PROPER LEFT TYPE-A COVERS

JOHN FOUNTAIN and GRACINDA M.S. GOMES

Introduction

Left type-A monoids form a special class of left abundant monoids. Interest in the latter arose originally from the study of monoids by means of their associated S-sets. A left abundant monoid is a monoid with the property that all principal left ideals are projective. All regular monoids are left abundant and so are many other types of monoid including right cancellative monoids. A left abundant monoid S is said to be left type-A if the set $E(S)$ of idempotents of S is a commutative submonoid of S and S also satisfies the condition that for any elements e in $E(S)$ and a in S we have $eS \cap aS = eaS$. In fact, [see 2] left type-A monoids are precisely those monoids which are isomorphic to certain submonoids of symmetric inverse monoids, namely those submonoids S of $I(X)$ which satisfy the condition that if α is in S, then $\alpha \alpha^{-1}$ is in S. Thus all inverse monoids are left type-A but there are many left type-A monoids which are not inverse, for example, right cancellative monoids which are not groups. We see from the characterization just given that for a topological space X, the submonoid of $I(X)$ consisting of continuous one-one partial maps is left type-A. In general, of course, this example is not inverse. A significant body of structure theory has been developed for left type-A monoids, much of it inspired by corresponding theory for inverse monoids. In particular, it is shown in [2] that for the study of general left type-A monoids the subclass of proper left type-A monoids plays a special role.

This paper is the last of a series of three devoted to studying proper left type-A monoids via categories. The ideas and techniques are inspired by those which Margolis and Pin introduced [5] in their study of E-dense and inverse monoids. The first paper [3] of the series showed that the work of Margolis and
Pin for E-dense monoids could be strengthened in the case of left type-A E-dense monoids to give generalizations of results on inverse monoids. This paper and the second [4] of the series are concerned with extending the techniques to apply to left type-A monoids in general. The concept of a left type-A monoid is essentially a one-sided notion and this is reflected in the fact that it is possible to generalize the methods in two ways. In [4] we considered right actions on categories and were led to new results on left type-A monoids.

In the present paper we study left type-A monoids by means of left actions on categories. This forces us to change both the nature of the categories considered and the definition of the action.

In Section 1 we use our new techniques to obtain a new proof of a theorem of Palmer [6] which characterizes proper left type-A monoids in terms of M-systems. Palmer’s result is a variation of a characterization obtained in [2]. The other main result of [2] is that every left type-A monoid has a proper left type-A cover. In [1] the categorical methods of Margolis and Pin were used to show that every E-dense monoid has an E-unitary dense cover. This result was relativized in [3] to the case of left type-A E-dense monoids showing that the cover constructed is proper and respects the relation R. In Section 2 of the present paper we adapt the techniques of [1] to obtain a new proof of the covering theorem of [2]. That is, we prove that every left type-A monoid has a left type-A $+$-cover. It is not difficult to see that this is, in fact, the dual of Theorem 3.3 of [2].

1 – Preliminaries

We start by recalling some of the definitions and results, presented in [3], for both left type-A monoids and categories.

On left type-A monoids

Let S be a monoid, with set of idempotents $E(S)$. On S, we define a binary relation R^*, which contains the Green’s relation R, as follows: for all $a, b \in S$,

$$(a, b) \in R^* \iff (\forall s, t \in S) \, sa = ta \iff sb = tb \, .$$

The monoid S is said to be left abundant if each R^*-class, R^*_a, contains an idempotent. When $E(S)$ is a semilattice, such idempotent is unique and it is denoted by a^+. If, in addition, S satisfies the type-A condition: for all $a \in S$ and $e \in E(S)$,

$$ae = (ae)^+a ,$$
we say that S is a left type-A monoid. It is shown in [2] that this definition is equivalent to those given in the Introduction.

We remind the reader of the following basic properties of left type-A monoids which we use frequently and without further mention:

1) For every $a, b, c \in S$, $aR^+ b$ implies $caR^+ cb$;
2) For every $a \in S$, $a = a^+ a$;
3) For every $e \in E(S)$ and $a \in S$, $(e a)^+ = e a^+$.

On a left type-A monoid S, the least right cancellative monoid congruence, σ, is defined by: for all $a, b \in S$,

$$(a, b) \in \sigma \iff (\exists e \in E(S)) e a = e b ;$$

and we say that S is proper if

$$\sigma \cap R^+ = \iota ,$$

where ι is the identity relation [2].

