SUBDIRECT PRODUCTS OF A BAND AND A SEMIGROUP*

MIROSLAV ĆIRIĆ and STOJAN BGDANOVIĆ

Abstract: Subdirect products of a band and a semigroup have been studied in various special cases by a number of authors. In the present paper, using the constructions and the methods from our earlier papers, we give characterizations of all subdirect products of a band and a semigroup.

Introduction and preliminaries

Subdirect products of a band and a semigroup have been studied in various special cases by a number of authors. A characterization of all subdirect products of a rectangular band and a semigroup was given by J.L. Chrislock and T. Tamura [3]. Subdirect products connected with sturdy bands of semigroups were investigated by the authors in [4], and in the semilattice case by M. Petrich [9, 10]. Spined products of a band and a semigroup, predominantly with respect to the greatest semilattice homomorphic image of this band, were also considered many times. More information about these can be found in [6]. A characterization of all subdirect products of a band and a semilattice of semigroups contained in their spined product were given by the authors in [6]. A band composition used in this paper, which is an extension of Petrich’s construction from [9], has been also explored by the authors in [4–7].

In the present paper we consider such compositions in which all members of the related system of homomorphisms are one-to-one, and using this, by Theorem 1 we describe all subdirect products of a band and a semigroup. In Theorem 2 we give an alternative construction of such products, similar to the ones of J.L.

Received: March 24, 1995; Revised: July 15, 1995.
1991 Mathematics Subject Classification: Primary 20M10.
* Supported by Grant 0401B of RFNS through Math. Inst. SANU.
Chrislock and T. Tamura [3] and H. Mitsch [8]. Theorem 3 shows that all subdirect products of a given semigroup and a band can be obtained from the subdirect product of this semigroup and of the greatest semilattice homomorphic image of this band, using spined products. In Theorem 4 we give a characterization of subdirect products of a band and a semilattice of semigroups. Finally, Section 3 is devoted to the study of subdirect products of a band and a group. The results obtained there are generalizations of some results of M. Petrich [9, 10], H. Mitsch [6] and of the authors [4].

Let \(B \) be a band. By \(\preceq \) we will denote the natural partial order on \(B \), i.e. a relation on \(B \) defined by: \(j \preceq i \iff ij = ji = j \ (i, j \in B) \), and \(\preceq \) will denote a quasi-order on \(B \) defined by: \(j \preceq i \iff jij (i, j \in B) \). Clearly, \(\preceq \) and \(\preceq \) coincide if and only if \(B \) is a semilattice. Further, for \(i \in B \), \([i] \) will denote the class of \(i \) with respect to the smallest semilattice congruence on \(B \). It is easy to verify that \(j \preceq i \iff [j] \preceq [i] \) for all \(i, j \in B \).

Let \(B \) be a band. To each \(i \in B \) we associate a semigroup \(S_i \) and an over-semigroup \(D_i \) of \(S_i \) such that \(D_i \cap D_j = \emptyset \), if \(i \neq j \). For \(i, j \in B \), \(i \geq j \), let \(\phi_{i,j} \) be a mapping of \(S_i \) into \(D_j \) and suppose that the family of \(\phi_{i,j} \) satisfies the following conditions:

1. \(\phi_{i,i} \) is the identity mapping on \(S_i \), for each \(i \in B \);
2. \((S_i, \phi_{i,j}) (S_j, \phi_{j,i}) \subseteq S_{ij} \), for all \(i, j \in B \);
3. \([(a \phi_{i,j}) (b \phi_{j,k})] \phi_{i,j,k} = (a \phi_{i,k}) (b \phi_{j,k}), \) for \(a \in S_i, \ b \in S_j, \ i \geq j, \ i, j, k \in B \).

Define a multiplication \(* \) on \(S = \bigcup_{i \in B} S_i \) by: \(a * b = (a \phi_{i,j}) (b \phi_{j,i}) \), for \(a \in S_i, \ b \in S_j \). Then \(S \) is a band \(B \) of semigroups \(S_i \), \(i \in B \), in notation \(S = (B; S_i, \phi_{i,j}, D_i) \) [6]. If we assume \(i = j \) in (3), then we obtain that \(\phi_{i,k} \) is a homomorphism, for all \(i, k \in B, \ i \geq k \). If all \(\phi_{i,j} \) are one-to-one, then we write \(S = (B; S_i, \phi_{i,j}, D_i) \).

