A GENERALIZATION OF A THEOREM OF CARLITZ

Mireille Car

Abstract: Extending Carlitz’s theorem on sums of two squares, we study the number of representations of a polynomial in $\mathbb{F}_q[T]$ as a norm in the extension $\mathbb{F}_{q^k}[T]$ of $\mathbb{F}_q[T]$ of a polynomial in $\mathbb{F}_{q^k}[T]$.

Généralisant un théorème de Carlitz sur les sommes de deux carrés, nous étudions le nombre de représentations d’un polynôme de $\mathbb{F}_q[T]$ comme norme dans l’extension $\mathbb{F}_{q^k}[T]$ de $\mathbb{F}_q[T]$ d’un polynôme de $\mathbb{F}_{q^k}[T]$.

1 – Introduction

Let \mathbb{F}_q be the finite field with q elements. If q is odd, sums of squares in $\mathbb{F}_q[T]$ are well known, cf. [2], [3], [4], [5], [6], [7], [8]. In these papers, one can find formulas which give the number $r_k(M)$ of representations of a polynomial $M \in \mathbb{F}_q[T]$ as a sum of k squares. As a corollary to the general result proved by Carlitz in [1], one may deduce that

$$r_2(M) = (q + 1) \sum_{D|\deg M} (-1)^{\deg D},$$

if -1 is not a square in \mathbb{F}_q, the symbol \ast being used to indicate that all polynomials D in the sum are monic. This is not true if -1 is a square in \mathbb{F}_q. When -1 is not a square in \mathbb{F}_q, a sum of two squares in $\mathbb{F}_q[T]$ is a norm of a polynomial of the extension $\mathbb{F}_{q^2}[T]$ of $\mathbb{F}_q[T]$. We shall prove that the above formula is true in all cases if $r_2(M)$ is defined as the number $\Omega_2(M)$ of polynomials $B \in \mathbb{F}_q[T]$, such that M is the norm of B in the extension $\mathbb{F}_{q^2}[T]$ of $\mathbb{F}_q[T]$ and that the number $\Omega_h(M)$ of polynomials $B \in \mathbb{F}_{q^h}[T]$, such that M is the norm of a polynomial

Received: April 24, 1992; Revised: November 13, 1992.
\[B \text{ in the extension } \mathbb{F}_q^h[T] \text{ of } \mathbb{F}_q[T] \text{ is given by a formula of the same type:} \]

\[\Omega_h(M) = \frac{q^h - 1}{q - 1} \sum_{D|\mu} \epsilon(D), \]

where \(\epsilon \) is a multiplicative function to be defined later on.

2 – Notation

If \(F \) is any field, we denote by \(F^* \) the set of the non zero elements of \(F \).

Let \(h \) be an integer such that \(h \geq 2 \). We denote by \(N \) the norm of the extension \(\mathbb{F}_q^h[T] \) of \(\mathbb{F}_q[T] \). Let \(\theta \in \mathbb{F}_q^h \) such that \(\mathbb{F}_q^h = \mathbb{F}_q(\theta) \). We denote by \(\theta_1 = \theta, \ldots, \theta_h \) all the roots of the minimal polynomial of \(\theta \) over \(F \). Obviously, every polynomial \(A \in \mathbb{F}_q^h[T] \) admits an unique representation as a sum

\[A = A_0 + A_1 \theta + \ldots + A_{h-1} \theta^{h-1}, \]

and the \(h \) conjugates of \(A \) are the polynomials

\[A_i = A_0 + A_1 \theta_i + \ldots + A_{h-1} \theta_i^{h-1}, \quad 1 \leq i \leq h. \]