As usual by an E-unitary semigroup, we mean a semigroup S such that, for all $a \in S$ and $e \in E(S)$,

$$a e \in E(S) \text{ or } e a \in E(S) \Rightarrow a \in E(S) .$$

In [2], it is shown that every proper left type-A monoid is E-unitary but, however, the converse is not true.

On left type-A categories

Let C be a (small) category. We denote the set of objects of C by $\text{Obj} C$ and the set of morphisms by $\text{Mor} C$. For any object u of C, $\text{Mor}(u, -)$ stands for the set of morphisms of C with domain u and $\text{Mor}(-, u)$ for the set of morphisms of C with codomain u; we denote the identity morphism at the object u by O_u.

As in [5], we adopt an additive notation for the composition of morphisms. A morphism p is said to be an idempotent if $p = p + p$. Clearly, if p is an idempotent then $p \in \text{Mor}(u, u)$, for some $u \in \text{Obj} C$.

On the partial groupoid $\text{Mor} C$, we define the R^*-relation as for a monoid.

A category C is said to be E-left type-A if, for all $u \in \text{Obj} C$, $E(\text{Mor}(u, u))$ is a semilattice, every R^*-class R^*_p of $\text{Mor} C$ contains an idempotent p^+ (necessarily unique) and C satisfies the type-A condition, i.e. for all $u, v \in \text{Obj} C$, $p \in \text{Mor}(u, v)$ and $f \in E(\text{Mor}(v, v))$,

$$p + f = (p + f)^+ + p .$$

Let C^0 be an E-left type-A category with a distinguished object u_0 such that $\text{Mor}(u_0, u_0)$ is a semilattice. We say that C^0 is (left) u_0-connected if, for all
\[v \in \text{Obj} \mathcal{C}^0, \text{Mor}(u_0, v) \neq \emptyset. \] Also, \(\mathcal{C}^0 \) is called (left) \(u_0 \)-proper if, for all \(v \in \text{Obj} \mathcal{C}^0 \) and \(p, q \in \text{Mor}(u_0, v) \),

\[p^+ = q^+ \Rightarrow p = q, \]

i.e. each \(\mathcal{R}^* \)-class has at most an element of \(\text{Mor}(u_0, v) \).

To simplify the terminology, we say that an \(E \)-left type-\(A \), \(u_0 \)-connected and \(u_0 \)-proper category \(\mathcal{C}^0 \), with distinguished element \(u_0 \) is a \(u_0 \)-proper left category.

2 - \(u_0 \)-proper left categories

In this section, we begin by considering left actions of right cancellative monoids on \(E \)-left type-\(A \) categories. In particular, we introduce the ideas of a downwards action and a \(u_0 \)-closed action. We show that given a right cancellative monoid acting in this way on a \(u_0 \)-proper left category we can form a proper left type-\(A \) monoid and that any proper left type-\(A \) monoid arises in this way. We then use this result to recover a theorem of Palmer which states that every proper left type-\(A \) monoid is isomorphic to an \(M \)-monoid.

Definition 2.1. Let \(\mathcal{C} \) be an \(E \)-left type-\(A \) category and \(T \) a right cancellative monoid. We say that \(T \) acts (on the left) on \(\mathcal{C} \) (by \(\mathcal{R}^* \)-endomorphisms) if, for all \(u \in \text{Obj} \mathcal{C} \) and \(t \in T \), there exists a unique \(tu \in \text{Obj} \mathcal{C} \), and, for all \(u, v \in \text{Obj} \mathcal{C}, p \in \text{Mor}(u, v) \), there is a unique \(tp \in \text{Mor}(tu, tv) \) such that, for all \(u, v, w \in \text{Obj} \mathcal{C}, p \in \text{Mor}(u, v), q \in \text{Mor}(v, w) \) and \(t, t_1, t_2 \in T \),

- \(t(p + q) = tp + tq \),
- \((t_1 t_2) p = t_1(t_2 p) \),
- \(t O_v = O_{tv} \),
- \(1 p = p \),
- \((tp)^+ = tp^+ \).

It is not difficult to check that

Lemma 2.2. Let \(\mathcal{C}^0 \) be a \(u_0 \)-proper left category and \(T \) a right cancellative monoid acting on \(\mathcal{C}^0 \). Then

\[\mathcal{C}_{u_0} = \left\{ (p, t) : t \in T, p \in \text{Mor}(u_0, tu_0) \right\}, \]

with multiplication given by

\[(p, t)(q, s) = (p + tq, ts) \]
is a proper left type-A monoid such that $E(C_{u_0}) \simeq \text{Mor}(u_0, u_0)$.

