EVERY FUNCTION IS THE REPRESENTATION FUNCTION OF AN ADDITIVE BASIS FOR THE INTEGERS

MELVYN B. NATHANSON *

Recommended by J.P. Dias da Silva

Abstract: Let A be a set of integers. For every integer n, let $r_{A,h}(n)$ denote the number of representations of n in the form $n = a_1 + a_2 + \cdots + a_h$, where $a_1, a_2, \ldots, a_h \in A$ and $a_1 \leq a_2 \leq \cdots \leq a_h$. The function

$$r_{A,h} : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$$

is the representation function of order h for A. The set A is called an asymptotic basis of order h if $r_{A,h}^{-1}(0)$ is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of exactly h not necessarily distinct elements of A. It is proved that every function is a representation function, that is, if $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ is any function such that $f^{-1}(0)$ is finite, then there exists a set A of integers such that $f(n) = r_{A,h}(n)$ for all $n \in \mathbb{Z}$. Moreover, the set A can be arbitrarily sparse in the sense that, if $\varphi(x) \geq 0$ for $x \geq 0$ and $\varphi(x) \to \infty$, then there exists a set A with $f(n) = r_{A,h}(n)$ and $\text{card}\{a \in A : |a| \leq x\} < \varphi(x)$ for all x.

It is an open problem to construct dense sets of integers with a prescribed representation function. Other open problems are also discussed.

Received: December 2, 2003; Revised: March 14, 2004.
AMS Subject Classification: 11B13, 11B34, 11B05.
Keywords and Phrases: additive bases; sumsets; representation functions; density; Erdős–Turán conjecture; Sidon set.
* This work was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.
1. Additive bases and the Erdős–Turán conjecture

Let $\mathbb{N}, \mathbb{N}_0,$ and \mathbb{Z} denote the positive integers, nonnegative integers, and integers, respectively. Let A be a set of integers. For every positive integer h, we define the sumset

$$hA = \left\{ a_1 + \cdots + a_h : a_i \in A \text{ for all } i = 1, ..., h \right\}.$$

We denote by $r_{A,h}(n)$ the number of representations of n in the form $n = a_1 + a_2 + \cdots + a_h$, where $a_1, a_2, ..., a_h \in A$ and $a_1 \leq a_2 \leq \cdots \leq a_h$. The function $r_{A,h}$ is called the representation function of order h of the set A.

In this paper we consider additive bases for the set of all integers. The set A of integers is called a basis of order h for \mathbb{Z} if every integer can be represented as the sum of h not necessarily distinct elements of A. The set A of integers is called an asymptotic basis of order h for \mathbb{Z} if every integer with at most a finite number of exceptions can be represented as the sum of h not necessarily distinct elements of A. Equivalently, the set A is an asymptotic basis of order h if the representation function $r_{A,h} : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ satisfies the condition

$$\text{card} \left(r_{A,h}^{-1}(0) \right) < \infty.$$

For any set X, let $\mathcal{F}_0(X)$ denote the set of all functions

$$f : X \to \mathbb{N}_0 \cup \{\infty\}$$

such that

$$\text{card} \left(f^{-1}(0) \right) < \infty.$$

We ask: Which functions in $\mathcal{F}_0(\mathbb{Z})$ are representation functions of asymptotic bases for the integers? This question has a remarkably simple and surprising answer. In the case $h = 1$ we observe that $f \in \mathcal{F}_0(\mathbb{Z})$ is a representation function if and only if $f(n) = 1$ for all integers $n \notin f^{-1}(0)$. For $h \geq 2$ we shall prove that every function in $\mathcal{F}_0(\mathbb{Z})$ is a representation function. Indeed, if $f \in \mathcal{F}_0(\mathbb{Z})$ and $h \geq 2$, then there exist infinitely many sets A such that $f(n) = r_{A,h}(n)$ for every $n \in \mathbb{Z}$. Moreover, we shall prove that we can construct arbitrarily sparse asymptotic bases A with this property. Nathanson [7] previously proved this theorem for $h = 2$ and the function $f(n) = 1$ for all $n \in \mathbb{Z}$.

This result about asymptotic bases for the integers contrasts sharply with the case of the nonnegative integers. The set A of nonnegative integers is called an asymptotic basis of order h for \mathbb{N}_0 if every sufficiently large integer can be
represented as the sum of \(h \) not necessarily distinct elements of \(A \). Very little is known about the class of representation functions of asymptotic bases for \(\mathbb{N}_0 \). However, if \(f \in \mathcal{F}_0(\mathbb{N}_0) \), then Nathanson [5] proved that there exists at most one set \(A \) such that \(r_{A,h}(n) = f(n) \).