Since

\[N(A) = A_1 \times A_2 \times \ldots \times A_h, \]

there is an homogeneous polynomial \(\Phi \in \mathbb{F}_q[Y_0, \ldots, Y_{h-1}] \), only depending on \(h \), such for every \(A = A_0 + A_1 \theta + \ldots + A_{h-1} \theta^{h-1} \) belonging to \(\mathbb{F}_q^h[T] \),

\[N(A) = \Phi(A_0, \ldots, A_{h-1}), \]

and the number \(\Omega_h(A) \) may be seen as the number of solutions \((A_0, \ldots, A_{h-1}) \in \mathbb{F}_q^h \) of the equation

\[A = \Phi(A_0, \ldots, A_{h-1}), \]

Let \(A \in \mathbb{F}_q[T] \). If there exists \(A \in \mathbb{F}_q^h[T] \) such that \(A = N(A) \), we shall say simply that \(A \) is a norm.

Let \(A \in \mathbb{F}_Q[T] \), resp. \(A \in \mathbb{F}_q^h[T] \) be different from \(0 \). We denote by \(\text{sgn}(A) \), resp. \(\text{sgn}(A) \), the coefficient of the highest degree term in \(A \), resp. in \(A \).

If \(E \) is a finite set, we denote by \(\#(E) \) the number of elements of \(E \).
3 – The set of norms

Proposition 3.1. If $A \in \mathbb{F}_{q^h}[T]$ is monic, then $N(A)$ is monic and $\text{deg}(N(A)) = h \text{deg} A$.

Proof: Since $N(1) = 1$, it suffices to prove the proposition for a monic polynomial $A \in \mathbb{F}_{q^h}[T]$ whose degree is positive. Let

$$A = T^n + \sum_{i=1}^{n} \alpha_i T^{n-i}, \quad \alpha_i \in \mathbb{F}_{q^h}, \quad n \geq 1,$$

be such a polynomial. For every $i = 1, \ldots, n$, let $a_{i,0}, \ldots, a_{i,h-1} \in \mathbb{F}_q$, such that

$$\alpha_i = \sum_{k=0}^{h-1} a_{i,k} \theta^k.$$

If we write A as a sum

(3.1) $$A = A_0 + A_1 \theta + \ldots + A_{h-1} \theta^{h-1},$$

then

$$A_0 = T^n + \sum_{i=1}^{n} a_{i,0} T^{n-i},$$

and, for $k = 1, \ldots, h-1$,

$$A_k = \sum_{i=1}^{n} a_{i,k} T^{n-i}.$$

From (3.1), we get that

$$N(A) = A_0^h + \psi(A_0, \ldots, A_{h-1})$$

where ψ is a polynomial in $\mathbb{F}_q[Y_0, \ldots, Y_{h-1}]$ which does not contain the monomial Y_0^h. Whence,

$$\deg\left(\psi(A_0, \ldots, A_{h-1})\right) < h n = \deg(A_0^h),$$

$$\deg(N(A)) = h n$$

and the leading term in $N(A)$ is the leading term in A_0^h, that is to say T^{hn}. \(\blacksquare\)

Proposition 3.2. Let $A \in \mathbb{F}_q[T]$ be different from 0. Then, A is a norm if and only if $\text{sgn}(A)^{-1} A$ is a norm. In that case, h divides $\text{deg} A$.

Proof: According to Hilbert’s theorem, every non-zero element in \mathbb{F}_q is the norm of an element of \mathbb{F}_{q^h}, (cf. [1], §11). There exists $\alpha \in \mathbb{F}_{q^h}$ such that
\text{sgn}(A) = N(\alpha)$. If $\text{sgn}(A)^{-1}A$ is a norm, then A is a norm, and conversely. Let $A \in \mathbb{F}_{q^h}[T]$, $A = N(A)$, $H \in \mathbb{F}_{q^h}[T]$ and $\mathcal{H} \in \mathbb{F}_{q^h}[T]$ monic such that $A = \text{sgn}(A)H$ and $A = \text{sgn}(A)\mathcal{H}$. Then, $\text{sgn}(A)H = N(A) = N(\text{sgn}(A))N(\mathcal{H})$.