Further, if \(D_i = S_i \), for each \(i \in B \), then we write \(S = (B; S_i, \phi_{i,j}) \). Here the condition (2) can be omitted. If \(S = (B; S_i, \phi_{i,j}) \) and if \(\{ \phi_{i,j} \mid i, j \in B, \ i \geq j \} \) is a transitive system of homomorphisms, i.e. if \(\phi_{i,j} \phi_{j,k} = \phi_{i,k}, \) for \(i \geq j \geq k \), then we will write \(S = [B; S_i, \phi_{i,j}] \), and we will say that \(S \) is a strong band \(B \) of semigroups \(S_i \). If \(S = [B; S_i, \phi_{i,j}] \) and all \(\phi_{i,j} \) are one-to-one, then we will write \(S = (B; S_i, \phi_{i,j}) \) and we will say that \(S \) is a sturdy band \(B \) of semigroups \(S_i \).

In the case when \(B \) is a semilattice, we obtain a strong (sturdy) semilattice of semigroups.

For undefined notions and notations we refer to [9] and [10].

It is easy to prove the following
Lemma 1. Let $S = (B; S_i, \phi_{i,j}, D_i)$ and let T be a subsemigroup of S. Then $B' = \{i \in B \mid S_i \cap T \neq \emptyset\}$ is a subsemigroup of B and if $T_i = T \cap S_i$, $i \in B'$, and for $i, j \in B'$, $i \geq j$, $\psi_{i,j}$ is the restriction of $\phi_{i,j}$ onto T_i, then $T = (B'; T_i, \psi_{i,j}, D_i)$.

2 – The main results

In this section we will give various characterizations of subdirect products of a band and a semigroup, in the general case. The following is the main theorem of this paper:

Theorem 1. Let $S = (B; S_i, \phi_{i,j}, D_i)$ and let ξ be a relation on S defined by:

(4) $a \xi b$ if and only if $a \in S_i$, $b \in S_j$, $i, j \in B$, and there exists $k \in B$ such that $k \leq i, j$, and $a \phi_{i,k} = b \phi_{j,k}$, for every $l \in B$, $l \leq k$.

Then ξ is a congruence on S. Furthermore, if $S = (B; S_i, \phi_{i,j}, D_i)$, then S is a subdirect product of a band and a semigroup T, then $S = (B; S_i, \phi_{i,j}, D_i)$, where for each $i \in B$, S_i is isomorphic to some subsemigroup of T.

Proof: Clearly, ξ is reflexive and symmetric. Assume $a, b, c \in S$ such that $a \xi b$ and $b \xi c$. Let $a \in S_i$, $b \in S_j$, $c \in S_k$, $i, j, k \in B$. Then there exists $m_1, m_2 \in B$ such that $m_1 \leq i, j$ and $m_2 \leq j, k$, and $a \phi_{i,l} = b \phi_{j,l}$, $b \phi_{j,l} = c \phi_{k,l}$, for all $l_1, l_2 \in B$, $l_1 \leq m_1$ and $l_2 \leq m_2$. Clearly, there exists $m \in B$ such that $m \leq m_1, m_2$, and for every $l \in B$, $l \leq m$, we obtain that $l \leq m_1, m_2$, whence $a \phi_{i,l} = b \phi_{j,l} = c \phi_{k,l}$. Therefore, $a \xi c$, so ξ is transitive.

Let $a, b, c \in S$, $a \xi b$. Assume that $a \in S_i$, $b \in S_j$, $c \in S_k$, $i, j, k \in B$. Then there exists $m_0 \in B$, $m_0 \leq i, j$, such that $a \phi_{i,l} = b \phi_{j,l}$, for every $l \in B$, $l \leq m_0$. Assume that $m \in B$ is such that $m \leq m_0, ik, jk$, and that $l \in B$, $l \leq m$. Then $l \leq m_0$, whence

$$(a * c) \phi_{i,l} = (a \phi_{i,l})(c \phi_{k,l}) = (b \phi_{j,l})(c \phi_{k,l}) = (b * c) \phi_{j,k,l}.$$

Thus, $a * c \xi b * c$. Similarly we prove that $c * a \xi c * b$. Hence, ξ is a congruence on S.

Let $S = (B; S_i, \phi_{i,j}, D_i)$. Assume that $(a, b) \in \xi \cap \eta$, where η is a band congruence on S such that $S/\eta \cong B$. Then $a, b \in S_i$, for some $i \in B$, and there exists $k \in B$, $k \leq i$, such that $a \phi_{i,k} = b \phi_{i,k}$, whence $a = b$, since $\phi_{i,k}$ is one-to-
one. Therefore, \(\xi \cap \eta = \varepsilon \), where \(\varepsilon \) is the equality relation. Thus, \(S \) is a subdirect product of \(B \) and \(S/\xi \).