Many of the results that have been proved about asymptotic bases for \(\mathbb{N}_0 \) are negative. For example, Dirac [2] showed that the representation function of an asymptotic basis of order 2 cannot be eventually constant. Erdős and Fuchs [4] proved that the average value of a representation function of order 2 cannot even be approximately constant, in the sense that, for every infinite set \(A \) of nonnegative integers and every real number \(c > 0 \),

\[
\sum_{n \leq N} r_{A,2}(n) \neq cN + o \left(N^{1/4} \log^{-1/2} N \right).
\]

Erdős and Turán [3] conjectured that if \(A \) is an asymptotic basis of order \(h \) for the nonnegative integers, then the representation function \(r_{A,h}(n) \) must be unbounded, that is,

\[
\limsup_{n \to \infty} r_{A,h}(n) = \infty.
\]

This famous unsolved problem in additive number theory is only a special case of the general problem of classifying the representation functions of asymptotic bases of finite order for the nonnegative integers.

2 – Two lemmas

We use the following notation. For sets \(A \) and \(B \) of integers and for any integer \(t \), we define the sumset

\[
A + B = \{ a + b: a \in A, b \in B \},
\]

the translation

\[
A + t = \{ a + t: a \in A \},
\]

and the difference set

\[
A - B = \{ a - b: a \in A, b \in B \}.
\]

For every nonnegative integer \(h \) we define the \(h \)-fold sumset \(hA \) by induction:

\[
0A = \{ 0 \}, \quad hA = A + (h-1)A = \{ a_1 + a_2 + \cdots + a_h: a_1, a_2, \ldots, a_h \in A \}.
\]
We denote the cardinality of a set S by $\text{card}(S)$. The counting function for the set A is

$$A(y, x) = \text{card}\left(\{a \in A: y \leq a \leq x \} \right).$$

In particular, $A(-x, x)$ counts the number of integers $a \in A$ with $|a| \leq x$. If A is a finite set of integers, we denote the maximum element of A by $\max(A)$.

Let $[x]$ denote the integer part of the real number x.

Lemma 1. Let $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ be a function such that $f^{-1}(0)$ is finite. Let Δ denote the cardinality of the set $f^{-1}(0)$. Then there exists a sequence $U = \{u_k\}_{k=1}^{\infty}$ of integers such that, for every $n \in \mathbb{Z}$ and $k \in \mathbb{N}$,

$$f(n) = \text{card}\left(\{k \geq 1: u_k = n \} \right)$$

and

$$|u_k| \leq \left\lfloor \frac{k + \Delta}{2} \right\rfloor.$$

Proof: Every positive integer m can be written uniquely in the form

$$m = s^2 + s + 1 + r,$$

where s is a nonnegative integer and $|r| \leq s$. We construct the sequence

$$V = \{0, -1, 0, 1, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

$$= \{v_m\}_{m=1}^{\infty},$$

where

$$v_{s^2+s+1+r} = r \quad \text{for} \quad |r| \leq s.$$

For every nonnegative integer k, the first occurrence of $-k$ in this sequence is $v_{k^2+1} = -k$, and the first occurrence of k in this sequence is $v_{(k+1)^2} = k$.

The sequence U will be the unique subsequence of V constructed as follows. Let $n \in \mathbb{Z}$. If $f(n) = \infty$, then U will contain the terms $v_{s^2+s+1+n}$ for every $s \geq |n|$. If $f(n) = \ell < \infty$, then U will contain the ℓ terms $v_{s^2+s+1+n}$ for $s = |n|, |n| + 1, \ldots, |n| + \ell - 1$ in the subsequence U, but not the terms $v_{s^2+s+1+n}$ for $s \geq |n| + \ell$. Let $m_1 < m_2 < m_3 < \cdots$ be the strictly increasing sequence of positive integers such that $\{v_{m_k}\}_{k=1}^{\infty}$ is the resulting subsequence of V. Let $U = \{u_k\}_{k=1}^{\infty}$, where $u_k = v_{m_k}$. Then

$$f(n) = \text{card}\left(\{k \geq 1: u_k = n \} \right).$$
Let $\text{card} \ (f^{-1}(0)) = \Delta$. The sequence U also has the following property: If $|u_k| = n$, then for every integer $m \notin f^{-1}(0)$ with $|m| < n$ there is a positive integer $j < k$ with $u_j = m$. It follows that

$$
\{0, 1, -1, 2, -2, ..., n - 1, -(n - 1)\} \setminus f^{-1}(0) \subseteq \{u_1, u_2, ..., u_{k-1}\},
$$

and so

$$
k - 1 \geq 2(n - 1) + 1 - \Delta.
$$

This implies that

$$
|u_k| = n \leq \frac{k + \Delta}{2}.
$$

Since u_k is an integer, we have

$$
|u_k| \leq \left\lfloor \frac{k + \Delta}{2} \right\rfloor.
$$

This completes the proof. \(\Box\)

Lemma 1 is best possible in the sense that for every nonnegative integer Δ there is a function $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ with $\text{card} \ (f^{-1}(0)) = \Delta$ and a sequence $U = \{u_k\}_{k=1}^\infty$ of integers such that

(1) \quad $|u_k| = \left\lfloor \frac{k + \Delta}{2} \right\rfloor$ \quad for all $k \geq 1$.

