A STUDY OF \(K_W\)-SPACES AND \(K_0^W\)-SPACES

Carlos R. Borges

Abstract: Further study of \(K_W\)-spaces leads to the introduction of \(K_0^W\)-spaces. We obtain a characterization of \(K_0^W\)-spaces in terms of continuous real-valued functions which is dual to a characterization of \(K_0\)-spaces. We also get two characterizations of \(K_W\)-spaces, one of which exhibits their remarkable similarities with \(K_1\)-spaces; a consequence of the latter characterization is that \(K_W\)-spaces are collectionwise normal.

Throughout, we will use the terminology of [1].
We introduced the concept of \(K_W\)-spaces in [1; Definition 10], as follows:
A space \((X, \tau)\) is a \(K_W\)-space provided that, for each closed \(F \subseteq X\), there exists a function \(k: \tau|F \to \tau\) (\(k\) is called a \(K_W\)-function) which satisfies the following:

\(1\) \(F \cap k(U) = U\), for each \(U \in \tau|F\), \(k(F) = X\) and \(k(\emptyset) = \emptyset\);
\(2\) \(k(U) \subseteq k(V)\) whenever \(U \subseteq V\);
\(3\) \(k(U) \cup k(V) = X\) whenever \(U \cup V = F\);
\(4\) \(\overline{k(U)} \cap F = \overline{U}\).

Condition (3) naturally leads to one question if it can be replaced by the stronger condition below, without affecting the concept of a \(K_W\)-space:

\(3^*\) \(k(U) \cup k(V) = k(U \cup V)\).

We do not yet know the answer to this question. However, replacing (3) by \(3^*\) in the definition of \(K_W\)-spaces leads to a (possibly new) class of spaces which we will call \(K_0^W\)-spaces, with remarkable properties which are dual to those of \(K_0\)-spaces (see Theorem 2 of [1] and compare it with Theorem 2 ahead). It is noteworthy that a \(K_0\)-function is a \(K_W\)-function if and only if it is a \(K_0^W\)-function (this follows from Theorem 12 of [1], and Theorems 2 c) and 3 b) v) ahead).

Received: October 4, 1991.
1980 Mathematics Subject Classification: Primary 54C20; Secondary 54C30.
Keywords and Phrases: \(K_W\)-spaces, \(K_0^W\)-spaces, usc- and lsc-extenders, continuous extensions.
Remark. Note that, for each closed subspace F of any space (X, τ) there exists $k: \tau|F \to \tau$ which satisfies (1), (2) and (3) above. Simply, let $k(U) = U \cup (X - F)$, for $U \neq \emptyset$, and $k(\emptyset) = \emptyset$.

Proposition 1. Every K_W-space is completely normal.

Proof: Let A, B be subsets of a K_W-space (X, τ) such that $\overline{A} \cap B = \emptyset = A \cap \overline{B}$. Let $F = \overline{A} \cup \overline{B}$ and let $k: \tau|F \to \tau$ be a K_W-function. Then $\overline{B} - A = F - \overline{A} = U \in \tau|F$, $B \subset U$ and $\overline{U} \cap A = \emptyset$ (note that $a \in A$ implies $a \notin \overline{B}$ which implies that $a \in X - \overline{B} \in \tau$, since $(X - \overline{B}) \cap (\overline{B} - A) = \emptyset$, $a \notin U$). Since $k(U) \cap A = \emptyset$, by (4), we get that $k(U) \cap A = \emptyset$; therefore, $k(U)$ and $X - k(U)$ are disjoint τ-open subsets of X such that $B \subset k(U)$ and $A \subset X - k(U)$. This completes the proof. \(\blacksquare\)