Conversely, let \(S \subseteq T \times B \) be a subdirect product of a semigroup \(T \) and a band \(B \). For \(i \in B \), let \(S_i = (T \times \{i\}) \cap S \). Clearly, \(S_i \neq \emptyset \) and it is isomorphic to a subsemigroup of \(T \), for each \(i \in B \), and \(S \) is a band \(B \) of semigroups \(S_i, i \in B \).

Let \(D_i = T \times \{i\}, i \in B \), and for \(i, j \in B, i \geq j \), let \(\phi_{i,j} : S_i \to D_j \) be a mapping defined by:

\[
(a, i) \phi_{i,j} = (a, j) \quad ((a, i) \in S_i).
\]

Now it is easy to verify that \(S = (B; S_i, \phi_{i,j}, D_i) \).

Remark. Note that if \(S = [B; S_i, \phi_{i,j}] \) and \(\xi \) is a congruence on \(S \) defined as in (4), then \(S/\xi \) is the well-known direct limit of the family \(S_i, i \in B \), carried by \(B \).

Considering the mappings of a band \(B \) into the set \(\mathcal{G}(T) \) of all subsemigroups of a semigroup \(T \), satisfying some suitable conditions, we give another characterization of subdirect products of \(B \) and \(T \), similar to the ones of J.L. Chrislock and T. Tamura [3] and H. Mitsch [8].

Theorem 2. Let \(B \) be a band, let \(T \) be a semigroup and let \(\mu : B \to \mathcal{G}(T) \) be a mapping satisfying the following conditions:

i) \(\bigcup_{i \in B} i \mu = T \);

ii) \((i \mu) \cdot (j \mu) \subseteq (ij) \mu \), for all \(i, j \in B \).

Then \(S = \{(i, a) \in B \times T \mid a \in i \mu \} \) is a subdirect product of \(B \) and \(T \), in notation \(S = (B; \mu, T) \).

Conversely, any subdirect product of \(B \) and \(T \) can be obtained in this way.

Proof: The proof is similar to the proofs of Theorem 1 [3] and Theorem 7 [8].

Let \(B \) be a band, let \(T \) be a semigroup, let \(\mu : B \to \mathcal{G}(T) \) be a mapping satisfying i) of the previous theorem and let \(\mu \) be antitone, i.e. let for all \(i, j \in B, i \geq j \) implies \(i \mu \subseteq j \mu \). Then clearly \(\mu \) satisfies ii). A semigroup \(S \) constructed by such a mapping as in the previous theorem will be denoted by \(S = [B; \mu; T] \).

By Theorem 2 we obtain the following two corollaries. The first of them is in fact Proposition 1 [4], and the first part of the second corollary is the result of M. Petrich [10, p. 87–88], [9, p. 98].
Corollary 1. If S is a sturdy band B of semigroups, then $S = [B; \mu; S/\xi]$, where ξ is a relation defined as in (4).

Conversely, if $S = [B; \mu; T]$, then S is a sturdy band B of semigroups $S_i = i\mu$, $i \in B$.

Corollary 2. If S is a sturdy semilattice Y of semigroups, then $S = [Y; \mu; S/\xi]$, where ξ is a relation defined as in (4).

Conversely, if $S = [Y; \mu; T]$, where Y is a semilattice, then S is a sturdy band B of semigroups $S_i = i\mu$, $i \in B$.

If P and Q are two semigroups with a common homomorphic image Y, then the spined product of P and Q with respect to Y is $S = \{(a,b) \in P \times Q \mid a \varphi = b \psi\}$, where $\varphi : P \to Y$ and $\psi : Q \to Y$ are homomorphisms onto Y. If $P_\alpha = \alpha \varphi^{-1}$, $Q_\alpha = \alpha \psi^{-1}$, $\alpha \in Y$, then $S = \bigcup_{\alpha \in Y} (P_\alpha \times Q_\alpha)$. Clearly, spined products are easier for construction than other subdirect products, so it is of interest the following result that reduces the problem of construction of subdirect products of a given semigroup and a band to the problem of construction of subdirect products of this semigroup and of the greatest semilattice homomorphic image of this band.

Theorem 3. Let B be a band, let Y be its greatest semilattice homomorphic image and let T be a semigroup. Then a semigroup S is a subdirect product of B and T if and only if it is a spined product, with respect to Y, of B and of a subdirect product of Y and T.

Proof: Let B be a semilattice Y of rectangular bands B_α, $\alpha \in Y$.