Since $N(\mathcal{H})$ is monic, $H = N(\mathcal{H})$ and $\deg A = \deg H = h \deg \mathcal{H}$.

\textbf{Proposition 3.3.} Let $P \in \mathbb{F}_q[T]$ be monic and irreducible. Then, P is the norm of a monic polynomial $\mathcal{P} \in \mathbb{F}_{q^h}[T]$ if and only if h divides $\deg P$. In that case, \mathcal{P} is irreducible and its degree is $\frac{\deg P}{h}$.

\textbf{Proof:} We suppose $P = N(\mathcal{P})$, where $\mathcal{P} \in \mathbb{F}_{q^h}[T]$ is monic. Proposition 3.1 says that $\deg P = h \deg \mathcal{P}$. It remains to prove that \mathcal{P} is irreducible. We suppose that there exists an integer $r \geq 1$, monic irreducible polynomials $\mathcal{P}_1, \ldots, \mathcal{P}_r$ in $\mathbb{F}_{q^h}[T]$, positive integers e_1, \ldots, e_r, such that

$$P = \mathcal{P}_1^{e_1} \times \cdots \times \mathcal{P}_r^{e_r}.$$

Then,

$$P = N(\mathcal{P}) = N(\mathcal{P}_1^{e_1} \times \cdots \times \mathcal{P}_r^{e_r}) = N(\mathcal{P}_1)^{e_1} \times \cdots \times N(\mathcal{P}_r)^{e_r}.$$

Then, $r = 1$, $e_1 = 1$ and $\mathcal{P} = \mathcal{P}_1$ is irreducible.

We suppose that h divides $\deg P$. Let

$$m = \frac{\deg P}{h}.$$

Let $\mathcal{L} \in \mathbb{F}_{q^h}[T]$ be monic, irreducible, and such that $\deg(\mathcal{L}) = m$. It is well known that such \mathcal{L} exists. A proof of this may be provided by theorem 3.25 of [9]. Then,

$$\mathbb{F}_{q^h}[T]/(\mathcal{L}) = \mathbb{F}_{q^{h \deg(\mathcal{L})}} = \mathbb{F}_{q^{\deg P}} = \mathbb{F}_q[T]/(P),$$

where (\mathcal{L}) denotes the ideal generated by \mathcal{L} in $\mathbb{F}_{q^h}[T]$, and (P) the ideal generated by P in $\mathbb{F}_q[T]$. In the ring $\mathbb{F}_{q^h}[T]$, \mathcal{L} divides P. We put

$$P = \mathcal{L} \mathcal{H},$$

with $\mathcal{L} \in \mathbb{F}_{q^h}[T]$.

Let d be the least integer such that $\mathcal{L} \in \mathbb{F}_{q^d}[T]$. Then d divides h and $\mathcal{H} \in \mathbb{F}_{q^d}[T]$. Let $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be the d different conjugates of \mathcal{L} in the extension $\mathbb{F}_{q^d}[T]$ of $\mathbb{F}_q[T]$, and $\mathcal{H}_1, \ldots, \mathcal{H}_d$ be the d conjugates of \mathcal{H} in the same extension. Then, for each index i,

$$P = \mathcal{L}_i \mathcal{H}_i.$$
Since \(L_1, \ldots, L_d \) are distinct irreducible polynomials, the product \(L_1 \times \ldots \times L_d \) divides \(P \). Since \(P \) is irreducible

\[
P = L_1 \times \ldots \times L_d ,
\]
\[
\deg P = d \deg L_1 = d \deg L .
\]

With (i) we get that \(h = d \) and (ii) shows that \(P \) is the norm of \(L_1 = L \).