Theorem 2. For any space X, the following are equivalent:

a) X is a K_w^*-space;

b) X is completely normal and, for each nonempty closed subspace F of X, there exist extenders $\phi: C^*_w(F) \to C^*_w(X)$ and $\psi: C^*_lsc(F) \to C^*_lsc(X)$ such that

i) $\phi(f) \leq \phi(g)$, whenever $f \leq g$,

ii) $\phi(f + g) \geq \phi(f) + \phi(g)$,

iii) $\psi(f) \leq \psi(g)$, whenever $f \leq g$,

iv) $\psi(f + g) \leq \psi(f) + \psi(g)$,

v) $\phi(f) \leq \psi(f)$, whenever $f \in C^*(F)$,

vi) $\phi(aF) = a_X = \psi(aF)$, for $a \in \mathbb{R}$,

vii) $\psi(\sup(f,g)) = \sup(\psi(f),\psi(g))$,

viii) $\phi(\inf(f,g)) = \inf(\phi(f),\phi(g))$,

ix) $\phi(f) = -\psi(-f)$, for each $f \in C^*(F)$,

x) for any $\{f_\alpha | \alpha \in \Lambda \} \subset C^*(F)$, $\bigcup_\alpha \phi(f_\alpha)^{-1}(-\infty,0] \cap F = \bigcup_\alpha f_\alpha^{-1}(-\infty,0]$;

c) X is completely normal and, for any nonempty closed $F \subset X$ there exists an extender $\phi: C^*(F) \to C^*_w(X)$ which satisfies i), vi), viii) and x) of b) for functions in $C^*(F)$.

Proof: a) implies b). By Proposition 1, X is completely normal. Let $k: \tau|F \to \tau$ be a K_W-function. For each $x \in X$, let

$$
\phi(f)(x) = \inf \left\{ t \in \mathbb{R} \mid x \in k(f^{-1}([-\infty,t]) \right\},
$$

$$
\psi(g)(x) = \sup \left\{ t \in \mathbb{R} \mid x \in k(g^{-1}([t,\infty])) \right\},
$$
where \(f \in C^*_{usc}(F) \) and \(g \in C^*_{bc}(F) \). Since \(k \) is monotone, we immediately get that \(\phi \) and \(\psi \) satisfy i) and iii), respectively. Since we also get that

\[
\phi(f)^{-1}([-\infty, t]) = \bigcup \{ k(f^{-1}([-\infty, s])) \mid s < t \},
\]

\[
\psi(g)^{-1}(t, \infty] = \bigcup \{ k(f^{-1}(s, \infty]) \mid s > t \},
\]

we immediately get that \(\phi \) is a u.s.c.-extender and \(\psi \) is an lsc-extender. (It is clear that, for \(x \in F \), \(\phi(f)(x) = f(x) \) and \(\psi(g)(x) = g(x) \).

Next, we show that \(\phi \) satisfies ii): Pick \(x \in \mathbb{X} \) and say \(\phi(f)(x) = t_1 \), \(\phi(g)(x) = t_2 \), with \(t_1 \leq t_2 \). Let \(t = t_1 + t_2 \) and note that, for any \(\varepsilon > 0 \),

\[
(f + g)^{-1}([-\infty, t - \varepsilon]) \subset f^{-1}([-\infty, t_1 - \frac{\varepsilon}{2}]) \cup g^{-1}([-\infty, t_2 - \frac{\varepsilon}{2}) .
\]

(Pick any \(z \in F \) such that \(f(z) + g(z) < t - \varepsilon \). Note that if \(f(z) < t_1 - \frac{\varepsilon}{2} \) then \(z \in f^{-1}([-\infty, t_1 - \frac{\varepsilon}{2})] \); if \(f(z) \geq t_1 - \frac{\varepsilon}{2} \) then \(g(z) < t_2 - \frac{\varepsilon}{2} \) which implies that \(z \in g^{-1}([-\infty, t_2 - \frac{\varepsilon}{2})] \). Since \(\phi(f)(x) = t_1 \) and \(\phi(g)(x) = t_2 \), we get that \(x \notin k(f^{-1}([-\infty, t_1 - \frac{\varepsilon}{2})) \) and \(x \notin k(g^{-1}([-\infty, t_2 - \frac{\varepsilon}{2})) \); hence \(x \notin (f + g)^{-1}([-\infty, t - \varepsilon]) \), (2) and (3'), which implies that \(\phi(f + g)(x) \geq t = \phi(f)(x) + \phi(g)(x) \), as required.