For example, if $\Delta = 2\delta + 1$ is odd, define the function f by

$$
f(n) = \begin{cases}
0 & \text{if } |n| \leq \delta \\
1 & \text{if } |n| \geq \delta + 1
\end{cases}
$$

and the sequence U by

$$
u_{2i-1} = \delta + i,
$$

$$
u_{2i} = -(\delta + i)
$$

for all $i \geq 1$.

If $\Delta = 2\delta$ is even, define f by

$$
f(n) = \begin{cases}
0 & \text{if } -\delta \leq n \leq \delta - 1 \\
1 & \text{if } n \geq \delta \text{ or } n \leq -\delta - 1
\end{cases}
$$

and the sequence U by $u_1 = \delta$ and

$$
u_{2i} = \delta + i,
$$

$$
u_{2i+1} = -(\delta + i)
$$

for all $i \geq 1$. In both cases the sequence U satisfies (1).
The set A is called a Sidon set of order h if $r_{A,h}(n) = 0$ or 1 for every integer n. If A is a Sidon set of order h, then A is a Sidon set of order j for all $j = 1, 2, \ldots, h$.

Lemma 2. Let A be a finite Sidon set of order h and $d = \max(||a| : a \in A||)$. If $|c| > (2h - 1)d$, then $A \cup \{c\}$ is also a Sidon set of order h.

Proof: Let $n \in h(A \cup \{c\})$. Suppose that
\[
n = a_1 + \cdots + a_j + (h - j)c = a'_1 + \cdots + a'_\ell + (h - \ell)c,
\]
where
\[
0 \leq j \leq \ell \leq h,
\]
\[
a_1, \ldots, a_j, a'_1, \ldots, a'_\ell \in A,
\]
and
\[
a_1 \leq \cdots \leq a_j \quad \text{and} \quad a'_1 \leq \cdots \leq a'_\ell.
\]
If $j < \ell$, then
\[
|c| \leq |(\ell - j)c| = |a'_1 + \cdots + a'_\ell - (a_1 + \cdots + a_j)| \leq (\ell + j)d \leq (2h - 1)d < |c|,
\]
which is absurd. Therefore, $j = \ell$ and $a_1 + \cdots + a_j = a'_1 + \cdots + a'_\ell$. Since A is a Sidon set of order j, it follows that $a_i = a'_i$ for all $i = 1, \ldots, j$. Consequently, $A \cup \{c\}$ is a Sidon set of order h.

3 – Construction of asymptotic bases

We can now construct asymptotic bases of order h for the integers with arbitrary representation functions.

Theorem 1. Let $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ be a function such that the set $f^{-1}(0)$ is finite. Let $\varphi : \mathbb{N}_0 \to \mathbb{R}$ be a nonnegative function such that $\lim_{x \to \infty} \varphi(x) = \infty$. For every $h \geq 2$ there exist infinitely many asymptotic bases A of order h for the integers such that
\[
r_{A,h}(n) = f(n) \quad \text{for all} \quad n \in \mathbb{Z},
\]
and
\[A(-x, x) \leq \varphi(x) \]
for all \(x \geq 0 \).

Proof: By Lemma 1, there is a sequence \(U = \{u_k\}_{k=1}^\infty \) of integers such that
\[f(n) = \text{card}\left(\{k \geq 1: u_k = n\} \right) \]
for every integer \(n \).

Let \(h \geq 2 \). We shall construct an ascending sequence of finite sets \(A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \) such that, for all positive integers \(k \) and for all integers \(n \),

(i) \[r_{A_k,h}(n) \leq f(n) \ , \]

(ii) \[r_{A_k,h}(n) \geq \text{card}\left(\{i: 1 \leq i \leq k \text{ and } u_i = n\} \right) \ , \]

(iii) \[\text{card}(A_k) \leq 2k \ , \]

(iv) \(A_k \) is a Sidon set of order \(h - 1 \).

Conditions (i) and (ii) imply that the infinite set
\[A = \bigcup_{k=1}^\infty A_k \]
is an asymptotic basis of order \(h \) for the integers such that \(r_{A,h}(n) = f(n) \) for all \(n \in \mathbb{Z} \).

We construct the sets \(A_k \) by induction. Since the set \(f^{-1}(0) \) is finite, there exists a nonnegative integer \(d_0 \) such that \(f(n) \geq 1 \) for all integers \(n \) with \(|n| \geq d_0 \). If \(u_1 \geq 0 \), choose a positive integer \(c_1 > 2hd_0 \). If \(u_1 < 0 \), choose a negative integer \(c_1 < -2hd_0 \). Then
\[|c_1| > 2hd_0 \ . \]

Let
\[A_1 = \{ -c_1, (h-1)c_1 + u_1 \} \ . \]
The sumset hA_1 is the finite arithmetic progression
\[
hA_1 = \{-hc_1 + (hc_1 + u_1)i: \ i = 0, 1, ..., h\} = \{-hc_1, u_1, hc_1 + 2u_1, 2hc_1 + 3u_1, ..., (h-1)hc_1 + hu_1\}.
\]
Then $|n| \geq h|c_1| > d_0$ for all $n \in hA_1 \setminus \{u_1\}$. Since $f(u_1) \geq 1$, we have $r_{A_1,h}(n) = 1 \leq f(n)$ for all $n \in hA_1$. Similarly, since $r_{A_1,h}(n) = 0$ for all $n \notin hA_1$, it follows that
\[
r_{A_1,h}(n) \leq f(n)
\]
for all $n \in \mathbb{Z}$. The set A_1 is a Sidon set of order h, hence also a Sidon set of order $h-1$. Thus, the set A_1 satisfies conditions (i)--(iv).