Definition 2.3. Let C^0 be an E-left type-A category, with a distinguished object u_0, and T a right cancellative monoid acting on C^0. We say that the action of T on C^0 is downwards if, for all $u \in \text{Obj}C^0$ and $t \in T$,

$$\text{Mor}(tv, -) = t \text{Mor}(v, -).$$

On the other side, if the action of T over u_0 satisfies the following properties:

- $\text{Obj}C^0 = Tu_0$,
- for all $v \in \text{Obj}C^0$, if $\text{Mor}(v, u_0) \neq \emptyset$ then $v = gu_0$, for some unit $g \in T$,

we say that the action is u_0-closed.

Lemma 2.4. Let C^0 be a u_0-proper left category and T a right cancellative monoid acting on C^0. If, for all $v \in \text{Obj}C^0$,

$$\text{Mor}(v, u_0) \neq \emptyset \Rightarrow v = gu_0, \quad \text{for some unit } g \in T,$$

then, for all $p, q \in \text{Mor}(v, u_0)$,

$$p^+ = q^+ \Rightarrow p = q.$$

Proof: Let $p, q \in \text{Mor}(v, u_0)$ be such that $p^+ = q^+$. As $\text{Mor}(v, u_0) \neq \emptyset$, there exists a unit $g \in T$ such that $v = gu_0$. Now, as the action respects the operation $^+$, we have

$$(g^{-1}p)^+ = g^{-1}p^+ = g^{-1}q^+ = (g^{-1}q)^+,$$

where $g^{-1}p, g^{-1}q \in \text{Mor}(u_0, g^{-1}u_0)$. Whence, C^0 being u_0-proper, $g^{-1}p = g^{-1}q$ and, so $p = q$. $

Let M be a proper left type-A monoid and $T = M/\sigma$. We define the derived category D^0 (of the natural morphism $M \to M/\sigma$) as in [3]: $\text{Obj}D^0 = T$ and, for all $t_1, t_2 \in T$,

$$\text{Mor}(t_1, t_2) = \{(t_1, m, t_2) : m \in M, \ t_1(m \sigma) = t_2\},$$

with composition given by

$$(t_1, m, t_2) (t_2, n, t_3) = (t_1, mn, t_3).$$

The distinguished object of D^0 is 1, the identity of T. The action of T over D^0 is given by: for all $u \in \text{Obj}D^0$ and $t \in T$, tu is the result of the multiplication of t by u in T and for all $(u, m, v) \in \text{Mor}(u, v)$,

$$t(u, m, v) = (tu, m, tv).$$
Lemma 2.5. Let M be a proper left type-A monoid. Then the derived category D^0 is a 1-proper left category and the action of T on D^0 is downwards and 1-closed.

Proof: First, notice that if M is a proper left type-A monoid then M is E-unitary and, so $1 = E(M)$. Then, following [3, 4], we have that D^0 is an E-left type-A category where, for all $(t_1, m, t_2) \in \text{Mor}(D^0)$,

$$(t_1, m, t_2)^+ = (t_1, m^+, t_1)$$

and

$$E(\text{Mor}(t, t)) = \{(t, e, t) : e \in E(M)\} \simeq E(M).$$

In particular,

$$\text{Mor}(1, 1) = E(\text{Mor}(1, 1)) \simeq E(M).$$

The category D^0 is 1-connected since, for all $m \sigma \in M/\sigma = T$,

$$(1, m, m \sigma) \in \text{Mor}(1, m \sigma).$$

On the other hand, D^0 is 1-proper, since M is proper, i.e. $R^* \cap \sigma = \iota$.

It is a routine matter to verify that T acts on D^0 in such a way that $\text{Obj}(D^0) = T1$. To prove that T acts downwards, let $t \in T$, $u \in \text{Ob}(D^0)$ and $p \in \text{Mor}(tu, -)$. Then, there exists $m \in M$ such that

$$p = (tu, m, tu.m \sigma),$$

and, so

$$p = t(u, m, tu.m \sigma) \in t\text{Mor}(u, -).$$

It is obvious that $t\text{Mor}(u, -) \subseteq \text{Mor}(tu, -)$, hence $t\text{Mor}(u, -) = \text{Mor}(tu, -)$. Finally, let $p \in \text{Mor}(v, 1)$. Then, $p = (v, m, 1)$ for some $m \in M$ and $v.m \sigma = 1$. As T is right cancellative, $v.m \sigma = 1 = m \sigma.v$ and $v = v.1$ is a unit of T, as required.

