A VIABILITY RESULT FOR A FIRST-ORDER DIFFERENTIAL INCLUSION

Radouan Morchadi and Saïd Sajid

Abstract: This paper deals with the existence of solutions of a first-order viability problem of the type

\[\dot{x} \in f(t, x) + F(x), \quad x(t) \in K \]

where \(K \) a closed subset of \(\mathbb{R}^n \), \(F \) is upper semicontinuous with compact values contained in the subdifferential \(\partial V(x) \) of a convex proper lower semicontinuous function \(V \) and \(f \) is a Carathéodory single valued map.

1 – Introduction

Bressan, Cellina and Colombo [1] proved the existence of solutions of the problem \(\dot{x} \in F(x), \ x(0) = x_0 \in K \), where \(F \) is an upper semicontinuous multifunction contained in the subdifferential of a convex proper lower semicontinuous function in the finite dimensional space. This result has been generalized by Ancona and Colombo [2] by proving the existence of solutions of the perturbed problem \(\dot{x} \in F(x) + f(t, x), \ x(0) = x_0 \), with \(f \) satisfying the Carathéodory conditions.

The proof is based on approximate solutions; to overcome the weak convergence of derivatives of such solutions, the authors use the following basic relation:

\[\frac{d}{dt} (V(x(t))) = \| \dot{x}(t) \|^2. \]

The aim of the present paper is to prove a viability result of the following problem:

\[
\begin{aligned}
\dot{x} &\in f(t, x) + F(x) \quad \text{a.e. } t \in [0, T], \\
x(0) &= x_0 \in K, \\
x(t) &\in K \quad \forall t \in [0, T].
\end{aligned}
\]
where \(F \) is an upper semicontinous with compact valued multifunction such that \(F(x) \subset \partial V(x) \), for some convex proper lower semicontinuous function \(V \) and \(f \) is a Carathéodory function.

This paper is a generalization of the work of Rossi [5]. Our argument is different from the one appearing in Rossi’s paper.

2 – The result

Let \(\mathbb{R}^n \) be the \(n \)-dimensional Euclidean space with scalar product \(\langle ., . \rangle \) and norm \(||.|| \). Let \(K \) be a closed subset of \(\mathbb{R}^n \). Let \(F \) be a multifunction from \(\mathbb{R}^n \) into the set of all nonempty compact subsets of \(\mathbb{R}^n \). Let \(f \) be a function from \(\mathbb{R} \times \mathbb{R}^n \) into \(\mathbb{R}^n \). Assume that \(F \) and \(f \) satisfy the following conditions:

A1) \(F \) is upper semicontinuous, i.e. for all \(x \in \mathbb{R}^n \) and for every \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that if \(||x - x'|| \leq \delta \) then \(F(x') \subseteq F(x) + \varepsilon B \), where \(B \) is the unit ball of \(\mathbb{R}^n \).

A2) There exists a convex proper and lower semicontinuous function \(V : \mathbb{R}^n \to \mathbb{R} \) such that \(F(x) \subset \partial V(x) \), where \(\partial V \) is the subdifferential of the function \(V \).

A3) \(f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \) is a Carathéodory function, i.e. for every \(x \in \mathbb{R}^n \), \(t \to f(t, x) \) is measurable and for all \(t \in \mathbb{R} \), \(x \to f(t, x) \) is continuous.

A4) There exists \(m \in L^2(\mathbb{R}) \) such that

\[
\| f(t, x) \| \leq m(t) \quad \forall (t, x) \in \mathbb{R} \times \mathbb{R}^n .
\]

A5) (Tangential condition) \(\forall (t, x) \in \mathbb{R} \times K, \exists v \in F(x) \) such that

\[
\lim_{h \to 0^+} \inf \frac{1}{h} d_K \left(x + hv + \int_{t}^{t+h} f(s, x) \, ds \right) = 0 .
\]

Let \(x_0 \in K \), let \(f \) and \(F \) satisfying assumptions A1, ..., A5, then we shall prove the following result:

