], \quad n > m.$$

Then

$$\left\| f - \sum_{n=1}^{m} a_n e^{s,\lambda_n} \right\|_q = \left\| \sum_{n=m+1}^{\infty} a_n e^{s,\lambda_n} \right\|_q =$$

$$= \sum_{n=m+1}^{\infty} |a_n| \exp\left[\frac{-\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^s + \varepsilon)\}^{1/(\rho^*-1)}}\right]$$

$$< \sum_{n=m+1}^{\infty} \exp\left[\frac{-\lambda_n \phi(\lambda_n)}{(K \rho^*)^{1/(\rho^*-1)}} \left(\frac{T^s + \frac{1}{q}}{1 - (T^s + \varepsilon)^{-1/(\rho^*-1)}}\right)\right]$$

$$< \varepsilon \quad \text{for sufficiently large values of } m.$$
Hence
\[\lambda(f, f_m) = \sum_{q=1}^{\infty} \frac{1}{2^q} \frac{\|f - f_m\|_q}{1 + \|f - f_m\|_q} \leq \frac{\varepsilon}{(1 + \varepsilon)} < \varepsilon , \]
i.e., \(f_m \to f \) as \(m \to \infty \) in \(X_\lambda \). Hence by assumption that \(\psi \in X'_\lambda \), we have
\[\lim_{m \to \infty} \psi(f_m) = \psi(f) . \]
Let us denote by \(C_n = \psi(e^{s \lambda_n}) \). Then
\[\psi(f_m) = \sum_{n=1}^{m} a_n \psi(e^{s \lambda_n}) = \sum_{n=1}^{m} a_n C_n . \]

Also \(|C_n| = |\psi(e^{s \lambda_n})| \). Since \(\psi \) is continuous on \(X_\lambda \), it is continuous on \(X_{\| \|_{q}} \) for each \(q = 1, 2, 3, \ldots \). Hence there exists a positive constant \(A \) independent of \(q \) such that
\[|\psi(e^{s \lambda_n})| = |C_n| \leq A \| \alpha \|_q , \quad q \geq 1 , \]
where \(\alpha(s) = e^{s \lambda_n} \). Now using the definition of the form for \(\alpha(s) \), we get
\[|C_n| \leq A \exp \left[\frac{\lambda_n \phi(\lambda_n)}{(K \rho^*(T^* + \frac{1}{q}))^{1/(\rho^* - 1)}} \right] , \quad n \geq 1 , \quad q \geq 1 . \]
Hence we get \(\psi(f) = \sum_{n=1}^{\infty} a_n C_n \), where \(C_n \)'s satisfy (2.11).

Conversely, suppose that \(\psi(f) = \sum_{n=1}^{\infty} a_n C_n \) and \(C_n \) satisfies (2.11). Then for \(q \geq 1 \),
\[|\psi(f)| \leq A \sum_{n=1}^{\infty} |a_n| \exp \left[\frac{\lambda_n \phi(\lambda_n)}{(K \rho^*(T^* + \frac{1}{q}))^{1/(\rho^* - 1)}} \right] \]
i.e.
\[|\psi(f)| \leq A \| f \|_q , \quad q \geq 1 , \]
i.e.
\[\psi \in X'_{\| \|_{q}} , \quad q \geq 1 . \]

Now, since
\[\lambda(f, g) = \sum_{q=1}^{\infty} \frac{1}{2^q} \frac{\|f - g\|_q}{1 + \|f - g\|_q} , \]
therefore \(X'_\lambda = \bigcup_{q=1}^{\infty} X'_{\| \|_{q}} \). Hence \(\psi \in X'_\lambda \).

This completes the proof of Theorem 2. ■

Lastly, we give the construction of total sets in \(X_\lambda \). Following [2], we give

Definition. Let \(X \) be a locally convex topological vector space. A set \(E \subset X \) is said to be total if and only if for any \(\psi \in X' \) with \(\psi(E) = 0 \), we have \(\psi = 0 \).
Now, we prove

Theorem 3. Consider the space X_{λ} defined before and let $f(s) = \sum_{n=1}^{\infty} a_n e^{s \lambda_n}$, $a_n \neq 0$, for $n = 1, 2, \ldots$, $f \in X_{\lambda}$. Suppose G is a subset of the complex plane having at least one limit point in the complex plane. Define, for $\mu \in G$,

$$f_{\mu}(s) = \sum_{n=1}^{\infty} (a_n e^{\mu \lambda_n}) e^{s \lambda_n}.$$

Then $E = \{ f_{\mu} : \mu \in G \}$ is total in X_{λ}.