Theorem 2.6. Let M be a monoid. Then, M is proper and left type-A if and only if $M \simeq C_{u_0}$, where u_0 is the distinguished object of a u_0-proper left category C^0 on which a right cancellative monoid T acts via an action which is downwards and u_0-closed.

Proof: In view of Lemma 2.2, under the above conditions, if $M \simeq C_{u_0}$, then M is a proper left type-A monoid.

Conversely, let M be a proper left type-A monoid. Then, by Lemma 2.5, the derived category D^0 of M is a 1-proper left category and $T = M/\sigma$ is a right
cancellative monoid which acts on \(D^0 \) with an action which is downwards and 1-closed. Now, we consider the map

\[
\psi: M \to C_1 = \{(p, t): t \in T, \ p \in \text{Mor}(1, t)\}
\]

\[
m \mapsto ((1, m, m\phi), m\phi),
\]

which is easily seen to be an isomorphism and the result follows.

Let \(C \) be an \(E \)-left type-A category. On \(\text{Mor} C \), we define a relation \(\preceq \) as follows: for all \(p, q \in \text{Mor} C \),

\[
p \preceq q \iff (\exists a \in \text{Mor} C) \ p^+ = a^+, \ a + q^+ = a .
\]

In [3], we showed that \(\preceq \) is a preorder on \(\text{Mor} C \) and that the relation defined by

\[
p \sim q \iff p \preceq q \ and \ q \preceq p
\]

defines an equivalence relation on \(\text{Mor} C \) which contains \(R^* \). Also, on the quotient set \(X = \text{Mor} C/ \sim \), we consider the partial order \(\leq \) given by, for all \(A_p, A_q \in X \),

\[
A_p \leq A_q \iff p \preceq q .
\]

If \(T \) is a right cancellative monoid acting on \(C \), we define an action (on the left) of \(T \) on the partially ordered set \(X \) in the following way: for all \(A_p \in X \) and \(t \in T \),

\[
t A_p = A_{tp} .
\]

Lemma 2.7. Let \(C^0 \) be a \(u_0 \)-proper left category and \(T \) a right cancellative monoid acting on \(C^0 \). If the action is such that, for all \(v \in \text{Obj} C^0 \),

\[
(\ast) \quad \text{Mor}(v, u_0) \neq \emptyset \ \Rightarrow \ v = g u_0, \ \text{for some unit} \ g \in T ,
\]

then the action of \(T \) over \(X \) respects the relations \(\preceq, \sim \) and \(\leq \).

Moreover, for all \(t, t' \in T \), \(p \in \text{Mor}(u_0, tu_0) \) and \(q \in \text{Mor}(u_0, t'u_0) \),

\[
A_p \wedge A_{tq} = A_{p+tq} .
\]

Proof: By bearing in mind condition \((\ast)\) and Lemma 2.4, the proof is similar to the proof of Lemma 3.12 of [3]. Notice that here we need \(C^0 \) to be \(u_0 \)-proper.

Lemma 2.8. Under the conditions of Lemma 2.7, let

\[
\mathcal{Y} = \left\{ A \in X: A \cap \text{Mor}(u_0, u_0) \neq \emptyset \right\} .
\]
Then

a) \(\mathcal{Y} \) is a semilattice of \(\mathcal{X} \) with greatest element \(F = A_{O_{u_0}} \);

b) \(\mathcal{Y} = \left\{ A \in \mathcal{X}; (\exists v \in \text{Obj} \mathcal{C}^0) \ A \cap \text{Mor}(u_0, v) \neq \emptyset \right\} \);

c) \((\forall t \in T) \ (\forall B \in \mathcal{Y}) \ B \leq tF \iff B \cap \text{Mor}(u_0, tu_0) \neq \emptyset \);

d) \((\forall t \in T) \ (\exists B \in \mathcal{Y}) \ B \leq tF \).

Proof: Since \(\mathcal{C}^0 \) is a \(u_0 \)-proper left category, \(\text{Mor}(u_0, u_0) \) is a semilattice and condition a) follows from the previous lemma.