Proposition 3.4. Let \(P \in \mathbb{F}_q[T] \) be monic and irreducible, let

\[
d = \text{G.C.D.}(h, \deg P) ,
\]

and let \(a \) be a non negative integer. Then

1. There exist \(d \) monic irreducible polynomials \(P_1, \ldots, P_d \) in \(\mathbb{F}_q[T] \) which remain irreducible in \(\mathbb{F}_{q^h}[T] \) such that
 \[
P = P_1 \times \ldots \times P_d ;
 \]

2. \(P^a \) is a norm if and only if \(\frac{h}{d} \) divides \(a \);

3. If \(P^a \) is norm of a polynomial \(\mathcal{H} \in \mathbb{F}_{q^h}[T] \), then,
 - If \(d = 1 \), \(\mathcal{H} \in \mathbb{F}_q[T] \),
 - If \(d > 1 \), there exist non negative integers \(a_1, \ldots, a_d \) such that
 \[
 \mathcal{H} = P_{a_1}^1 \times \ldots \times P_d^{a_d} \quad \text{and} \quad \frac{ad}{h} = a_1 + \ldots + a_d .
 \]

Proof: Let

\[
k = \frac{h}{d}, \quad m = \frac{\deg P}{d} .
\]

Then, \(k \) and \(m \) are coprime. According to proposition 3.3, there exist \(d \) monic irreducible polynomials \(P_1, \ldots, P_d \) in \(\mathbb{F}_{q^d}[T] \) such that

\[
P = P_1 \times \ldots \times P_d .
\]

Let \(N_1 \) be the norm of the extension \(\mathbb{F}_{q^d}[T] \) of \(\mathbb{F}_q[T] \). Let \(P = P_1 \). Then,

\[
P = N_1(P) .
\]

If \(P \) is not irreducible in \(\mathbb{F}_{q^h}[T] \), then \(P \) admits in \(\mathbb{F}_{q^h}[T] \) an irreducible factor \(L \). Since \(P \) is irreducible in \(\mathbb{F}_{q^d}[T] \), we prove as in proposition 3.3, that \(P \) is the product of the \(k \) conjugates of \(L \) in the extension \(\mathbb{F}_{q^h}[T] \) of \(\mathbb{F}_{q^d}[T] \). Then, \(k \) divides \(\deg(P) \), so, \(h \) divides \(\deg P \) and \(h = d \). If \(h \neq d \), all the \(P_i \) remain
irreducible in $\mathbb{F}_{q^h}[T]$, if $h = d$, all the P_i are irreducible polynomials in $\mathbb{F}_{q^h}[T]$, whence (1) is proved.

If P^a is a norm, $h = kd$ divides $\deg(P^a) = a \deg P = a m d$, so k divides a and the “if” part of (2) is proved. Let N_1 be the norm of the extension $\mathbb{F}_{q^d}[T]$ of $\mathbb{F}_q[T]$. Let N_2 be the norm of the extension $\mathbb{F}_{q^h}[T]$ of $\mathbb{F}_{q^d}[T]$. Since P remains irreducible in $\mathbb{F}_{q^h}[T]$,

$$N_2(P) = P^k,$$

whence,

$$P^k = N_1(P)^k = N_1(P^k) = N_1(N_2(P)) = N(P).$$

Since P^k is a norm, every power of P^k is a norm, and the “only if” part of (2) is proved.

Theorem 3.5. Let P_1, \ldots, P_r, be monic irreducible pairwise distinct polynomials in $\mathbb{F}_q[T]$, let a_1, \ldots, a_r be positive integers, and let

$$A = P_1^{a_1} \times \ldots \times P_r^{a_r}.$$

Then, A is a norm in the extension $\mathbb{F}_{q^h}[T]$ of $\mathbb{F}_{q^d}[T]$ if and only if for every $i \in \{1, \ldots, r\}$, h divides $a_i \deg P_i$.