Let $S \subseteq B \times T$ be a subdirect product of B and T. Define a mapping φ of S into $Y \times T$ by:

$$(i, a) \varphi = ([i], a) \quad ((i, a) \in S).$$

By a routine verification we obtain that φ is a homomorphism. Let us prove that $P = S \varphi$ is a subdirect product of Y and T. Indeed, for $\alpha \in Y$, $\alpha = [i]$ for some $i \in B$, and $(i, a) \in S$ for some $a \in T$; hence $(\alpha, a) = ([i], a) = (i, a) \varphi \in P$. Similarly we prove that for $a \in T$ there exists $\alpha \in Y$ such that $(\alpha, a) \in P$. Therefore, P is a subdirect product of Y and T.

For $\alpha \in Y$, let $P_\alpha = (\{\alpha\} \times T) \cap P$. Clearly, P is a semilattice Y of semigroups P_α, $\alpha \in Y$. Define a mapping ψ of S into $B \times P$ by:

$$(i, a) \psi = (i, ([i], a)) \quad ((i, a) \in S).$$
It is not hard to verify that ψ is an embedding of S into $B \times T$. Assume $(i, a) \in S$. Then $i \in B_\alpha$, for some $\alpha \in Y$, whence

$$(i, a) \psi = (i, ([i], a)) = (i, (\alpha, a)) \in B_\alpha \times P_\alpha.$$

Thus, $S \psi \subseteq \bigcup_{\alpha \in Y} (B_\alpha \times P_\alpha)$. On the other hand, if $\alpha \in Y$ and $(i, (\alpha, a)) \in B_\alpha \times P_\alpha$, then $i \in B_\alpha$, so

$$(i, (\alpha, a)) = (i, a) \psi \in S \psi.$$

Therefore, $S \psi = \bigcup_{\alpha \in Y} (B_\alpha \times P_\alpha)$, so S is a spined product of B and P with respect to Y.

Conversely, let $S \subseteq B \times P$ be a spined product of B and P, with respect to Y, where P is a subdirect product of Y and T, i.e. let $S = \bigcup_{\alpha \in Y} (B_\alpha \times P_\alpha)$, where $P_\alpha = (\{\alpha\} \times T) \cap P$, $\alpha \in Y$. Define a mapping ϕ of S into $B \times T$ by:

$$(i, (\alpha, a)) \phi = (i, a) \quad ((i, (\alpha, a)) \in S).$$

Then ϕ is an embedding of S into $B \times T$. It remains to prove that $Q = S \phi$ is a subdirect product of B and T. Indeed, for $i \in B$, $i \in B_\alpha$, for some $\alpha \in Y$, and there exists $a \in T$ such that $(\alpha, a) \in P$, since P is a subdirect product of Y and T, whence $(i, (\alpha, a)) \in S$ and $(i, a) = (i, (\alpha, a)) \phi \in Q$. Similarly we prove that for any $a \in T$ there exists $i \in B$ such that $(i, a) \in Q$. Therefore, Q is a subdirect product of B and T.

An element of a semigroup is π-regular if some of its power is regular, and a semigroup is π-regular if each of its element is π-regular.

Corollary 3. The following conditions on a semigroup S are equivalent:

i) S is π-regular and a subdirect product of a band and a semilattice of groups;

ii) S is regular and a subdirect product of a band and a semilattice of groups;

iii) S is a spined product of a band and a semilattice of groups.

Proof: The authors in [1] proved that if a semigroup is a subdirect product of semilattices of groups, then it is a semilattice of groups if and only if it is π-regular. By this and by Theorem 3 we obtain i)\iffiii). The equivalence ii)\iffiii) was proved by M. Petrich [11].

By the well-known Tamura’s result [12], any semigroup can be represented as a semilattice of semilattice indecomposable semigroups. Also, M. Petrich in
Theorem III 7.2 [9] proved that every semilattice of semigroups can be composed as \((Y; S_\alpha, \phi_{\alpha, \beta}, D_\alpha)\). Therefore, every semigroup \(S\) can be represented as \(S = (Y; S_\alpha, \phi_{\alpha, \beta}, D_\alpha)\), where \(Y\) is a semilattice, so it is of interest to consider subdirect products of a band and a semilattice of semigroups. This we will do in the next theorem.

Let \(B\) be a band and let \(Y\) be a semilattice. Assume that \(P\) is a subdirect product of \(B\) and \(Y\) an let \(\pi\) and \(\varpi\) be projection homomorphisms of \(P\) onto \(B\) and \(Y\), respectively. It is easy to verify that for \(i, j \in P\), \(i \leq j\) in \(P\) if and only if \(i\pi \leq j\pi\) in \(B\) and \(i\varpi \leq j\varpi\) in \(Y\). Define a quasi-order \(\preceq\) on \(P\) by:

\[
i \preceq j \iff i\pi \leq j\pi \quad \text{and} \quad i\varpi = j\varpi \quad (i, j \in P).
\]

If \(S = (P; S_i, \phi_{i,j}, D_i)\) and if \(\phi_{i,j}\) is one-to-one for all \(i, j \in P\) such that \(i \succ j\), then we will write \(S = (B, Y, P; S_i, \phi_{i,j}, D_i)\).