Next, we show that \(\psi \) satisfies iv): Pick \(x \in \mathbb{X} \) and say \(\psi(f)(x) = t_1 \), \(\psi(g)(x) = t_2 \), with \(t_1 \leq t_2 \). Let \(t = t_1 + t_2 \) and note that, for any \(\varepsilon > 0 \),

\[
(f + g)^{-1}([t + \varepsilon, \infty]) \subset f^{-1}([t_1 + \frac{\varepsilon}{2}, \infty]) \cup g^{-1}([t_2 + \frac{\varepsilon}{2}, \infty]) .
\]

(Pick any \(z \in F \) such that \(f(z) + g(z) > t + \varepsilon \). Note that if \(f(z) > t_1 + \frac{\varepsilon}{2} \) then \(z \in f^{-1}([t_1 + \frac{\varepsilon}{2}, \infty]) \); if \(f(z) \leq t_1 + \frac{\varepsilon}{2} \) then \(g(z) > t_2 + \frac{\varepsilon}{2} \) which implies that \(z \in g^{-1}([t_2 + \frac{\varepsilon}{2}, \infty]) \). Since \(\psi(f)(x) = t_1 \) and \(\psi(g)(x) = t_2 \), we get that \(x \notin k(f^{-1}([t_1 + \frac{\varepsilon}{2}, \infty))) \) and \(x \notin k(g^{-1}([t_2 + \frac{\varepsilon}{2}, \infty])) \); hence \(x \notin k((f + g)^{-1}([t + \varepsilon, \infty])) \), (2) and (3'), which implies that \(\psi(f + g)(x) \leq t = \psi(f)(x) + \psi(g)(x) \), as required.

In order to show that v) is satisfied, let \(f \in C^*(F) \) and say \(\phi(f)(x) = t_0 \). Then \(x \notin k(f^{-1}([-\infty, t_0])) \) for \(t < t_0 \). Therefore, by conditions (3) for a \(\mathbb{K}_W \)-function, \(x \in k(f^{-1}([s, \infty])) \) for \(s < t < t_0 \) (because \(F = f^{-1}([s, \infty]) \cup f^{-1}([-\infty, t]) \)); therefore, \(\psi(f)(x) \geq t_0 = \phi(f)(x) \).

It is easily seen from the definitions of \(\phi \) and \(\psi \) that they satisfy vi).

Next, we show that \(\psi \) satisfies vii): Note that, for \(f, g \in C^*_{bc}(F) \) and \(t \in \mathbb{R} \),

\[
\sup(f, g)^{-1}([t, \infty]) = f^{-1}([t, \infty]) \cup g^{-1}([t, \infty]) .
\]

Pick \(x \in \mathbb{X} \) and let \(\psi(f)(x) = t_1 \), \(\psi(g)(x) = t_2 \); say \(t_1 \leq t_2 \). Then \(x \notin k(f^{-1}([t_1, \infty])) \) for \(t > t_1 \), and \(x \notin k(g^{-1}([t, \infty])) \) for \(t > t_2 \); therefore, by (3'),

\[
x \notin k(f^{-1}([t_1, \infty])) \cup k(g^{-1}([t_2, \infty])) \quad \text{for} \quad t > t_2 .
\]
Therefore, \(x \notin k(\sup(f,g)^{-1}([t, \infty])) \) for \(t > t_2 \), which implies that \(\psi(\sup(f,g))(x) \leq t_2 = \sup(\psi(f)(x), \psi(g)(x)) \). Since \(\psi(\sup(f,g)) \geq \sup(\psi(f), \psi(g)) \), because of iii), we get that \(\psi \) satisfies vii).

Similarly, one can prove that \(\phi \) satisfies viii); also, ix) follows immediately from the definitions of \(\phi \) and \(\psi \).