Proof: The above results prove that the condition is sufficient. Let $A \in \mathbb{F}_{q^h}[T]$ be monic, such that

$$A = N(A).$$
We write
\[A = \prod_{d|h} A_d, \]
where \(A_d \) is the product of all monic irreducible divisors \(L \) of \(A \) such that \(L \in \mathbb{F}_{q^d}[T] \) and \(L \notin \mathbb{F}_{q^d}[T] \) for any \(\delta \) smaller than \(d \), these divisors being counted with multiplicity. Let \(\mathcal{L} \) be an irreducible factor of \(A_d \). Let \(v_{\mathcal{L}} \) be the \(\mathcal{L} \)-adic valuation of \(A \). Let \(N_1 \) be the norm of the extension \(\mathbb{F}_{q^h}[T] \) of \(\mathbb{F}_{q^d}[T] \), and \(N_2 \) be the norm of the extension \(\mathbb{F}_{q^h}[T] \) of \(\mathbb{F}_{q^d}[T] \). Then, \(N_1(\mathcal{L}) \) is an irreducible polynomial in \(\mathbb{F}_q[T] \), and
\[N_1(L) = N_1(N_2(L)) = N_1(L^{h/d}) = N_1(L)^{h/d}. \]
So \(N_1(L) \) is an irreducible divisor of \(A \) and it occurs in \(A \) with the exponent \(h \cdot v_{\mathcal{L}} \).

Each term \(P_{a_i} \) is equal to one of the terms \(N_1(L)^{v_{\mathcal{L}} h/d} \) occurring in \(A \), and
\[a_i \deg P_i = v_{\mathcal{L}} h/d \deg(N_1(\mathcal{L})). \]
Since \(d \) divides \(\deg(N_1(\mathcal{L})) \), \(h \) divides \(a_i \deg P_i \).

4 - The functions \(\Pi_h \) and \(U \)

Definition. For every monic polynomial \(A \in \mathbb{F}_q[T] \), we denote by \(U(h, A) \) the number of monic polynomials \(A \in \mathbb{F}_q[T] \) such that \(A = N(A) \).

We notice that \(U(h, A) \) is the number of principal ideals \((A) \) of \(\mathbb{F}_q[T] \) whose norm is the principal ideal \((A) \).

Proposition 4.1. Let \(A \in \mathbb{F}_q[T] \), different from 0. Then
\[\Pi_h(A) = \frac{q^h - 1}{q - 1} U \left(h, \frac{A}{\text{sgn}(A)} \right). \]

Proof: Let \(Y(A) \), resp. \(V(A) \), be the set of polynomials \(A \in \mathbb{F}_q[T] \) such that \(A = N(A) \), resp. the set of monic polynomials \(A \in \mathbb{F}_q[T] \) such that \(\frac{A}{\text{sgn}(A)} = N(A) \). Then
\[\Pi_h(A) = \#Y(A), \quad U \left(h, \frac{A}{\text{sgn}(A)} \right) = \#V(A). \]
Let \(A \in Y(A) \). Then
\[\text{sgn}(A) \frac{A}{\text{sgn}(A)} = A = N \left(\text{sgn}(A) \frac{A}{\text{sgn}(A)} \right) = N(\text{sgn}(A)) N \left(\frac{A}{\text{sgn}(A)} \right). \]
Since $\frac{A}{\text{sgn}(A)}$ and $N\left(\frac{A}{\text{sgn}(A)}\right)$ are monic polynomials in $\mathbb{F}_q[T]$,
\[
\text{sgn}(A) = N\left(\frac{A}{\text{sgn}(A)}\right), \quad \frac{A}{\text{sgn}(A)} = N\left(\frac{A}{\text{sgn}(A)}\right),
\]
and $\text{sgn}(A) \in Y(\text{sgn}(A))$, $\frac{A}{\text{sgn}(A)} \in V(\frac{A}{\text{sgn}(A)})$. Conversely, if $H \in V\left(\frac{A}{\text{sgn}(A)}\right)$, and if $\alpha \in \mathbb{F}_{q^h}$ is such that $N(\alpha) = \text{sgn}(A)$, then $\alpha H \in Y(A)$. Whence,
\[
(ii) \quad \#Y(A) = \#Y(\text{sgn}(A)) \#V\left(\frac{A}{\text{sgn}(A)}\right).
\]
According to Hilbert’s theorem, every $b \in \mathbb{F}_q^*$ is norm of an element of $\mathbb{F}_{q^h}^*$ (cf. [1], §11). So, when b runs through \mathbb{F}_q^*, all the sets $Y(b)$ have the same cardinality equal to $\frac{q^h - 1}{q - 1}$. We may conclude with (i) and (ii).