Theorem 4. Let \(B\) be a band and let \(Y\) be a semilattice.

Let \(P\) be a subdirect product of \(B\) and \(Y\), let \(S = (B, Y, P; S_i, \phi_{i,j}, D_i)\) and define relations \(\eta\) and \(\xi\) on \(S\) by:

1. \((a \eta b)\) if and only if \(a \in S_i\), \(b \in S_j\), \(i, j \in P\), and \(i\pi = j\pi\);
2. \((a \xi b)\) if and only if \(a \in S_i\), \(b \in S_j\), \(i, j \in P\), \(i\varpi = j\varpi\), and there exists \(k \in P\), \(k \preceq i, j\), such that \(a\phi_{i,l} = b\phi_{j,l}\), for each \(l \in P\), \(l \leq k\).

Then \(\eta\) and \(\xi\) are congruences on \(S\), \(S/\eta\) is isomorphic to \(B\), \(S/\xi\) is a semilattice \(Y\) of semigroups, and \(S\) is a subdirect product of \(S/\eta\) and \(S/\xi\).

Conversely, every subdirect product of \(B\) and a semigroup that is a semilattice \(Y\) of semigroups can be obtained in this way.

Proof: Clearly, \(\eta\) is a congruence on \(S\), \(S/\eta\) is isomorphic to \(B\) and \(\xi\) is reflexive and symmetric.

Assume that \(a, b, c \in S\) are such that \(a \xi b\) and \(b \xi c\). Let \(a \in S_i\), \(b \in S_j\), \(c \in S_k\), \(i, j, k \in P\), \(i\varpi = j\varpi = k\varpi\). By the hypothesis, there exist \(m_1, m_2 \in P\) such that \(m_1 \preceq i, j\) and \(m_2 \preceq j, k\), and \(a\phi_{i,l} = b\phi_{j,l}, b\phi_{j,l} = c\phi_{k,l}, \) for all \(l_1, l_2 \in P\) such that \(l_1 \leq m_1, l_2 \leq m_2\). Now for \(m = m_1 m_2\), \(m \preceq m_1, m_2\), so for any \(l \in P\), \(l \leq m\), we obtain that \(a\phi_{i,l} = c\phi_{k,l}\). Therefore, \(a\xi c\), so \(\xi\) is transitive.

Assume that \(a, b, c \in S\) are such that \(a \xi b\). Let \(a \in S_i\), \(b \in S_j\), \(c \in S_k\), \(i, j, k \in P\). By the hypothesis, \(i\varpi = j\varpi\), whence \((ik)\varpi = (jk)\varpi\), since \(\varpi\) is a homomorphism. Also, there exists \(m_0 \in P\) such that \(m_0 \preceq i, j\) and \(a\phi_{i,l} = b\phi_{j,l}\), for each \(l \in P\), \(l \leq m_0\). Let \(m = m_0 k\). Then \(m \preceq ik, jk\) and for any \(l \in P\), \(l \leq m\) we have

\[(a \ast c)\phi_{ik,l} = (a\phi_{i,l})(c\phi_{k,l}) = (b\phi_{j,l})(c\phi_{k,l}) = (b \ast c)\phi_{jk,l},\]
since \(l \leq m_0 \). Therefore, \(a \ast c \xi b \ast c \), and similarly \(c \ast a \xi c \ast b \), so \(\xi \) is a congruence on \(S \).

Assume that \((a, b) \in \eta \cap \xi \). Then \(a \in S_i, b \in S_j, i, j \in P \), and \(i \varpi = j \varpi \), whence \(i = j \). Also, there exists \(k \in P, k \ll i \), such that \(a \phi_{i,k} = b \phi_{i,k} \), whence \(a = b \), since \(\phi_{i,k} \) is one-to-one. Therefore, \(\eta \cap \xi = \varepsilon \), so \(S \) is a subdirect product of \(S/\eta \) and \(S/\xi \). Clearly, \(S/\xi \) is a semilattice \(Y \) of semigroups \(T_\alpha = S_\alpha \xi^\delta, \alpha \in Y \), where \(S_\alpha = \bigcup_{i \in P_\alpha} S_i \) and \(P_\alpha = \{ i \in P \mid i \pi = \alpha \}, \alpha \in Y \).