We assume that for some integer $k \geq 2$ we have constructed a set A_{k-1} satisfying conditions (i)--(iv). If
\[
r_{A_{k-1},h}(u_k) = \max\{|i|: 1 \leq i \leq k \text{ and } u_i = u_k\}.
\]
and
\[
r_{A_{k,1},h}(n) = \begin{cases} r_{A_{k-1},h}(n) + 1 & \text{if } n = u_k \\ r_{A_{k-1},h}(n) & \text{if } n \in hA_{k-1} \setminus \{u_k\} \\ 1 & \text{if } n \in hA_k \setminus (hA_{k-1} \cup \{u_k\}) \end{cases}
\]
Define the nonnegative integer
\[
d_{k-1} = \max\{|a|: a \in A_{k-1} \cup \{u_k\}\}.
\]
Then
\[
A_{k-1} \subseteq [-d_{k-1}, d_{k-1}].
\]
If $u_k \geq 0$, choose a positive integer c_k such that $c_k > 2hd_{k-1}$. If $u_k < 0$, choose a negative integer c_k such that $c_k < -2hd_{k-1}$. Then
\[
|c_k| > 2hd_{k-1}.
\]
Let
\[
A_k = A_{k-1} \cup \{-c_k, (h-1)c_k + u_k\}.
\]
Then
\[
\text{card}(A_k) = \text{card}(A_{k-1}) + 2 \leq 2k .
\]

We shall assume that \(u_k \geq 0 \), hence \(c_k > 0 \). (The argument in the case \(u_k < 0 \) is similar.) We decompose the sumset \(hA_k \) as follows:
\[
hA_k = \bigcup_{r+i+j=h} \left(r(h-1)c_k + ru_k - ic_k + jA_{k-1} \right) = \bigcup_{r=0}^h B_r ,
\]
where
\[
B_r = r(h-1)c_k + ru_k + \bigcup_{i=0}^{h-r} (-ic_k + (h-r-i)A_{k-1}) .
\]
If \(n \in B_r \), then there exist integers \(i \in \{0,1,...,h-r\} \) and \(y \in (h-r-i)A_{k-1} \) such that
\[
n = r(h-1)c_k + ru_k - ic_k + y .
\]
Since
\[
|y| \leq (h-r-i)d_{k-1} ,
\]
it follows that
\[
(5) \quad n \geq r(h-1)c_k + ru_k - ic_k - (h-r-i)d_{k-1}
\]
and
\[
n \leq r(h-1)c_k + ru_k - ic_k + (h-r-i)d_{k-1} .
\]

Let \(m \in B_{r-1} \) and \(n \in B_r \) for some \(r \in \{1,...,h\} \). There exist nonnegative integers \(i \leq h-r \) and \(j \leq h-r+1 \) such that
\[
n - m \geq \left(r(h-1)c_k + ru_k - ic_k - (h-r-i)d_{k-1} \right)
\]
\[
- \left((r-1)(h-1)c_k + (r-1)u_k - jc_k + (h-r+1-j)d_{k-1} \right)
\]
\[
= (h-1+j-i)c_k + u_k - (2h-2r-i-j+1)d_{k-1}
\]
\[
\geq (h-1-i)c_k - 2hd_{k-1} .
\]
If \(r \geq 2 \), then \(i \leq h-2 \) and inequality (4) implies that
\[
n - m \geq c_k - 2hd_{k-1} > 0 .
\]
Therefore, if \(m \in B_{r-1} \) and \(n \in B_r \) for some \(r \in \{2,...,h\} \), then \(m < n \).

In the case \(r = 1 \) we have \(m \in B_0 \) and \(n \in B_1 \). If \(i \leq h-2 \), then (4) implies that
\[
n - m \geq (h-1-i)c_k - 2hd_{k-1} \geq c_k - 2hd_{k-1} > 0
\]
and (5) implies that

\[n \geq (h-1-i)c_k + u_k - (h-1-i)d_{k-1} > c_k - hd_{k-1} > d_0 . \]

If \(r = 1 \) and \(i = h - 1 \), then \(n = u_k \). Therefore, if \(m \in B_0 \) and \(n \in B_1 \), then \(m < n \) unless \(m = n = u_k \). It follows that the sets \(B_0, B_1 \setminus \{u_k\}, B_2, \ldots, B_h \) are pairwise disjoint.