Theorem 1. There exist \(T > 0 \) and \(x : [0, T] \to \mathbb{R}^n \) such that

\[
\begin{cases}
 x(t) \in f(t, x(t)) + F(x(t)) & \text{a.e. on } [0, T] , \\
 x(0) = x_0 \in K , \\
 x(t) \in K & \forall t \in [0, T] .
\end{cases}
\]
3 – Proof of the main result

Lemma 2. Let V be a convex proper lower semicontinuous function such that for all $x \in \mathbb{R}^n$, $F(x) \subset \partial V(x)$. Then there exist $r = r_x > 0$ and $M = M_x > 0$ such that $\|F(x)\| = \sup_{z \in F(x)} \|z\| \leq M$ and V is Lipschitz continuous with constant M on $B(x, r)$. ■

For the proof, see [1].

Let r be the real given by Lemma 2 associated to x_0. Choose $T > 0$ such that

$$\int_0^T \left(m(s) + M + 1 \right) ds < \frac{r}{2}.$$

In all the sequel, denote by K_0 the compact subset $K \cap \overline{B}(x_0, r)$.

Lemma 3. Assume that F and f satisfy A_1, \ldots, A_5. Then for all $\varepsilon > 0$, there exists $\eta > 0$ ($\eta < \varepsilon$) with the following properties:

For all $(t, x) \in [0, T] \times K_0$, there exist $u \in F(x) + \frac{\varepsilon}{T} B$ and $h_{t, x} \in [\eta, \varepsilon]$ such that

$$x + h_{t, x} u + \int_t^{t + h_{t, x}} f(s, x) ds \in K.$$

Proof: Let $(t, x) \in [0, T] \times K_0$, let $\varepsilon > 0$. Since F is upper semicontinuous, then there exists $\delta_x > 0$ such that

$$F(y) \subset F(x) + \varepsilon B, \quad \forall y \in B(x, \delta_x).$$

Let $(s, y) \in [0, T] \times K$. By the tangential condition there exist $h_{s, y} \in [0, \varepsilon]$ and $v \in F(y)$ such that

$$d_K \left(y + h_{s, y} v + \int_s^{s + h_{s, y}} f(\tau, y) d\tau \right) < h_{s, y} \frac{\varepsilon}{4T}.$$

Consider the subset

$$N(s, y) = \left\{ (t, z) \in \mathbb{R} \times \mathbb{R}^n / d_K \left(z + h_{s, y} v + \int_t^{t + h_{s, y}} f(\tau, z) d\tau \right) < h_{s, y} \frac{\varepsilon}{4T} \right\}.$$

Since

$$\|f(s, z)\| \leq m(s) \text{ a.e. on } [0, T], \quad \forall z \in \mathbb{R}^n$$
then, the dominated convergence theorem applied to the sequence of functions $(\chi_{[t,t+h_{s,y}]} f(\cdot,\cdot))_t$ shows that the function

$$(l, z) \rightarrow z + h_{s,y} v + \int_t^{t+h_{s,y}} f(\tau, z) \, d\tau$$

is continuous. So that, the function

$$(l, z) \rightarrow d_K \left(z + h_{s,y} v + \int_t^{t+h_{s,y}} f(\tau, z) \, d\tau \right)$$

is continuous and consequently the subset $N(s, y)$ is open.

Moreover, since (s, y) belongs to $N(s, y)$, there exists a ball $B((s, y), \eta_{\tau,y})$ of radius $\eta_{\tau,y} < \delta_x$ contained in $N(s, y)$. Therefore, the compact subset $[0, T] \times K_0$ can be covered by q such balls $B((s_i, y_i), \eta_{s_i,y_i})$. For simplicity, we set $h_{s_i,y_i} = h_i$, $i = 1, \ldots, q$. Put $\eta = \min_{i=1,\ldots,q} h_i > 0$.