Proof: Since $f \in X_{\lambda}$, from (2.7) we have

$$\limsup_{n \to \infty} \frac{\lambda_n \phi(\lambda_n)}{\log |a_n e^{\mu \lambda_n}|^{1-1}} = \limsup_{n \to \infty} \frac{\phi(\lambda_n)}{\log |a_n|^{1-1} - R(\mu)} \leq \left(\frac{\rho^*}{\rho^* - 1} \right) (\rho^* T^*)^{1/(\rho^* - 1)}, \text{ since } R(\mu) < \infty .$$

Hence, if we denote by $M_\mu(\sigma) = \sup_{-\infty < t < \infty} | f_{\mu}(\sigma + it) |$, then from (2.6),

$$\limsup_{\sigma \to \infty} \frac{\log M_\mu(\sigma)}{\sigma \rho^*(\sigma)} \leq T^* < \infty .$$

Therefore, $f_{\mu} \in X_{\lambda}$ for each $\mu \in G$. Thus $E \subset X_{\lambda}$.

Now, let ψ be a linear continuous functional on X_{λ} and suppose that $\psi(f_{\mu}) = 0$. From Theorem 2, there exists a sequence \{C_n\} of complex numbers such that

$$\psi(g) = \sum_{n=1}^{\infty} b_n C_n, \quad g(s) = \sum_{n=1}^{\infty} b_n e^{s \lambda_n} \in X_{\lambda},$$

where

$$|C_n| < A \exp \left[\frac{\lambda_n \phi(\lambda_n)}{\{K \rho^*(T^* + \frac{1}{q})\}^{1/(\rho^* - 1)}} \right], \quad n \geq 1, \quad q \geq 1,$$

A being a constant and λ_1 is sufficiently large.

Hence

$$\psi(f_{\mu}) = \sum_{n=1}^{\infty} a_n C_n e^{\mu \lambda_n} = 0, \quad \mu \in G.$$

Let us consider the function $F(s) = \sum_{n=1}^{\infty} a_n C_n e^{s \lambda_n}$. Then from (2.8) and (2.12), for any ε, $0 < \varepsilon < \frac{1}{q}$,

$$|a_n C_n|^{1/\lambda_n} < A^{1/\lambda_n} \exp \left[\phi(\lambda_n) \left\{ \left(K \rho^* (T^* + \frac{1}{q}) \right)^{-1/(\rho^* - 1)} \right\} \right] - \left(K \rho^*(T^* + \varepsilon)^{-1/(\rho^* - 1)} \right)$$

$$\leq \left(\frac{\rho^*}{\rho^* - 1} \right) (\rho^* T^*)^{1/(\rho^* - 1)}$$

$$\leq T^* < \infty .$$
for all $n > n_0$. By definition of $\phi(t)$, $\phi(\lambda_n) \to \infty$ as $n \to \infty$ and $\lambda_n \to \infty$. Hence we get

$$\limsup_{n \to \infty} \frac{\log |a_n C_n|}{\lambda_n} = -\infty,$$

i.e., $F(s)$ satisfies (1.4). Hence $F \in X$.

Also, $F(\mu) = 0 \ \forall \ \mu \in G$. Thus the entire function $F(s) \equiv 0$ in the entire complex plane. But this implies that $a_n C_n = 0, \ \forall n = 1, 2, \ldots$. Since we have started with $a_n \neq 0$, thus we get $C_n = 0, n = 1, 2, \ldots$. Hence $\psi \equiv 0$. This proves Theorem 3.

REFERENCES

Arvind Kumar,
Department of Mathematics, U.O.R. Roorkee,
Roorkee 247667, U.P. – INDIA

and

G.S. Srivastava,
Department of Mathematics, U.O.R. Roorkee,
Roorkee 247667, U.P. – INDIA