Let \(n \in B_r \) for some \(r \geq 1 \). Suppose that \(0 \leq i \leq j \leq h - r \), and that

\[n = r(h-1)c_k + ru_k - ic_k + y \quad \text{for some} \quad y \in (h-r-i)A_{k-1} \]

and

\[n = r(h-1)c_k + ru_k - jc_k + z \quad \text{for some} \quad z \in (h-r-j)A_{k-1} . \]

Subtracting these equations, we obtain

\[z - y = (j - i)c_k . \]

Recall that \(|a| \leq d_{k-1} \) for all \(a \in A_{k-1} \). If \(i < j \), then

\[c_k \leq (j - i)c_k = z - y \]
\[\leq |y| + |z| \leq (2h - 2r - i - j)d_{k-1} \]
\[< 2hd_{k-1} < c_k , \]

which is impossible. Therefore, \(i = j \) and \(y = z \). Since \(0 \leq h - r - i \leq h - 1 \) and \(A_{k-1} \) is a Sidon set of order \(h - 1 \), it follows that

\[r_{A_{k-1}, h-r-i}(y) = 1 \]

and so

\[r_{A_k, h}(n) = 1 \leq f(n) \quad \text{for all} \quad n \in (B_1 \setminus \{u_k\}) \cup \bigcup_{r=2}^{h} B_r . \]

Next we consider the set

\[B_0 = hA_{k-1} \cup \bigcup_{i=1}^{h} \left(-ic_k + (h-i)A_{k-1} \right) . \]

For \(i = 1, \ldots, h \), we have

\[c_k > 2hd_{k-1} \geq (2h - 2i + 1)d_{k-1} \]
and so
\[
\max\left(-ic_k + (h-i)A_{k-1}\right) \leq -ic_k + (h-i)d_{k-1} < -(i-1)c_k - (h-i+1)d_{k-1} \leq \min\left(-(i-1)c_k + (h-i+1)A_{k-1}\right).
\]
Therefore, the sets $-ic_k + (h-i)A_{k-1}$ are pairwise disjoint for $i = 0, 1, ..., h$.

In particular, if $n \in B_0 \setminus hA_{k-1}$, then
\[
n \leq \max\left(-c_k + (h-1)A_{k-1}\right) \leq -c_k + (h-1)d_{k-1} < -d_{k-1} \leq -d_0
\]
and $f(n) \geq 1$. Since A_{k-1} is a Sidon set of order $h-1$, it follows that
\[
r_{A_k,h}(n) = 1 \leq f(n)
\]
for all
\[
n \in \bigcup_{i=1}^{h} \left(-ic_k + (h-i)A_{k-1}\right) = B_0 \setminus hA_{k-1}.
\]
It follows from (3) that for any $n \in B_0 \setminus hA_{k-1}$ we have
\[
n < -d_{k-1} \leq u_k,
\]
and so $u_k \notin B_0 \setminus hA_{k-1}$. Therefore,
\[
r_{A_k,h}(u_k) = r_{A_{k-1,h}}(u_k) + 1,
\]
and the representation function $r_{A_k,h}$ satisfies the three requirements of (2).

We shall prove that
\[
A_k = A_{k-1} \cup \{-c_k, (h-1)c_k + u_k\}
\]
is a Sidon set of order $h-1$. Since A_{k-1} is a Sidon set of order $h-1$ with $d_{k-1} \geq \max\{|a| : a \in A_{k-1}\}$, and since
\[
c_k > 2hd_{k-1} > (2(h-1) - 1)d_{k-1},
\]
Lemma 2 implies that $A_{k-1} \cup \{-c_k\}$ is a Sidon set of order $h-1$.

Let $n \in (h-1)A_k$. Suppose that
\[
n = r(h-1)c_k + ru_k - ic_k + x
\]
\[
= s(h-1)c_k + su_k - jc_k + y,
\]
where
\[0 \leq r \leq s \leq h - 1, \]
\[0 \leq i \leq h - 1 - r, \]
\[0 \leq j \leq h - 1 - s, \]
\[x \in (h - 1 - r - i)A_{k-1}, \]
and
\[y \in (h - 1 - s - j)A_{k-1}. \]

Then
\[|x| \leq (h - 1 - r - i)d_{k-1} \]
and
\[|y| \leq (h - 1 - s - j)d_{k-1}. \]

If \(r < s \), then \(j \leq h - 2 \) and
\[
(h - 1)c_k \leq (s - r)(h - 1)c_k + (s - r)u_k \\
= (j - i)c_k + x - y \\
\leq (j - i)c_k + (2h - 2 - r - s - i - j)d_{k-1} \\
\leq (h - 2)c_k + 2hd_{k-1} \\
< (h - 1)c_k,
\]
which is absurd. Therefore, \(r = s \) and
\[-ic_k + x = -jc_k + y \in (h - 1 - r)(A_k \cup \{-c_k\}). \]

Since \(A_k \cup \{-c_k\} \) is a Sidon set of order \(h - 1 \), it follows that \(i = j \) and that \(x \)
has a unique representation as the sum of \(h - 1 - r - i \) elements of \(A_k \). Thus, \(A_k \)
is a Sidon set of order \(h - 1 \).