Conversely, let \(S \subseteq B \times T \) be a subdirect product of \(B \) and a semigroup \(T \) that is a semilattice \(Y \) of semigroups \(T_\alpha, \alpha \in Y \). Let \(P = \{ (i, \alpha) \in B \times Y \mid ((i) \times T_\alpha) \cap S \neq \emptyset \} \). It is easy to check that \(P \) is a subdirect product of \(B \) and \(Y \). Let \(\pi \) and \(\varpi \) denote the projection homomorphisms of \(P \) onto \(B \) and \(Y \), respectively, and for \(i \in P \), let \(S_i = (\{ i \pi \} \times T_{i \varpi}) \cap S \). Clearly, \(S \) is a band \(P \) of semigroups \(S_i, i \in P \). By Theorem III 7.2 [9], \(T = (Y; T_\alpha, \phi_{\alpha, \beta}, D_\alpha) \). Now, for \(i \in P \), let \(D_i = \{ i \pi \} \times D_{i \varpi} \) and for \(i, j \in P, i \succeq j \), define a mapping \(\phi_{i,j} \) of \(S_i \) into \(S_j \) by:

\[
(i \pi, a) \phi_{i,j} = (j \pi, a \phi_{i \varpi, j \varpi}) \quad (a \in T_{i \varpi}).
\]

Now it is easy to show that \(S = (B, Y, P; S_i, \phi_{i,j}, D_i) \).

3 – Subdirect products of a band and a group

Subdirect products of a band and a group were considered in various special cases by M. Petrich [9-11], H. Mitsch [8] and the authors [4]. In this section we will characterize such products in the general case.

Let \(E(S) \) denote the set of all idempotents of a semigroup \(S \). An element \(a \) of a semigroup \(S \) is \(E \)-inversive if there exists \(x \in S \) such that \(ax \in E(S) \), or equivalently, if there exists \(x \in S \) such that \(x = ax \) [2]. A semigroup \(S \) is \(E \)-inversive if each of its elements is \(E \)-inversive. For more informations about such semigroups we refer to [2] and [8].

Lemma 2. Let \(S \) be a subdirect product of a band \(B \) and an \(E \)-inversive semigroup \(T \). Then \(S \) is also \(E \)-inversive.

Proof: Let \(S \subseteq B \times T \), \((i, a) \in S \). For \(a \in T \) there exists \(x \in T \) such that \(ax \in E(T) \) and there exists \(j \in B \) such that \((j, x) \in S \). Therefore, \((i, a)(j, x) = (ij, ax) \in E(S) \), so \(S \) is \(E \)-inversive.

Note that if \(S = (B; S_i, \phi_{i,j}, D_i) \), then \(D = \bigcup_{i \in B} D_i \) need not be a semigroup. One very interesting case when the multiplication on \(S \) can be extended to a
multiplication on \(D \) will be considered in the following

Theorem 5. Let \(S = (B; S_i, \phi_{i,j}, D_i) \), where \(D_i, i \in B \), are cancellative semigroups and \(D_k = \{ a \phi_{i,k} \mid a \in S_i, i \geq k \} \), for each \(k \in B \). Then

i) For all \(i, j \in B, i \geq j, \phi_{i,j} \) can be extended up to a homomorphism \(\varphi_{i,j} \) of \(D_i \) into \(D_j \) such that there exists a composition \(D = \{ B; D_i, \varphi_{i,j} \} \);

ii) If \(S = (B; S_i, \phi_{i,j}, D_i) \), then \(D = (B; D_i, \varphi_{i,j}) \);

iii) If \(S \) is \(E \)-inversive, then \(D \) is also \(E \)-inversive.

Proof:
i) Assume that \(k, l \in B \) are such that \(k \geq l \). For \(a \in D_k \), by the hypothesis, \(a = x \phi_{i,k} \), for \(x \in S_i, i \in B, i \geq k \), and we define a mapping \(\varphi_{i,j} \) of \(D_k \) into \(D_l \) by

\[
 a \varphi_{k,l} = x \phi_{i,l} .
\]

To prove that \(\varphi \) is well-defined, it is necessary and sufficient to prove that for \(x \in S_i, y \in S_j, i, j \geq k \geq l \), \(x \phi_{i,k} = y \phi_{j,k} \) implies \(x \phi_{i,l} = y \phi_{j,l} \). Indeed, by \(x \phi_{i,k} = y \phi_{j,k} \), for arbitrary \(u, v \in S_k \),

\[
 (u \phi_{k,l})(x \phi_{i,l})(v \phi_{k,l}) = (u \times u \times v)(\phi_{k,l}) = u(x \phi_{i,k})v \phi_{k,l} = u(y \phi_{j,k})v \phi_{k,l}
\]

\[
 = (u \times y \times v)(\phi_{k,l}) = (u \phi_{k,l})(y \phi_{j,l})(v \phi_{k,l}) ,
\]

so by the cancellativity in \(D_l, x \phi_{i,l} = y \phi_{k,l} \). Hence, \(\varphi_{k,l} \) is well-defined and clearly, it is an extension of \(\phi_{k,l} \).