Let $(t, x) \in [0, T] \times K_0$ be fixed. Since $(t, x) \in B((s_i, y_i), \eta_{s_i,y_i})$ which is contained in $N(s_i, y_i)$, then there exist $x_i \in K$ and $u_i \in F(y_i)$ such that

$$\left\| u_i - \frac{1}{h_i} \left(x_i - x - \int_t^{t+h_i} f(s, x) \, ds \right) \right\| \leq \frac{1}{h_i} d_K \left(x + h_i u_i + \int_t^{t+h_i} f(\tau, z) \, d\tau \right) + \frac{\varepsilon}{4T} \leq \frac{\varepsilon}{2T}.$$

Set

$$u = \frac{1}{h_i} \left(x_i - x - \int_t^{t+h_i} f(s, x) \, ds \right)$$

hence

$$x + h_i u + \int_t^{t+h_i} f(s, x) \, ds \in K$$

and

$$\| u_i - u \| \leq \frac{\varepsilon}{2T}.$$

Since

$$\| x - y_i \| < \eta_{\tau,y} < \delta_x$$

then

$$F(y_i) \subset F(x) + \frac{\varepsilon}{2T} B$$

so that

$$u \in F(x) + \frac{\varepsilon}{T} B.$$

Hence the Lemma 3 is proved. \blacksquare

Now, our purpose is to define on $[0, T]$ a family of approximate solutions and show that a subsequence converges to a solution of the problem (1.1).
4 – Construction of approximate solutions

Let $x_0 \in K_0$ and $\varepsilon < T$. By Lemma 3, there exist $\eta > 0$, $h_0 \in [\eta, \varepsilon]$ and $u_0 \in F(x_0) + \frac{\varepsilon}{T} B$ such that

$$x_1 = x_0 + h_0 u_0 + \int_0^{h_0} f(s, x_0) \, ds \in K$$

then if $h_0 \leq T$ we have

$$\|x_1 - x_0\| = \left\|h_0 u_0 + \int_0^{h_0} f(s, x_0) \, ds\right\| \leq \frac{r}{2}$$

and thus $x_1 \in K_0$. Hence for (h_0, x_1) there exist $h_1 \in [\eta, \varepsilon]$ and $u_1 \in F(x_1) + \varepsilon T B$ such that

$$x_2 = x_1 + h_1 u_1 + \int_{h_0}^{h_0 + h_1} f(s, x_1) \, ds \in K$$

we have

$$\|x_2 - x_0\| = \left\|h_0 u_0 + \int_0^{h_0} f(s, x_0) \, ds + h_1 u_1 + \int_{h_0}^{h_0 + h_1} f(s, x_1) \, ds\right\|$$

then if $h_0 + h_1 < T$ we have

$$\|x_2 - x_0\| \leq \frac{r}{2}$$

thus $x_2 \in K_0$.

Set $h_{-1} = 0$, by induction, since h_i belongs to $[\eta, \varepsilon]$, then there exists an integer s such that $\sum_{i=0}^{s-1} h_i < T \leq \sum_{i=0}^{s} h_i$. Hence we construct the sequences $(h_p)_p \subset [\eta, \varepsilon]$, $(x_p)_p \subset K_0$, and $(u_p)_p$ such that for every $p = 0, \ldots, s-1$, we have

$$\begin{cases} x_{p+1} = x_p + h_p u_p + \int_{h_p}^{h_p + h_p} f(s, x_p) \, ds \in K \\ u_p \in F(x_p) + \frac{\varepsilon}{T} B \end{cases}$$

By induction, for all $p \geq 2$ we have

$$\begin{align*} x_p &= x_0 + \sum_{i=0}^{i=p-1} h_i u_i + \sum_{i=1}^{i=p-1} \int_{j=0}^{i} h_j f(\tau, x_\tau) \, d\tau \\ u_p &\in F(x_p) + \frac{\varepsilon}{T} B \end{align*}$$
and the estimates

\[\| x_p - x_0 \| = \left\| \sum_{i=0}^{i=p-1} h_i u_i + \sum_{i=0}^{i=p-1} \int_{\tau_{i-1}}^{\tau_i} f(\tau, x_i) d\tau \right\| \]

\[\leq (M + 1) \sum_{i=1}^{i=p-1} h_i + \int_0^T m(\tau) d\tau . \]

Since \(\sum_{i=0}^{i=p-1} h_i \leq T \), then we obtain \(\| x_p - x_0 \| \leq \frac{r}{2} \).