The set \(A_k \) satisfies conditions (i)–(iv). It follows by induction that there exists
an infinite increasing sequence \(A_1 \subseteq A_2 \subseteq \cdots \) of finite sets with these properties,
and that \(A = \bigcup_{k=1}^\infty A_k \) is an asymptotic basis of order \(h \) with representation
function \(r_{A,h}(n) = f(n) \) for all \(n \in \mathbb{Z} \).

Finally, we shall prove that, for every nonnegative function \(\varphi(x) \) with
\(\lim_{x \to -\infty} \varphi(x) = \infty \), there exist infinitely many asymptotic bases \(A \) of order \(h \)
such that \(r_{A,h}(n) = f(n) \) for all \(n \in \mathbb{Z} \) and \(A(-x, x) \leq \varphi(x) \) for all \(x \in N_0 \). Let
\(A_0 = \emptyset \), and let \(K' \) be the set of all positive integers \(k \) such that \(A_k \neq A_{k-1} \).
Then \(1 \in K' \) and
\[
A = \bigcup_{k \in K'} A_k = \bigcup_{k \in K'} \{-c_k, (h-1)c_k\}.
\]
For each $k \in K'$, the only constraints on the choice of the number c_k in the construction of the set A_k were the sign of c_k and the growth condition (4)

$$|c_k| > 2hd_{k-1}.$$

Since $\varphi(x) \to \infty$ as $x \to \infty$, for every integer $k \geq 0$ there exists an integer w_k such that

$$\varphi(x) \geq 2k \quad \text{for all } x \geq w_k.$$

We now impose the following additional constraint: Choose c_k such that

$$|c_k| \geq w_k \quad \text{for all integers } k \in K'.$$

Then

$$A_1(-x, x) = 0 \leq \varphi(x) \quad \text{for } 0 \leq x < |c_1|$$

and

$$A_1(-x, x) \leq 2 \leq \varphi(x) \quad \text{for } x \geq |c_1| \geq w_1.$$

Suppose that $k \geq 2$ and the set A_{k-1} satisfies $A_{k-1}(-x, x) \leq \varphi(x)$ for all $x \geq 0$. If $k \notin K'$, then $A_k = A_{k-1}$ and $A_k(-x, x) \leq \varphi(x)$ for all $x \geq 0$. If $k \in K$, then

$$A_k \cap (-|c_k|, |c_k|) = A_{k-1} \cap (-|c_k|, |c_k|) = A_{k-1},$$

and so

$$A_k(-x, x) = A_{k-1}(-x, x) \leq \varphi(x) \quad \text{for } 0 \leq x < |c_k|$$

and

$$A_k(-x, x) \leq 2k \leq \varphi(x) \quad \text{for } x \geq |c_k| \geq w_k.$$

It follows by induction that the finite sets A_k satisfy $A_k(-x, x) \leq \varphi(x)$ for all k and x. The infinite set $A = \cup_{k \in K'} A_k$ is an asymptotic basis with $r_{A,h}(n) = f(n)$ for all $n \in \mathbb{Z}$. Since $\lim_{k \to \infty} |c_k| = \infty$, for every nonnegative integer x we can choose $k \in K'$ such that $|c_k| > x$. It follows that

$$A(-x, x) = A_k(-x, x) \leq \varphi(x).$$

For every integer $k \in K'$ we had infinitely many choices for the integer c_k to use in the construction of the set A_k, and so there are infinitely many asymptotic bases A with the property that $r_A(n) = f(n)$ for all $n \in \mathbb{Z}$ and $A(-x, x) \leq \varphi(x)$ for all $x \in \mathbb{N}_0$. This completes the proof. \ \framebox{ }
4 – Sums of pairwise distinct integers

Let \(A \) be a set of integers and \(h \) a positive integer. We define the sumset \(h \cdot A \) as the set consisting of all sums of \(h \) pairwise distinct elements of \(A \), and the restricted representation function

\[
\hat{r}_{A,h} : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}
\]

by

\[
\hat{r}_{A,h}(n) = \text{card}\left(\{a_1, \ldots, a_h \subseteq A: a_1 + \cdots + a_h = n \text{ and } a_1 < \cdots < a_h\}\right).
\]

The set \(A \) of integers is called a restricted asymptotic basis of order \(h \) if \(h \cdot A \) contains all but finitely many integers, or, equivalently, if \(\hat{r}_{A,h}^{-1}(0) \) is a finite subset of \(\mathbb{Z} \).

We can obtain the following result by the same method used to prove Theorem 1.

Theorem 2. Let \(f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \) be a function such that \(f^{-1}(0) \) is a finite set of integers. Let \(\varphi : \mathbb{N}_0 \to \mathbb{R} \) be a nonnegative function such that \(\lim_{x \to \infty} \varphi(x) = \infty \). For every \(h \geq 2 \) there exist infinitely many sets \(A \) of integers such that

\[
\hat{r}_{A,h}(n) = f(n) \quad \text{for all} \quad n \in \mathbb{Z}
\]

and

\[
A(-x, x) \leq \varphi(x)
\]

for all \(x \geq 0 \).