Finally, we show that x) is satisfied: Note that

\[
\bigcup_{\alpha} \phi(f_{\alpha})^{-1}([-\infty, 0]) = \bigcup_{\alpha} \left(\bigcup_{r < 0} k(f_{\alpha}^{-1}([-\infty, r])) \right) \subset k\left(\bigcup_{\alpha} f_{\alpha}^{-1}([-\infty, 0]) \right).
\]

Hence,

\[
\bigcup_{\alpha} \phi(f_{\alpha})^{-1}([-\infty, 0]) \cap F \subset \bigcup_{\alpha} f_{\alpha}^{-1}([-\infty, 0]) \cap F = \bigcup_{\alpha} f_{\alpha}^{-1}([-\infty, 0]),
\]

by (4). Since, for \(A \subset X \), \(\overline{A} \cap F \supset \overline{A \cap F} \), letting \(A = \bigcup_{\alpha} \phi(f_{\alpha})^{-1}([-\infty, 0]) \), we then get that

\[
\bigcup_{\alpha} \phi(f_{\alpha})^{-1}([-\infty, 0]) \cap F = \bigcup_{\alpha} f_{\alpha}^{-1}([-\infty, 0]).
\]

This completes the proof that a) implies b).

Since it is obvious that b) implies c), let us prove that c) implies a). Define \(k: \tau|F \to \tau \) by

\[
k(U) = \bigcup \left\{ \phi(f)^{-1}([-\infty, 0]) \mid f \in C^*(F, [-\infty, 1]) \right\}.
\]

Since \(\phi \) is a usc-extender and \(F \) is a Tychonoff space, one easily gets that \(k(U) \in \tau \) and \(k(U) \cap F = U \), for each \(U \in \tau|F \); also, \(k(\emptyset) = \emptyset \) and \(k(F) = X \), because of vi).

Next, note that \(k \) is monotone: Let \(U, V \in \tau|F \) such that \(U \subset V \). Note that \(f(F - U) \subset \{1\} \) implies that \(f(F - V) \subset \{1\} \), by i), which shows that \(k(U) \subset k(V) \).

Next, we prove that, for each \(U, V \in \tau|F \), \(k(U \cup V) = k(U) \cup k(V) \); i.e., \(k \) satisfies (3*): Since \(k \) is monotone, we need only prove that \(k(U \cup V) \subset k(U) \cup k(V) \). Let \(x \in k(U \cup V) \). Then there exists a function \(f \in C^*(F, [-\infty, 1]) \) such that \(f(F - U \cup V) \subset \{1\} \) and \(\phi(f)(x) < 0 \). By Lemma 1 in the Appendix, there exist functions \(f_1, f_2, f_3 \in C^*(F, [-\infty, 1]) \) such that \(f_1(F - U) \cup f_2(F - V) \cup f_3(F - U \cap V) \subset \{1\} \) and \(\inf(f_1, f_2, f_3) \leq f \). Then

\[
0 > \phi(f)(x) \geq \phi(\inf(f_1, f_2, f_3))(x) = \inf(\phi(f_1)(x), \phi(f_2)(x), \phi(f_3)(x)).
\]
Note that if $\phi(f_1)(x) < 0$ then $x \in k(U)$; if $\phi(f_2)(x) < 0$ then $x \in k(V)$; if $\phi(f_3)(x) < 0$ then $x \in k(U \cap V) \subset k(U) \cup k(V)$. Hence, $x \in k(U) \cup k(V)$.

Finally, we prove that $k(U) \cap F = U$: Let us say that $k(U) = \bigcup \{\phi(f_\alpha)^{-1}([-\infty, 0]) \mid \alpha \in \Lambda\}$. Then, since ϕ satisfies property x) of b), we get that

$$\overline{\mu(U)} \cap F = \bigcup_{\alpha} \phi(f_\alpha)^{-1}([-\infty, 0]) \cap F = \bigcup_{\alpha} f_\alpha^{-1}([-\infty, 0]) = \overline{U}.$$

Hence, $k(U) \cap F = U$, which completes the proof that c) implies a).