Proposition 4.2. The function $A \mapsto U(h, A)$ is a multiplicative.

Proof: Let A and B be monic and coprime polynomials.

- If $U(h, A) = 0$, A is not a norm, and, according to theorem 3.5, there exists an irreducible polynomial P dividing A with an exponent a such that h does not divide $a \deg P$. Since A and B are coprime, P does not divide B, and P divides AB with the same exponent a, AB is not a norm, and $U(h, AB) = 0$.
- We suppose $U(h, A) = r > 0$ and $U(h, B) = s > 0$. Let A_1, \ldots, A_r, B_1, \ldots, B_s, be the different polynomials in $\mathbb{F}_q[T]$ such that
\[
A = N(A_1) = \ldots = N(A_r),
\]
\[
B = N(B_1) = \ldots = N(B_s),
\]
then,
\[
AB = N(A_i B_j), \quad 1 \leq i \leq r, \quad 1 \leq j \leq s.
\]
Since A and B are coprime, for every $i = 1, \ldots, r$, every $j = 1, \ldots, s$, A_i and B_j are coprime. Let $i \in \{1, \ldots, r\}$, $k \in \{1, \ldots, r\}$, $j \in \{1, \ldots, s\}$, $\ell \in \{1, \ldots, s\}$ with $k \neq i$. We may suppose that there exists an irreducible polynomial P dividing A_i such that $v_P(A_i) \neq v_P(A_k)$, v_P being the P-adic valuation. Then, P does not divide B_j or B_ℓ, $v_P(A_i B_j) = v_P(A_i)$, $v_P(A_k B_\ell) = v_P(A_k)$ and $A_i B_j \neq A_k B_\ell$.

Conversely, if $H \in \mathbb{F}_q[T]$ is such that $N(H) = AB$, every irreducible divisor of H divides AB. Since A and B are coprime, we may write H as a product
\[
H = H_A H_B,
\]
where the irreducible factors of H_A, resp. H_B are those of A, resp. B,
\[
A = N(H_A), \quad B = N(H_B),
\]
and \(\mathcal{H}_A \), resp. \(\mathcal{H}_B \) is one of the \(A_i \)'s, resp. one of the \(B_i \)'s. Whence,

\[U(h, AB) = rs . \]

Proposition 4.3. Let \(P \) be monic and irreducible. Let \(m \) be a positive integer. Then,

1. If \(\frac{h}{\gcd(h, \deg P)} \) does not divide \(m \), \(U(h, P^m) = 0 \),
2. If \(\frac{h}{\gcd(h, \deg P)} \) divides \(m \), \(U(h, P^m) = p_d \left(\frac{\gcd(h, \deg P)}{h} \right) \),

where \(p_d(b) \) denotes the number of partitions of the integer \(b \) in \(d \) parts, that is to say the number of solutions \((b_1, \ldots, b_d) \) in non negative integers of the equation

\[b = b_1 + \ldots + b_d . \]

Proof: This is a corollary to proposition 3.4. \(\blacksquare \)

We define the multiplicative function \(\epsilon \) which will be used to generalize Carlitz’s theorem.