On any \(E \)-left type-\(A \) category \(\mathcal{C} \), for all \(u, v \in \text{Obj} \mathcal{C} \) and \(p \in \text{Mor}(u_0, v) \), we must have \(p^+ \in \text{Mor}(u_0, u_0) \). Since the equivalence \(\sim \) contains \(\mathcal{R}^* \), condition b) must hold.

c) Let \(t \in T \) then \(tF = A_{O_{tu_0}} \). Let \(B = A_q \in \mathcal{Y} \), with \(q \in \text{Mor}(u_0, u_0) \). Suppose that \(B \leq tF \). Then, \(q \leq O_{tu_0} \). Thus, there exists \(r \in \text{Mor}(u_0, tu_0) \) such that \(q^+ = r^+ \) and, so
\[
A_q = r^+ \cap \text{Mor}(u_0, tu_0).
\]
Conversely, suppose that there exists \(r \in A_q \cap \text{Mor}(u_0, tu_0) \). Then, \(r + O_{tu_0} = r \).

Hence, \(r \leq O_{tu_0} \) and \(A_r = B \leq tF \).

d) Let \(t \in T \). Since \(\mathcal{C}^0 \) is \(u_0 \)-connected, there exists \(a \in \text{Mor}(u_0, tu_0) \). Thus, \(A_a \in \mathcal{Y} \), by condition b), and \(a \leq O_{tu_0} \).

Next, we make the connection between the characterization of a proper left type-\(A \) monoid \(M \) as an \(M \)-monoid [6] and the characterization of \(M \), via categories, as a \(\mathcal{C}_{u_0} \) monoid. We start by describing an \(M \)-monoid.

Definition 2.9 [6]. Let \(X \) be a partially ordered set and \(Y \) a subsemilattice of \(X \) with greatest element \(f \). Let \(T \) be a right cancellative monoid acting (on the left) on \(X \), in such a way that

- \((\forall a \in X) \ 1a = a \);
- \((\forall a, b \in X) \ (\forall t \in T), a \leq b \Rightarrow ta \leq tb \);
- \(X = TY \);
- \((\forall t \in T) \ (\exists b \in Y) \ b \leq tf \);
- \((\forall a, b \in Y) \ (\forall t \in T) a \leq tf \Rightarrow a \wedge tb \in Y \);
- \((\forall a, b, c \in Y) \ (\forall t, t' \in T), a \leq tf, b \leq tf' \Rightarrow (a \wedge tb) \wedge tt'c = a \wedge t(b \wedge t'c) \).

Then, we define
\[
M(T, X, Y) = \left\{ (a, t) \in Y \times T : a \leq tf \right\}.
\]
with multiplication given by
\[(a, t) (b, t') = (a \land tb, tt'),\]
and obtain a monoid which we call an \(M\)-monoid.

Theorem 2.10 [6]. Every proper left type-\(A\) monoid \(M\) is isomorphic to an \(M\)-monoid \(M(T, X, Y)\). Also, in \(M(T, X, Y)\), for all \((a, t), (b, t')\):

- \((a, t) R^* (b, t') \iff a = b;\)
- \((a, t) \sigma (b, t') \iff t = t';\)
and so \(T \simeq M(T, X, Y)/\sigma\).

Lemma 2.11. Let \(C^0\) be a \(u_0\)-proper left category and \(T\) be a right cancellative monoid acting downwards on \(C^0\). If this action is \(u_0\)-closed, then \(M(T, X, Y)\) is an \(M\)-monoid.

Proof: By Lemma 2.8, \(Y\) is a subsemilattice, with greatest element \(F = A_{O_{u_0}}\) of the partially ordered set \(X\). Now, we verify that \((T, X, Y)\) satisfies the properties of Definition 2.9. Let \(A_p, A_q \in X\) and \(t \in T\). Clearly, \(1A_p = A_{1p} = A_p\) and, by Lemma 2.7,

\[A_p \leq A_q \Rightarrow p \leq q \Rightarrow tp \leq tq \Rightarrow tA_p \leq tA_q .\]

Now, let \(A_p \in X\) with \(p \in \text{Mor}(v, v)\). As the action of \(T\) on \(C^0\) is \(u_0\)-closed, \(v = tu_0\), for some \(t \in T\). Thus, \(p^+ \in \text{Mor}(tu_0, tu_0)\) and, as \(T\) acts downwards on \(C^0\), there exists \(r \in \text{Mor}(u_0, u_0)\) such that \(p^+ = tr\). Whence, \(A_r \in Y\) and

\[A_p = A_{p^+} = A_tr = tA_r \in Y.\]