Theorem 3. For any space X, the following are equivalent:

a) X is a K_W-space;

b) X is a normal space and, for each nonempty closed subspace F of X, there exist extenders $\phi: C^*_usc(F) \to C^*_usc(X)$ and $\psi: C^*_lsc(F) \to C^*_lsc(X)$ such that

i) $\phi(f) \leq \phi(g)$ whenever $f \leq g$,

ii) $\psi(f) \leq \psi(g)$ whenever $f \leq g$,

iii) $\phi(aF) = aX = \psi(aF)$, for each $a \in \mathbb{R}$,

iv) $\phi(f) \leq \psi(f)$ whenever $f \in C^*(F)$,

v) For any subset $\{f_\alpha \mid \alpha \in \Lambda\}$ of $C^*(F)$ and $a \in \mathbb{R}$,

$$\bigcup_{\alpha} \phi(f_\alpha)^{-1}([-\infty, a]) \cap F = \bigcup_{\alpha} f_\alpha^{-1}([-\infty, a]),$$

$$\bigcup_{\alpha} \psi(f_\alpha)^{-1}(a, \infty] \cap F = \bigcup_{\alpha} f_\alpha^{-1}(a, \infty].$$

c) X is normal and, for any nonempty closed $F \subset X$, there exist extenders $\phi: C^*(F) \to C^*_usc(X)$ and $\psi: C^*(F) \to C^*_lsc(X)$ which satisfy iii), iv) and v) of b) for functions in $C^*(F)$.

Proof: a) implies b). This is essentially Proposition 11 of [1]. (The proof of condition v) in Proposition 11 of [1] can obviously be adapted to the more general condition v) of this result.)

Clearly, b) implies c).

c) implies a). (The proof of Theorem 4.1 in [2] surely helped us in devising this argument.) Let F be a nonempty closed subspace of (X, τ). For each $U \in \tau|F$,
Let

\[
\mu(U) = \bigcup \{ \phi(f)^{-1}([-\infty, 1]) \mid f \in C(F, [-2, 2]), f(F - U) \subset \{2\} \},
\]

\[
\nu(U) = \bigcup \{ \psi(f)^{-1}([-1, \infty]) \mid f \in C(F, [-2, 2]), f(F - U) \subset \{-2\} \},
\]

\[
k(U) = \mu(U) \cup \nu(U).
\]

If \(U \in \tau|F \) and \(z \in U \), then there exists \(f \in C(F, [-2, 2]) \) such that \(f(z) = -2 \) and \(f(F - U) \subset \{2\} \) (because \(X \) is Tychonoff). Since \(\phi \) is an extender, we get that \(U \cap \mu(U) = U \); similarly, \(U \cap \nu(U) = U \). Hence, \(F \cap k(U) = U \), for each \(U \in \tau|F \). Clearly, \(k(F) = X \) and \(k(\emptyset) = \emptyset \), because of iii).

It is easily seen that \(k(U) \subset k(V) \) whenever \(U \subset V \) (indeed, \(\mu(U) \subset \mu(V) \) and \(\nu(U) \subset \nu(V) \)).

Next, we prove that if \(U \cup V = F \) then \(k(U) \cup k(V) = X \) (Wlog, let us assume that \(U \neq F \neq V \)). Let \(x \in X \) and suppose that \(x \notin \mu(U) \). Then, for each \(f \in C(F, [-2, 2]) \) such that \(f(F - U) = 2 \), we get that \(\phi(f)(x) \geq 1 \). Pick \(h \in C(F, [-2, 2]) \) such that \(h(F - V) = -2 \) and \(h(F - U) = 2 \) (this can be done because \(F \) is normal). It follows that \(\psi(h)(x) \geq \phi(h)(x) \geq 1 \), which implies that \(x \in \nu(V) \). Similarly, if \(x \notin \mu(V) \) then \(x \in \nu(U) \). Consequently, we get that \(x \in k(U) \cup k(V) \), as required.

Finally, we prove that, for each \(U \in \tau|F \), \(\overline{k(U)} \cap F = \overline{U} \), by proving that \(\overline{\mu(U)} \cap F = \overline{U} = \overline{\nu(U)} \cap F \) (we will prove the first equality and note that the second equality can be similarly proved): Let us assume that \(\mu(U) = \bigcup \{ \phi(f_{\alpha})^{-1}([-\infty, 1]) \mid \alpha \in \Lambda \} \). Since \(\phi \) satisfies condition vi) of b), we get that

\[
\overline{\mu(U)} \cap F = \bigcup_{\alpha} \phi(f_{\alpha})^{-1}([-\infty, 1]) \cap F = \bigcup_{\alpha} f_{\alpha}^{-1}([-\infty, 1]) = \overline{U}.
\]