Definition. Let \(\epsilon \) be the multiplicative function defined on the set of monic polynomials by the following conditions. Let \(P \) be a monic and irreducible polynomial. Let \(b, s, r \) be positive integers. Then,

1. If \(\gcd(h, \deg P) = 1 \),
 \[
 \epsilon(P^h) = 1 ,
 \]
 \[
 \epsilon(P^{hb+1}) = -1 ,
 \]
 \[
 \epsilon(P^{hb+r}) = 0 \quad \text{if} \quad 1 < r < b ,
 \]
2. If \(\gcd(h, \deg P) = h \),
 \[
 \epsilon(P^h) = \left(\begin{array}{c}
 b + h - 2 \\
 h - 2
 \end{array} \right) ,
 \]
3. If \(\gcd(h, \deg P) = d > 1 \), if \(\frac{h}{d} = k > 1 \),
 \[
 \epsilon(P^{kb}) = \left(\begin{array}{c}
 b + d - 1 \\
 d - 1
 \end{array} \right) ,
 \]
 \[
 \epsilon(P^{kb+1}) = - \left(\begin{array}{c}
 b + d - 1 \\
 d - 1
 \end{array} \right) ,
 \]
 \[
 \epsilon(P^{kb+r}) = 0 \quad \text{if} \quad 1 < r < k .
 \]
Theorem 4.4. For any non zero polynomial A, one has

$$\zeta_h(A) = \frac{q^n h^q - 1}{q^n - 1} \sum_{\alpha | A} \epsilon(D).$$

Proof: Let

\[(i)\] \[S(A) = \sum_{\alpha | A} \epsilon(D).\]

According to proposition 4.1, we have to prove that

\[(ii)\] \[S(A) = U(h, A),\]

for every monic polynomial A. Since the functions $A \mapsto S(A)$ and $A \mapsto U(h, A)$ are multiplicative, it is sufficient to prove (2) when A is the power P^m of a monic irreducible polynomial P, i.e., to prove that

\[(iii)\] \[\epsilon(P^m) = U(h, P^m) - U(h, P^{m-1}).\]

We notice that $\mathcal{P}_1(b) = 1$ for every integer b. From the identity

\[(1 - x)^{-d} = \sum_{j=0}^{\infty} \mathcal{P}_d(j) x^j,\]

we deduce that $\mathcal{P}_d(j) = \left(\begin{array}{c} j + d - 1 \\ d - 1 \end{array} \right)$. The above proposition gives the following results:

- If h and $\deg P$ are coprime,

 \[U(h, P^m) - U(h, P^{m-1}) = \begin{cases} 1 & \text{if } h \text{ divides } m, \\ -1 & \text{if } h \text{ divides } m - 1, \\ 0 & \text{otherwise}; \end{cases}\]

- If h divides $\deg P$,

 \[U(h, P^m) - U(h, P^{m-1}) = \mathcal{P}_h(m) - \mathcal{P}_h(m - 1) = \left(\begin{array}{c} m + h - 1 \\ h - 1 \end{array} \right) - \left(\begin{array}{c} m + h - 2 \\ h - 1 \end{array} \right),\]

 \[U(h, P^m) - U(h, P^{m-1}) = \left(\begin{array}{c} m + h - 2 \\ h - 2 \end{array} \right);\]
A GENERALIZATION OF A THEOREM OF CARLITZ 581

If \(G \colon C \colon D \) : \((h; \deg P) = d > 1 \), if \(k = h \), \(d > 1 \),

\[
U(h, P^m) - U(h, P^{m-1}) = \begin{cases}
 P_d \left(\frac{m}{k} \right) = \left(\frac{m+d-1}{d-1} \right) & \text{if } k \text{ divides } m, \\
 -P_d \left(\frac{m-1}{k} \right) = - \left(\frac{m+d-1}{d-1} \right) & \text{if } k \text{ divides } m-1, \\
 0 & \text{otherwise}.
\end{cases}
\]

In both cases (iii) is true.

We notice that, if \(h = 2 \), \(\epsilon(H) = (-1)^{\deg H} \) for every monic polynomial \(H \), so theorem 4.4 contains Carlitz’s formula. \(\blacksquare \)

REFERENCES

Mireille Car,
Laboratoire de Mathématiques, Faculté de Saint-Jérôme
Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 13 – FRANCE