For any nonzero integer \(k \) and for every integer \(q = 0, \ldots, s \), denote by \(h^k_q \) a real associated to \(\varepsilon = \frac{1}{k} \) and \(x = x_q \) given by Lemma 3, consider the sequence \((\tau^q_k)_k \)

\[\begin{cases} \tau^0_k = 0, & \tau^s_k = T \\ \tau^q_k = h^k_0 + \cdots + h^k_{q-1} \end{cases} \]

and define on \([0, T]\) the sequence of functions \((x_k(.)_k) \) by

\[x_k(t) = x_{q-1} + (t - \tau^q_k) u_{q-1} + \int_{\tau^q_{k-1}}^{t} f(s, x_{q-1}) ds \quad \forall t \in [\tau^q_{k-1}, \tau^q_k] \]

\[x_k(0) = x_0 \]

then for all \(t \in [\tau^q_{k-1}, \tau^q_k] \)

\[\dot{x}_k(t) = u_{q-1} + f(t, x_{q-1}) . \]

5 – Convergence of approximate solutions

Observe that the sequence \((x_k(.)_k) \) satisfies the following relations

1) \(\| \dot{x}_k(t) \| \leq \| u_{q-1} \| + \| f(t, x_{q-1}) \| \leq M + 1 + m(t) , \)

2) \(\| x_k(t) \| = \left\| x_k(\tau^q_k) + \int_{\tau^q_{k-1}}^{t} \dot{x}_k(\tau) d\tau \right\| \)

\[\leq \| x_{q-1} \| + \int_0^T (M + 1 + m(t)) d\tau \]

\[\leq \| x_0 \| + \frac{r}{2} + \frac{r}{2} \leq \| x_0 \| + r . \)
Hence

\[\int_0^T \| \dot{x}_k(t) \|^2 \, dt \leq \int_0^T (M + 1 + m(t))^2 \, dt \]

the sequence \((\dot{x}_k(.))\) is bounded in \(L^2([0,T], \mathbb{R}^n)\) and therefore \((x_k(.))\) is equi-uniformly continuous. Hence there exists a subsequence, still denoted by \((x_k(.))\) and an absolutely continuous function \(x(.): [0, T] \rightarrow \mathbb{R}^n\) such that \(x_k(.)\) converges to \(x(.)\) uniformly and \(\dot{x}_k(.)\) converges weakly in \(L^2([0, T], \mathbb{R}^n)\) to \(\dot{x}(.).\)

The family of approximate solutions \(x_k(.)\) has the following property:

Proposition 4. For every \(t \in [0, T]\) there exists \(q \in \{1, ..., s\}\) such that

\[\lim_{k \to \infty} d_{gr}F \left(x_k(t), \dot{x}_k(t) - f(t, x_k(\tau^q_k-1)) \right) = 0. \]

Proof: Let \(t \in [0, T]\). By construction of \(\tau^q_k\) there exists \(q\) such that \(t \in [\tau^q_k-1, \tau^q_k]\) and \((\tau^q_k)\) converges to \(t\).

Since

\[\dot{x}_k(t) - f(t, x_k(\tau^q_k-1)) = u_{q-1} \in F(x_k(\tau^q_k-1)) + \frac{1}{kT} \]

then

\[\lim_{k \to \infty} d_{gr(F)} \left(x_k(t), \dot{x}_k(t) - f(t, x_k(\tau^q_k-1)) \right) \leq \lim_{k \to \infty} \left(\| x_k(t) - x_k(\tau^q_k-1) \| + \frac{1}{kT} \right) \]

hence

\[\lim_{k \to \infty} d_{gr(F)} \left(x_k(t), \dot{x}_k(t) - f(t, x_k(\tau^q_k-1)) \right) = 0. \]

This completes the proof.