This completes the proof. ■

Theorem 4. For a space \((X, \tau)\), the following are equivalent:

i) \(X \) is a \(K_W \)-space;

ii) For each closed subspace \(F \) of \(X \) there exists a function \(k : \tau|F \rightarrow \tau \) such that

- \((1') F \cap k(U) = U \), for each \(U \in \tau|F \), \(k(F) = X \), \(k(\emptyset) = \emptyset \),
- \((2') k(U) \subset k(V) \) whenever \(U \subset V \),
- \((3') U, V \in \tau|F \), \(\overline{U} \cap \overline{V} = \emptyset \) implies \(k(U) \cap k(V) = \emptyset \),
- \((4') k(U) \cap F = \overline{U} \).
A STUDY OF K_W-SPACES AND K'_W-SPACES

Proof: i) implies ii). Let $\sigma: \tau[F \to \tau$ be a K_W-function and define $k: \tau[F \to \tau$ by $k(U) = U \cup (X - [F \cup \sigma(F - U)])$. (Note that

$$k(U) = U \cup (X - F) \cap (X - \sigma(F - U))$$

and $X - \sigma(F - U) \supset U$ because, by (4),

$$(X - \sigma(F - U)) \cap F = F - (\sigma(F - U) \cap F) = F - F - U \supset U.$$

Hence, we do get that $k(U) \in \tau$.

From the definition of k we immediately get that k satisfies (1').

k satisfies (2'): $U \subseteq V$ implies $U \subseteq V$ implies $F - V \subseteq F - U$ implies

$$\sigma(F - V) \subseteq \sigma(F - U)$$

implies $k(U) \subseteq k(V)$.

k satisfies (3'): $U \cap V = \emptyset$ implies $(F - U) \cup (F - V) = F$ implies $\sigma(F - U) \cup \sigma(F - V) = X$ implies

$$X - [F \cup \sigma(F - U)] \cap X - [F \cup \sigma(F - V)] =$$

$$= X - [F \cup \sigma(F - U)]^0 \cap X - [F \cup \sigma(F - V)]^0$$

$$= X - ([F \cup \sigma(F - U)]^0 \cup [F \cup \sigma(F - V)]^0) \supset$$

$$\subset X - (\sigma(F - U)^0 \cup \sigma(F - V)^0) \subset X - (\sigma(F - U) \cup \sigma(F - V)) = \emptyset.$$

Also, $U \cap V = \emptyset$ implies $U \subseteq F - V$ implies $U \subseteq \sigma(F - V)$ implies $U \subseteq \sigma(F - V)^0$ implies

$$U \cap (X - [F \cup \sigma(F - U)]^0) = \emptyset;$$

similarly, $V \cap (X - [F \cup \sigma(F - U)]^0) = \emptyset$. Consequently, $k(U) \cap k(V) = \emptyset$.

k satisfies (4'): $k(U) \cap F = \overline{U} \cup ((X - [F \cup \sigma(F - U)]) \cap F) \supset U$; since

$$X - [F \cup \sigma(F - U)] \cap F \subset X - \sigma(F - U) \cap F = (X - [\sigma(F - U)]^0) \cap F =$$

$$= F - (F \cap [\sigma(F - U)]^0) \subset F - (F \cap \sigma(F - U)) = F - (F - U) = \overline{U},$$

we then get that $k(U) \cap F = \overline{U}$.

ii) implies i). One need only check that the preceding arguments are essentially reversible; that is, starting with k, which satisfies (1')–(4'), define σ by

$$\sigma(U) = U \cup (X - [F \cup k(F - U)])$$

then σ is a K_W-function: It is easily seen that $F \cap \sigma(U) = U$, for each $U \in \tau[F$, $\sigma(F) = X$, $\sigma(\emptyset) = \emptyset$, and $\sigma(U) \subseteq \sigma(V)$.
Whenever $U \subset V$. Also, $U, V \in \tau F$ and $U \cup V = F$ implies $U^0 \cup V^0 = F$ (here, interiors refer to τF) implies $(F - U^0) \cap (F - V^0) = \emptyset$ if and only if $(F - U) \cap (F - V) = \emptyset$ implies $k(F - U) \cap k(F - V) = \emptyset$ implies