5 – Open problems

Let \(X \) be an abelian semigroup, written additively, and let \(A \) be a subset of \(X \). We define the \(h \)-fold sumset \(hA \) as the set consisting of all sums of \(h \) not necessarily distinct elements of \(A \). The set \(A \) is called an asymptotic basis of order \(h \) for \(X \) if the sumset \(hA \) consists of all but at most finitely many elements of \(X \). We also define the \(h \)-fold restricted sumset \(h \cdot A \) as the set consisting of all sums of \(h \) pairwise distinct elements of \(A \). The set \(A \) is called a restricted asymptotic basis of order \(h \) for \(X \) if the restricted sumset \(h \cdot A \) consists of all but at most
...REPRESENTATION FUNCTION OF AN ADDITIVE BASIS...

finitely many elements of X. The classical problems of additive number theory concern the semigroups \mathbb{N}_0 and \mathbb{Z}.

There are four different representation functions that we can associate to every subset A of X and every positive integer h. Let $(a_1, ..., a_h)$ and $(a'_1, ..., a'_h)$ be h-tuples of elements of X. We call these h-tuples equivalent if there is a permutation σ of the set $\{1, ..., h\}$ such that $a'_{\sigma(i)} = a_i$ for all $i = 1, ..., h$. For every $x \in X$, let $r_{A,h}(x)$ denote the number of equivalence classes of h-tuples $(a_1, ..., a_h)$ of elements of A such that $a_1 + \cdots + a_h = x$. The function $r_{A,h}$ is called the unordered representation function of A. This is the function that we studied in this paper.

The set A is an asymptotic basis of order h if $r^{(-1)}_{A,h}(0)$ is a finite subset of X.

Let $R_{A,h}(x)$ denote the number of h-tuples $(a_1, ..., a_h)$ of elements of A such that $a_1 + \cdots + a_h = x$. The function $R_{A,h}$ is called the ordered representation function of A.

Let $\hat{r}_{A,h}(x)$ denote the number of equivalence classes of h-tuples $(a_1, ..., a_h)$ of pairwise distinct elements of A such that $a_1 + \cdots + a_h = x$, and let $\hat{R}_{A,h}(x)$ denote the number of h-tuples $(a_1, ..., a_h)$ of pairwise distinct elements of A such that $a_1 + \cdots + a_h = x$. These functions are called the unordered restricted representation function of A and the ordered restricted representation function of A, respectively. The two restricted representation functions are essentially identical, since $\hat{R}_{A,h}(x) = h!\hat{r}_{A,h}(x)$ for all $x \in X$.

In the discussion below, we use only the unordered representation function $r_{A,h}$, but each of the problems can be reformulated in terms of the other representation functions.

For every countable abelian semigroup X, let $\mathcal{F}(X)$ denote the set of all functions $f : X \to \mathbb{N}_0 \cup \{\infty\}$, and let $\mathcal{F}_0(X)$ denote the set of all functions $f : X \to \mathbb{N}_0 \cup \{\infty\}$ such that $f^{-1}(0)$ is a finite subset of X. Let $\mathcal{F}_c(X)$ denote the set of all functions $f : X \to \mathbb{N}_0 \cup \{\infty\}$ such that $f^{-1}(0)$ is a cofinite subset of X, that is, $f(x) \neq 0$ for only finitely many $x \in X$, or, equivalently,

$$\text{card} \left(f^{-1}(\mathbb{N} \cup \{\infty\}) \right) < \infty.$$

Let $\mathcal{R}(X,h)$ denote the set of all h-fold representation functions of subsets A of X. If $r_{A,h}$ is the representation function of an asymptotic basis A of order h for X, then $r^{-1}_{A,h}(0)$ is a finite subset of X, and so $r_{A,h} \in \mathcal{F}_0(X)$. Let $\mathcal{R}_0(X,h)$ denote the set of all h-fold representation functions of asymptotic bases A of order h for X. Let $\mathcal{R}_c(X,h)$ denote the set of all h-fold representation functions of finite subsets of X. We have

$$\mathcal{R}(X,h) \subseteq \mathcal{F}(X),$$
\[\mathcal{R}_0(X, h) \subseteq \mathcal{F}_0(X) , \]

and

\[\mathcal{R}_c(X, h) \subseteq \mathcal{F}_c(X) . \]

In the case \(h = 1 \), we have, for every set \(A \subseteq X \),
\[r_{A,1}(x) = \begin{cases}
1 & \text{if } x \in A , \\
0 & \text{if } x \notin A ,
\end{cases} \]

and so
\[\mathcal{R}(X, 1) = \left\{ f: X \to \{0, 1\} \right\} , \]
\[\mathcal{R}_0(X, 1) = \left\{ f: X \to \{0, 1\} : \text{card}(f^{-1}(0)) < \infty \right\} , \]

and
\[\mathcal{R}_c(X, 1) = \left\{ f: X \to \{0, 1\} : \text{card} \left(f^{-1}(\mathbb{N} \cup \{\infty\}) \right) < \infty \right\} . \]

In this paper we proved that
\[\mathcal{R}_0(\mathbb{Z}, h) = \mathcal{F}_0(\mathbb{Z}) \quad \text{for all } h \geq 2 . \]