Since the sequences \(x_k(.) \rightarrow x(.)\) uniformly, \(\dot{x}_k(.) \rightarrow \dot{x}(.)\) weakly in \(L^2([0,T], \mathbb{R}^n)\), \((f(., x_k(\tau^q_k)))\) converges to \(f(., x(.))\) in \(L^2([0,T], \mathbb{R}^n)\) and \(F\) is upper semi-continuous, then by theorem 1.4.1 in [3], \(x(.)\) is a solution of the following convexified problem:

\[
\begin{cases}
\dot{x}(t) \in f(t, x(t)) + \text{co} F(x(t)) \\
x(0) = x_0.
\end{cases}
\]

Consequently, for all \(t \in [0, T]\) we have that

\[\dot{x}(t) - f(t, x(t)) \in \partial V(x(t)). \]

Proposition 5. The application \(x(.)\) is a solution of the problem (1.1).
Proof: To begin with, we prove that \(|\|\dot{x}_k\|_2\|_k\) converges to \(|\|\dot{x}\|_2\). Since the map \(x(.)\) and \(V(x(.)\) are absolutely continuous, we obtain from (5.1) by applying Lemma 3.3 in [4] that
\[
\frac{d}{dt} V(x(t)) = \left\langle \dot{x}(t), \dot{x}(t) - f(t, x(t)) \right\rangle \quad \text{a.e. on } [0,T]
\]
therefore
\[
V(x(T)) - V(x_0) = \int_0^T \|\dot{x}(s)\|^2 \, ds - \int_0^T \left\langle \dot{x}(s), f(s, x(s)) \right\rangle \, ds.
\]
On the other hand, since for all \(q = 1, \ldots, s\)
\[
\dot{x}_k(t) - f(t, x_k(t)) = \dot{x}_k(t) - f(t, x_{q-1}) \in \partial V(x_k(t)) + \frac{1}{kT} B.
\]
there exists \(b_q \in B\) such that
\[
\dot{x}_k(t) - f(t, x_{q-1}) + \frac{1}{kT} b_q \in \partial V(x_k(t)).
\]
Moreover the subdifferential properties of a convex function imply that for every \(z \in \partial V(x_k(t))\)
\[
V(x_k(t)) - V(x_k(t_{q-1})) \geq \left\langle x_k(t) - x_k(t_{q-1}), z \right\rangle
\]
particularly, for
\[
z = \dot{x}_k(t) - f(t, x_{q-1}) + \frac{1}{kT} b_q
\]
we have
\[
V(x_k(t)) - V(x_k(t_{q-1})) \geq \int_{t_{q-1}}^{t_q} \left\langle \dot{x}_k(s), \dot{x}_k(t) - f(t, x_{q-1}) + \frac{1}{kT} b_q \right\rangle \, ds.
\]
thus
\[
V(x_k(t)) - V(x_k(t_{q-1})) \geq \int_{t_{q-1}}^{t_q} \left\langle \dot{x}_k(s), \dot{x}_k(s) \right\rangle \, ds + \int_{t_{q-1}}^{t_q} \left\langle \dot{x}_k(s), f(s, x_k(t_{q-1})) \right\rangle \, ds
\]
\[
- \int_{t_{q-1}}^{t_q} \left\langle \dot{x}_k(s), f(s, x_k(t_{q-1})) \right\rangle \, ds,
\]
therefore, it is clear that
\[
V(x_k(T)) - V(x_0) \geq \int_0^T \|\dot{x}_k(s)\|^2 \, ds - \sum_{q=1}^{s} \int_{t_{q-1}}^{t_q} \left\langle \dot{x}_k(s), f(s, x_k(t_{q-1})) \right\rangle \, ds
\]
\[
+ \sum_{q=1}^{s} \frac{1}{kT} \int_{t_{q-1}}^{t_q} \left\langle \dot{x}_k(s), b_q \right\rangle \, ds.
\]
Claim. The sequence
\[
\left(\sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left\langle \dot{x}_k(s), f(s, x_k(\tau_{k}^{q-1})) \right\rangle \, ds \right)_k
\]
converges to
\[
\int_{0}^{T} \left\langle \dot{x}(s), f(s, x(s)) \right\rangle \, ds .
\]