$$U \cup (X - [F \cup k(F - U)]) \cup V \cup (X - [F \cup k(F - V)]) =$$

$$= (U \cup V) \cup (X - [F \cup k(F - U)] \cap [F \cup k(F - V)])$$

$$= F \cup (X - [F \cup (k(F - U) \cap k(F - V))]) = F \cup (X - F) = X.$$

Therefore, $\sigma(U) \cup \sigma(V) = X$ whenever $U \cup V = F$. Finally, $\sigma(U) \cap F = U \cup (X - [F \cup k(F - U)]) \cap F \supset U$; since $X - [F \cup k(F - U)] \cap F \subset U$, we then get that $\sigma(U) \cap F = U$. We have thus shown that σ is a K_W-function, which completes the proof.

Corollary 5. K_W-spaces are collectionwise normal.

Proof: Let (X, τ) be a K_W-space and $A = \{A_\alpha | \alpha \in \Lambda\}$ be a discrete collection of closed subsets of X. Letting $F = \bigcup A$, we get that each $A_\alpha \in \tau F$. Letting $k : \tau F \to \tau$ be a function which satisfies conditions $(1')$ and $(3')$ of Theorem 4, we then get that $\{k(A_\alpha) | \alpha \in \Lambda\}$ is a pairwise-disjoint collection of closed subsets of X with each $A_\alpha \subset k(A_\alpha)$. This shows that X is collectionwise normal.

Appendix

The following result is crucial to our work. It probably is folklore.

Lemma 1. Let F be a completely normal space, U and V open subsets of F and $f : F \to [-\infty, 1]$ be a continuous function such that $f(F - U \cup V) \subset \{1\}$. Then there exist continuous functions $f_1, f_2, f_3 : F \to [-\infty, 1]$ such that

i) $f_1(F - U) \cup f_2(F - V) \cup f_3(F - U \cap V) \subset \{1\}$;

ii) $\inf(f_1, f_2, f_3) \leq f$.

Proof: Let us first consider the case $U \cup V \neq F$. Since F is completely normal and $\overline{U - V} \cap (V - U) = \emptyset = (U - V) \cap \overline{V - U}$, pick disjoint open U', V' such that $U - V \subset U'$ and $V - U \subset V'$. Let $f_1 = f$ on $U - V'$ and $f_1 = 1$ on $F - U$ and extend f_1 to $f_1 : F \to [-\infty, 1]$. Let $f_2 = f$ on $V - U'$ and $f_2 = 1$ on $F - V$ and extend f_2 to $f_2 : F \to [-\infty, 1]$. Let $f_3 = f$ on $U \cap V - (U' \cap V')$ and $f_3 = 1$ on $F - U \cap V$ and extend f_3 to $f_3 : F \to [-\infty, 1]$. Since $U \cup V = (U - V') \cup (V - U') \cup ([U \cap V] - (U' \cup V'))$, we immediately get that $\inf(f_1, f_2, f_3) \leq f$.

It is now clear that the result is also valid if \(U \cap V = \emptyset \). Finally, let us show that it also remains valid if \(U \cup V = F \): (Wlog, assume \(U \neq F \neq V \)). Simply pick open \(U', V' \) such that \(U' \subseteq U, \ V' \subseteq V \) and \(U' \cup V' = F \). Let \(f_1 = f \) on \(U' \) and \(f_1 = 1 \) on \(F - U \) and extend \(f_1 \) to \(f_1 : F \to]-\infty, 1[\). Let \(f_2 = f \) on \(V' \) and \(f_2 = 1 \) on \(F - V \) and extend \(f_2 \) to \(f_2 : F \to]-\infty, 1[\). Let \(f_3 = 1_F \). One immediately gets that \(\inf(f_1, f_2, f_3) \leq f \). □

Remark. Clearly, the preceding result remains valid for \(f : F \to [-1, \infty[, f(F - U \cup V) \subseteq \{-1\} \) and \(\sup(f_1, f_2, f_3) \geq f \).

REFERENCES

Carlos R. Borges,
Dep. of Mathematics, University of California,
Davis, California 95616-8633 – U.S.A.