Nathanson [8] has extended this result to certain countably infinite groups and semigroups. Let \(G \) be any countably infinite abelian group such that \(\{2g : g \in G\} \) is infinite. For the unordered restricted representation function \(r_{A,2} \), we have
\[\mathcal{R}_0(G, 2) = \mathcal{F}_0(G) . \]

More generally, let \(S \) is any countable abelian semigroup such that for every \(s \in S \) there exist \(s', s'' \in S \) with \(s = s' + s'' \). In the abelian semigroup \(X = S \oplus G \), we have
\[\mathcal{R}_0(X, 2) = \mathcal{F}_0(X) . \]

If \(\{12g : g \in G\} \) is infinite, then \(\mathcal{R}_0(X, 2) = \mathcal{F}_0(X) \) for the unordered representation function \(r_{A,2} \).

The following problems are open for all \(h \geq 2 \):

1. Determine \(\mathcal{R}_0(\mathbb{N}_0, h) \). Equivalently, describe the representation functions of additive bases for the nonnegative integers. This is a major unsolved problem in additive number theory, of which the Erdős–Turán conjecture is only a special case.
2. Determine $R(Z, h)$. In this paper we computed $R_0(Z, h)$, the set of representation functions of additive bases for the integers, but it is not known under what conditions a function $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ with $f^{-1}(0)$ infinite is the representation function of a subset A of X. It can be proved that if $f^{-1}(0)$ is infinite but sufficiently sparse, then $f \in R(Z, h)$.

3. Determine $R(N_0, h)$. Is there a simple list of necessary and sufficient conditions for a function $f : \mathbb{N}_0 \to \mathbb{N}_0$ with $f^{-1}(0)$ infinite but sufficiently sparse, then $f \in R(N_0, h)$?

4. Determine $R_c(Z, h)$. Equivalently, describe the representation functions of finite sets of integers, and identify the functions $f \in F_c(Z)$ such that $f(n) = r_{A,h}(n)$ for some finite set A of integers. If A is a set of integers and t is an integer, then for the translated set $t + A$ we have

$$r_{t+A,h}(n) = r_{A,h}(n - ht)$$

for all integers n. This implies that if $f(n) \in R_c(Z, h)$, then $f(n - ht) \in R_c(Z, h)$ for every integer t, so it suffices to consider only finite sets A of nonnegative integers with $0 \in A$. Similarly, if $\gcd(A) = d$, then $r_{A,h}(n) > 0$ only if d divides n. Setting $B = \{a/d : d \in A\}$, we have $r_{h,A}(n) = r_{B,h}(n/d)$. It follows that we need to consider only finite sets A of relatively prime nonnegative integers with $0 \in A$.

5. Determine $R_0(G, 2)$, $R(G, 2)$, and $R_c(G, 2)$ for the infinite abelian group $G = \bigoplus_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}$. Note that $\{2g : g \in G\} = \{0\}$ for this group.

6. Determine $R_0(G, h)$ and $R(G, h)$, where G is an arbitrary countably infinite abelian group and $h \geq 2$.

7. There is a class of problems of the following type. Do there exist integers h and k with $2 \leq h < k$ such that

$$R(Z, h) \neq R(Z, k) ?$$

We can easily find sets of integers to show that $R_0(\mathbb{N}_0, h) \neq R_0(\mathbb{N}_0, k)$. For example, let $A = \mathbb{N}$ be the set of all positive integers, and let $h \geq 1$. Then $r_{\mathbb{N},h}(0) = 0$ and $r_{\mathbb{N},h}(h) = 1$. If B is any set of nonnegative integers and $k > h$, then $r_{B,k}(h) = 0$, and so $r_{\mathbb{N},h} \not\in R_0(\mathbb{N}_0, k)$. Is it true that

$$R_0(\mathbb{N}_0, h) \cap R_0(\mathbb{N}_0, k) = \emptyset$$

for all $h \neq k$?
8. By Theorem 1, for every $h \geq 2$ and every function $f \in \mathcal{F}_0(\mathbb{Z})$, there exist arbitrarily sparse sets A of integers such that $r_{A,h}(n) = f(n)$ for all n. It is an open problem to determine how dense the sets A can be. For example, in the special case $h = 2$ and $f(n) = 1$, Nathanson [7] proved that there exists a set A such that $r_{A,2}(n) = 1$ for all n, and $\log x \ll A(-x,x) \ll \log x$. For an arbitrary representation function $f \in \mathcal{F}_0(\mathbb{Z})$, Nathanson [6] constructed an asymptotic basis of order h with $A(-x,x) \gg x^{1/(2h-1)}$. In the case $h = 2$, Cilleruelo and Nathanson [1] improved this to $A(-x,x) \gg x^{\sqrt{2}-1+o(1)}$.

REFERENCES

Melvyn B. Nathanson,
Department of Mathematics, Lehman College (CUNY),
Bronx, New York 10468 – USA
E-mail: melvyn.nathanson@lehman.cuny.edu