Assume that \(a \in D_k, b \in D_l \), \(a = x \phi_{i,k} \), \(b = y \phi_{j,l} \), \(x \in S_i, y \in S_j, i, j, k, l \in B \), \(i \geq k \), \(j \geq l \), and assume that \(m \in B, m \leq k, l \). Then by (3) and by the definition of mappings \(\varphi_{i,j} \) we obtain

\[
 \varphi_{k,m} = \left[(a \varphi_{k,l})(b \varphi_{l,m}) \right] = \left[(x \phi_{i,k})(y \phi_{j,l}) \right] = \left[(x \phi_{i,k})(y \phi_{j,l}) \right] = \left[(x \times y \phi_{i,j}) \right] \varphi_{l,m} = \left[(x \times y \phi_{i,j}) \right] \varphi_{l,m} = (x \times y \phi_{i,j,m}) = (a \varphi_{k,m})(b \varphi_{l,m}) .
\]

Therefore, there exists a composition \(D = (B; D_i, \varphi_{i,j}) \). Since \(D_i, i \in B \), are cancellative, then \(D = [B; D_i, \varphi_{i,j}] \).

ii) Let all \(\phi_{i,j} \) be one-to-one. Assume that \(a \varphi_{k,l} = b \varphi_{k,l} \), for \(a, b \in D_k \), \(k, l \in B \), \(k \geq l \). Then \(a = x \phi_{i,k}, b = y \phi_{j,l}, x \in S_i, y \in S_j, i, j \in B, i, j \geq k \). Let \(u, v \in S_k \) be arbitrary. By \(a \varphi_{k,l} = b \varphi_{k,l} \), it follows that \(x \phi_{i,l} = y \phi_{j,l} \), whence

\[
 (u \times u \times v)(\phi_{k,l}) = (u \phi_{k,l})(x \phi_{i,l})(v \phi_{k,l}) = (u \phi_{k,l})(y \phi_{j,l})(v \phi_{k,l}) = (u \times y \times v)(\phi_{k,l}) .
\]
Since $\phi_{k,l}$ is one-to-one, then $u * x * v = u * y * v$, whence
\[u(x \phi_{i,k}) v = u * x * v = u * y * v = u(y \phi_{j,k}) v . \]
Now, by the cancellativity in D_k, $x \phi_{i,k} = y \phi_{j,k}$, i.e. $a = b$. Therefore, $\varphi_{k,l}$ is one-to-one.

iii) Assume that $a \in D$. Then $a \in D_k$, $k \in B$, and $a = x \phi_{i,k}$, $x \in S_i$, $i \in B$, $i \geq k$. Now, $x \ast y \in E(S)$, for some $y \in S_j$, $j \in B$, so
\[a \ast y = (a \varphi_{k,kj})(u \varphi_{j,kj}) = (x \phi_{i,kj})(y \phi_{j,kj}) \]
\[= [(x \phi_{i,ij})(y \phi_{j,ij})] \phi_{ij,kj} = (x \ast y) \phi_{ij,kj} \in E(D) . \]
Thus, D is also E-inversive.

A semigroup containing exactly one idempotent will be called a \textit{unipotent semigroup}, and a semigroup without idempotents will be called an \textit{idempotent-free semigroup}. Now we go to the main theorem of this section.

\textbf{Theorem 6.} The following conditions on a semigroup S are equivalent:

i) S is a subdirect product of a band and a group;

ii) S is E-inversive, $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, and for every $i \in B$, D_i is cancellative;

iii) S is E-inversive, $S = \langle B; S_i, \phi_{i,j}, D_i \rangle$, and for every $i \in B$, D_i is either a unipotent monoid or an idempotent-free semigroup;

iv) S is E-inversive and it can be embedded into a sturdy band of cancellative semigroups;

v) S is E-inversive and it can be embedded into a sturdy band of unipotent monoids and idempotent-free semigroups;

vi) S is E-inversive and it can be embedded into a spined product of a band and a sturdy semilattice of cancellative semigroups;

vii) S is E-inversive and it can be embedded into a spined product of a band and a sturdy semilattice of unipotent monoids and idempotent-free semigroups.