Next, let \(t \in T\). By Lemma 2.8 d), there exists \(A_a \in Y\) such that

\[A_a \leq tF.\]

To prove the fifth condition suppose that \(A_a, A_b \in Y\), with \(a, b \in \text{Mor}(u_0, u_0)\), and let \(t \in T\) be such that \(A_a \leq tA_{O_{u_0}}\). By Lemma 2.8 c), \(A_a = A_r\), for some \(r \in \text{Mor}(u_0, tu_0)\). Hence, by Lemma 2.7, there exists

\[A_a \land tA_b = A_r \land A_{tb} = A_{r+tb} = A_{(r+tb)^+} \in Y.\]

Finally, let \(A_a, A_b, A_c \in Y\) with \(a, b, c \in \text{Mor}(u_0, u_0)\) and \(t, t' \in T\). Suppose that \(A_a \leq tF\) and \(A_b \leq t'F\). Then, as before, there exist \(r \in \text{Mor}(u_0, tu_0) \cap A_a\) and \(r' \in \text{Mor}(u_0, tu'_0) \cap A_b\). Now, by Lemma 2.7,

\[A_a \land tA_b = A_r \land tA_{r'} = A_{r+tr'},\]
and
Again, by Lemma 2.7,
\[(A_a \land tA_b) \land t' t' A_c = A_{r+tr'} \land t t' A_c = A_{r+tr'+tt' c}\]
and
\[A_a \land t(A_b \land t' A_c) = A_r \land tA_{r'+t' c} = A_{r+t(r'+t' c)} = A_{r+tr'+t' c}.
\]
Therefore $M(T,X,Y)$ is an M-monoid, as required. ■

By Theorem 2.10, we know that every proper left type-A monoid M is iso-
morphic to an M-monoid M. The above results allow us to obtain a clearer
construction of such an M and a new proof of the theorem.

Theorem 2.12. Let M be a proper left type-A monoid, $T = M/\sigma$ and
D^0 its derived category. Then, $M \simeq M(T,X,Y)$, where $X = \text{Mor}D^0/\sim$ and
$Y = \{A \in X: A \cap \text{Mor}(1,1) \neq \emptyset\}$.

Proof: In view of Theorem 2.6 and Lemma 2.11, it only remains to prove
that $C_1 \simeq M(T,X,Y)$. Consider the map
\[
\theta: C_1 \to M(T,X,Y)
\]
\[(p,t) \mapsto (A_p,t).\]

It follows from Lemma 2.8 c) that θ is well defined. By Lemma 2.7, θ is a
morphism. Again, by Lemma 2.8 c), θ is onto. To see that θ is injective, let
$q,p \in \text{Mor}(1,t)$, for some $t \in T$, be such that $A_p = A_q$, i.e. $p \sim q$. Thus, there
exists $a \in \text{Mor}D^0$ such that $p^+ = a^+$, $a + q^+ = a$. Hence $a \in \text{Mor}(1,1)$ and
$a = a^+$. Thus $p^+ = a^+ = a^+ + q^+ = p^+ + q^+$. Similarly, $q^+ = q^+ + p^+$. As
$\text{Mor}(1,1)$ is a semilattice, $p^+ = q^+$. Finally, D^0 being 1-proper, it follows that
$p = q$, as required. ■

3 – Proper left type-A covers of left type-A monoids

In this section we are concerned to show that for each left type-A monoid M
there is a proper left type-A monoid P and an idempotent separating homomor-
phism $\theta: P \to M$ from P onto M such that $a^+ \theta = (a \theta)^+$. We express this result
by saying that M has a proper left type-A^+-cover. It (or rather its dual) was
originally proved in [2] although it is stated somewhat differently there. For the
alternative proof which we present here we use the theory developed in Section 2 and a modification of the method of [1].