\textbf{Proof:} i)\Rightarrowii) Let $S \subseteq B \times G$ be a subdirect product of a band B and a group G. For $i \in B$, let $D_i = \{i\} \times G$, $S_i = S \cap D_i$. Clearly, $S_i \neq \emptyset$ and D_i is a cancellative semigroup, for each $i \in B$. If for $i,j \in B$, $i \geq j$, we define
a mapping $\phi_{ij} : S_i \rightarrow D_j$ by $(i, a) \phi_{ij} = (j, a)$, then it is easy to verify that $S = (B; S_i, \phi_{ij}, D_i)$ and by Lemma 2, S is E-inversive.

ii) \Rightarrow v) Let ii) hold. Without loss of generality we can assume that $D_k = \{a \phi_{i,k} \mid i \in B, i \geq k, a \in S_i\}$, for each $k \in B$. By Theorem 5, S can be embedded into $D = (B; D_i, \varphi_{ij})$ and D is E-inversive.

Let $i \in B$ be such that $E(D_i) \neq \emptyset$. Assume that $a \in D_i, e \in E(D_i)$. Since D is E-inversive, then $x = x * e * a * x$, for some $x \in D$. If $x \in D_j, j \in B$, then clearly $i \geq j$ and $(e * a * x) \varphi_{ij,j}, e \varphi_{ij,j} \in E(D_j)$, since $e * a * x \in E(D_{ij})$, $e \in E(D_i)$. By the cancellativity in D_j, $|E(D_j)| = 1$, whence $e \varphi_{ij,j} = (e * a * x) \varphi_{ij,j} = (e \varphi_{ij,j}) (a \varphi_{ij,j}) x$. Now, by the cancellativity in D_j, $e \varphi_{ij,j} = (a \varphi_{ij,j}) x$, whence

$$[(e * a) \varphi_{ij,j}] x = (e * a * x) \varphi_{ij,j} = e \varphi_{ij,j} = (a \varphi_{ij,j}) x,$$

and again by the cancellativity in D_j, $(e * a) \varphi_{ij,j} = a \varphi_{ij,j}$. Therefore, $e * a = a$, since $\varphi_{ij,j}$ is one-to-one. Similarly we prove that $a * e = a$. Hence, D_j is a monoid. Since D_j is cancellative, then it is unipotent.

v) \Rightarrow iii) This follows immediately.

iii) \Rightarrow i) Let iii) hold. By Theorem 1, S is a subdirect product of B and a semigroup S/ξ, where ξ is a congruence defined as in (4). Clearly, $e \xi f$, for all $e, f \in E(S)$. Let $u = e \xi^2, e \in E(S)$. Assume $v \in S/\xi$. Then $v = a \xi^2$, for some $a \in S$. Since S is E-inversive, then $x = x * a * x$, for some $x \in S$. If $a \in S_i, x \in S_j, i, j \in B$, then $i \geq j$, $x * a = e \in E(S_{ji})$ and $a * e \in S_{ij}$. Assume $k \in B, k \geq i, iji$. Then

$$(a * e) \phi_{iji,k} = (a \phi_{i,k}) (e \phi_{ji,k}) = (a \phi_{i,k}),$$

since $e \phi_{ji,k}$ is the identity of D_k. Thus, $a * e \xi a$, whence $v = a \xi^2 = (a * e) \xi^2 = (a \xi^2) (e \xi^2) = v u$, and similarly $v = u v$. On the other hand, $u = e \xi^2 = (x * a) \xi^2 = (x \xi^2) (a \xi^2) = (x \xi^2) v$, and similarly $u = v(x \xi^2)$. Hence, S/ξ is a group.

ii) \iff iv) This follows by Theorem 5 and Lemma 1.

iv) \iff v) and v) \iff vii) This follows by Theorem 3 [6].

Similarly we can prove the following

Corollary 4. The following conditions on a semigroup S are equivalent:

i) $S = [B, \mu, G]$, where B is a band and G is a group;

ii) S is E-inversive and a sturdy band of cancellative semigroups;

iii) S is E-inversive and a sturdy band of unipotent monoids and idempotent-free semigroups;
iv) S is E-inversive and a spined product of a band and a sturdy semilattice of cancellative semigroups;

v) S is E-inversive and a spined product of a band and a sturdy semilattice of unipotent monoids and idempotent-free semigroups.

Corollary 5. [4] A semigroup S is a sturdy band of groups if and only if it is regular and a subdirect product of a band and a group.

Corollary 5. [9, 10] A semigroup S is a sturdy semilattice of groups if and only if it is regular and a subdirect product of a semilattice and a group.

REFERENCES

Miroslav Ćirić,
University of Niš, Faculty of Philosophy, Department of Mathematics,
18000 Niš, Čirila i Metodija 2 – YUGOSLAVIA

and

Stojan Bogdanović,
University of Niš, Faculty of Economics,
18000 Niš, Trg JNA 11 – YUGOSLAVIA