Before embarking on the proof we illustrate the notion of proper left type-A \(+ \)-cover by the following example. Let \(X \) be a topological space. We denote by \(G(X) \) the monoid of all continuous bijections from \(X \) to itself under composition. Certainly \(G(X) \) is cancellative but it is not a group in general. We let \(\mathcal{I}_c(X) \) denote the monoid of all continuous one-one partial maps from \(X \) to itself under composition of partial functions. Finally, \(\mathcal{P}(X) \) denotes the power set of \(X \) regarded as a semilattice under the operation of intersection. We define a left action of \(G(X) \) on \(\mathcal{P}(X) \) by the rule that \(\sigma Y = Y \sigma^{-1} \) for all \(\sigma \) in \(G(X) \) and all subsets \(Y \) of \(X \). It is then easy to verify that the multiplication

\[
(Y, \sigma)(Z, \tau) = (Y \cap \sigma Z, \sigma \tau)
\]

makes the set \(\mathcal{P}(X) \times G(X) \) into a monoid \(\mathcal{P}(X) * G(X) \) (a semidirect product of \(\mathcal{P}(X) \) and \(G(X) \)). It is also readily checked that this monoid is proper left type-A with semilattice of idempotents \(\{(Y, 1) : Y \in \mathcal{P}(X)\} \) and \((Y, \sigma)^{+} = (Y, 1) \). Indeed, \(\mathcal{P}(X) * G(X) \) is nothing other than \(M(G(X), \mathcal{P}(X), \mathcal{P}(X)) \). We claim that it is a left type-A \(+ \)-cover of \(\mathcal{I}_c(X) \). To see this consider the surjective function \(\mu : \mathcal{P}(X) \# G(X) ! \mathcal{I}_c(X) \) defined by

\[
(Y, \sigma) \mu = \sigma Y,
\]

where \(\sigma Y \) denotes the partial map with domain \(Y \) obtained by restricting \(\sigma \). It is routine to show that \(\mu \) is an idempotent separating homomorphism and that \(((Y, \sigma)^{+}) \mu = ((Y, \sigma) \mu)^{+} \). Of course, this example is very familiar when \(X \) has the discrete topology and we have an \(E \)-unitary cover of the symmetric inverse monoid on \(X \).

We now start our proof with a technical lemma on left type-A monoids.

Lemma 3.1. Let \(M \) be a left type-A monoid and let \(s \in S \). If \(s = e_0x_1e_1 \cdots e_{n-1}x_ne_n \), for some \(n \in \mathbb{N}, \ x_i \in M \ (i = 1, \ldots, n) \) and \(e_j \in E(M) \ (j = 0, \ldots, n) \), then

\[
s = s^{+}(x_1 \cdots x_n).
\]

Proof: Suppose that \(n = 0 \), then \(s = e_0 \) and \(s = s^+ \). Now, let us assume that the result is true for \(n \). Suppose that

\[
s = e_0x_1 \cdots x_ne_ne_{n+1}e_{n+1}.
\]

Then,

\[
s = r \cdot x_{n+1}e_{n+1}.
\]
where \(r = e_0 x_1 e_1 \cdots x_n e_n \). Hence, by the induction hypothesis, \(r = r^+ (x_1 \cdots x_n) \) and so
\[
s = r^+ (x_1 \cdots x_n) \cdot x_{n+1} e_{n+1}.
\]
Thus
\[
s = r^+ (x_1 \cdots x_{n+1} e_{n+1})^+ x_1 \cdots x_{n+1}
= (r^+ x_1 \cdots x_{n+1} e_{n+1})^+ x_1 \cdots x_{n+1}
= s^+ x_1 \cdots x_{n+1},
\]
as required.

Let \(M \) be a left type-\(A \) monoid with set of idempotents \(E \). Put \(X = M \setminus \{1\} \). We start by considering \(X^* \), the free monoid on \(X \) with identity 1. We write the non-identity elements as sequences \((x_1, ..., x_n)\), where \(n \geq 1 \) and \(x_i \in X \) \((i = 1, ..., n)\). To each word \(w \in X^* \) we associate a subset \(M_w \) of \(M \), in the following way:
\[
M_w = \begin{cases}
E & \text{if } w = 1, \\
Ex_1Ex_2E \cdots x_{n-1}Ex_nE & \text{if } w = (x_1, ..., x_n).
\end{cases}
\]
It is clear that, for all \(v, w \in X^* \), we have
\[
M_{vw} = M_v M_w.
\]
Now, define a category \(\mathcal{C}^0 \) as follows:
\[
\text{Obj} \mathcal{C}^0 = X^*
\]
and, for all \(v, w \in X^* \),
\[
\text{Mor}(v, w) = \begin{cases}
\{(v, s, w) : s \in M_w\} & \text{if } w = vw_1, \text{ for some } w_1 \in X^*, \\
\emptyset & \text{otherwise}.
\end{cases}
\]
The composition law is given by
\[
(v, s, w) + (w, t, u) = (v, st, u).
\]
Clearly, the composition is well defined and associative. Also, for any object \(v \),
\[
\text{Mor}(v, v) = \{(v, e, v) : e \in E\}
\]
and \((v, 1_M, v)\) is the identity on \(\text{Mor}(v, v) \), where \(1_M \) denotes the identity of \(M \). Thus, \(\mathcal{C}^0 \) is indeed a category.
Next, we consider a (left) action of the (right) cancellative monoid X^* on the category C^0: the action of X^* on $\text{Obj}C^0$ is given by the multiplication on X^* and, for all $u \in X^*$ and $(v, s, w) \in \text{Mor}C^0$,

$$u(v, s, w) = (uv, s, uw).$$

It is easy to verify that this action is well defined.

We choose 1 to be the distinguished object of C^0.

Lemma 3.2. Let M be a left type-A monoid. Then C^0 is a left proper category with distinguished object 1. Also, the right cancellative monoid X^* acts (on the left) downwards on C^0. The action is 1-closed.

Proof: Most of the required properties of C^0 and of the action of X^* over C^0 are easy to prove, once we notice that:

- For all $u \in \text{Obj}C^0$, $\text{Mor}(u, u) = \{(u, e, u) : e \in E\} \simeq E$;
- For all $(u, s, v) \in \text{Mor}(u, v)$, $(u, s, v)^+ = (u, s^+, u)$;
- The unique unit of X^* is the empty word 1.

Here, we only prove that C^0 is 1-proper. Let $v \in X^*$ and $(1, s, v), (1, t, v) \in \text{Mor}(1, v)$ be such that $(1, s, v)^+ = (1, t, v)^+$. Then, $s^+ = t^+$ and $s, t \in M_v$. If $v = 1$, then $M_v = E$ and we have $s = s^+ = t^+ = t$. Whence $(1, s, v) = (1, t, v)$. If $v \neq 1$, let $v = (x_1, ..., x_n)$, where $n > 0$ and $x_i \in X$ ($i = 1, ..., n$). Thus, there exist $e_1, ..., e_n, f_1, ..., f_n \in E$ such that

$$s = e_1x_1e_2 \cdots e_nx_ne_{n+1}$$

and

$$t = f_1x_1f_2 \cdots f_nx_nf_{n+1}.$$

By Lemma 3.1,

$$s = s^+(x_1 \cdots x_n) \quad \text{and} \quad t = t^+(x_1 \cdots x_n).$$

Hence, as $s^+ = t^+$, we have $s = t$. Therefore

$$(1, s, v) = (1, t, v)$$

and C^0 is 1-proper, as required. ♦

Definition 3.3. Let M and N be left type-A monoids we say that N is a $^+$-cover of M if there exists an idempotent separating monoid morphism θ from N onto M that respects the operation $^+$, that is, for all $a \in N$, $a^+ \theta = (a \theta)^+$.

Theorem 3.4. Every left type-A monoid has a proper left type-A $^+$-cover.

Proof: Suppose that M is a left type-A monoid. Let C^0 be the category defined before. We have

$$C_1 = \left\{ ((1, s, u), u) : u \in X^*, s \in M_u \right\}$$

and the multiplication on C_1 is given by

$$((1, s, u), u)(1, t, v), v) = ((1, st, uv), uv).$$

The identity of C_1 is $((1, 1^M, 1), 1)$. By Lemmas 3.2 and 2.2, C_1 is a proper left type-A monoid. Now, let us consider the map

$$\theta : C_1 \to M$$

$$((1, s, u), u) \mapsto s.$$

Clearly, θ is monoid morphism and is, in fact, a $^+$-morphism. Because

$$((1, s, u), u)^+ \theta = ((1, s^+, 1), 1) \theta = s^+ = (((1, s, u), u) \theta)^+.$$

That θ is onto follows from the fact that, for all $a \in M \setminus \{1\} = X$,

$$a = ((1, a, (a)), (a)) \theta.$$

Finally, as

$$E(C_1) = \left\{ ((1, e, 1), 1) : e \in E \right\},$$

we have that $\theta|_{E(C_1)}$ is an isomorphism from $E(C_1)$ into E. Therefore, C_1 is a proper left type-A $^+$-cover of M, as required.

REFERENCES

John Fountain,
Dept. Mathematics, University of York,
Heslington, York, YO15DD – ENGLAND

and

Gracinda M.S. Gomes,
Dep. Matemática, Universidade de Lisboa,
Rua Ernesto de Vasconcelos, C1, 1700 Lisboa – PORTUGAL