Proof: We have
\[
\left\| \sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left(\left\langle \dot{x}_k(s), f(s, x_k(\tau_{k}^{q-1})) \right\rangle - \left\langle \dot{x}(s), f(s, x(s)) \right\rangle \right) \, ds \right\| =
\]
\[
= \left\| \sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left(\left\langle \dot{x}_k(s), f(s, x_k(\tau_{k}^{q-1})) \right\rangle - \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle \right) \, ds \right\|
\]
\[
\leq \sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left\| \left\langle \dot{x}_k(s), f(s, x_k(\tau_{k}^{q-1})) \right\rangle - \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle \right\| \, ds
\]
\[
+ \sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left\| \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle - \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle \right\| \, ds
\]
\[
+ \sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left\| \left\langle \dot{x}(s), f(s, x(s)) \right\rangle - \left\langle \dot{x}(s), f(s, x(s)) \right\rangle \right\| \, ds
\]
\[
= \sum_{q=1}^{s} \int_{\tau_{k-1}^{q}}^{\tau_{k}^{q}} \left\| \left\langle \dot{x}_k(s), f(s, x_k(\tau_{k}^{q-1})) \right\rangle - \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle \right\| \, ds
\]
\[
+ \int_{0}^{T} \left\| \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle - \left\langle \dot{x}_k(s), f(s, x_k(s)) \right\rangle \right\| \, ds
\]
\[
+ \int_{0}^{T} \left\| \left\langle \dot{x}(s), f(s, x(s)) \right\rangle - \left\langle \dot{x}(s), f(s, x(s)) \right\rangle \right\| \, ds .
\]

Since \(f \) is a Carathéodory function, \(x_k(.) \to x(.) \) uniformly, \(\|\dot{x}_k(.)\| \leq M + 1 + m(.) \), \(m(.) \in L^2([0, T], \mathbb{R}^n) \) and \(\dot{x}_k(.) \to \dot{x}(.) \) weakly in \(L^2([0, T], \mathbb{R}^n) \) then the last term converges to 0. This completes the proof of the claim.
Since
\[\lim_{k \to \infty} \sum_{q=1}^{s} \frac{1}{k} \int_{\tau_{q-1}^{k}}^{\tau_{q}^{k}} \langle \dot{x}_{k}(s), b_{q} \rangle \, ds = 0 \]
then by passing to the limit for \(k \to \infty \) in (5.4) and using the continuity of the function \(V \) on the ball \(B(x_{0}, r) \), we obtain the following inequality
\[V(x(T) - V(x_{0})) \geq \lim_{k \to \infty} \sup_{s} \int_{0}^{T} \| \dot{x}_{k}(s) \|^{2} \, ds - \int_{0}^{T} \langle \dot{x}(s), f(s, x(s)) \rangle \, ds . \]
Moreover, by the equality (5.2) we have
\[\| \dot{x} \|_{2}^{2} \geq \lim_{k \to \infty} \sup_{s} \| \dot{x}_{k} \|_{2}^{2} \]
and by the weak lower semicontinuity of the norm, it follows that
\[\| \dot{x} \|_{2}^{2} \leq \lim_{k \to \infty} \inf_{s} \| \dot{x}_{k} \|_{2}^{2} . \]
Finally, since \((\dot{x}_{k})_{k}\) converges to \(\dot{x}(.) \) strongly in \(L^{2}([0, T], \mathbb{R}^{n}) \), then there exists a subsequence denoted by \(\dot{x}_{k}(.) \) which converges pointwisely to \(\dot{x}(.) \). Therefore, we conclude, in view of Proposition 4, that
\[d_{gr}F \left(x(t), \dot{x}(t) - f(t, x(t)) \right) = 0 \quad \text{a.e. on } [0, T] . \]
Since the graph of \(F \) is closed we have
\[\dot{x}(t) \in f(t, x(t)) + F(x(t)) \quad \text{a.e. on } [0, T] . \]
Finally, let \(t \in [0, T] \). Recall that there exists \((\tau_{k}^{0})_{k}\) such that \(\lim_{k \to \infty} \tau_{k}^{0} = t \) for all \(t \in [0, T] \). Since
\[\lim_{k \to \infty} \| x(t) - x_{k}(\tau_{k}^{0}) \| \to 0 \]
\(x_{k}(\tau_{k}^{0}) \in K, K \) is closed, by passing to the limit we obtain \(x(t) \in K \).
This completes the proof. ■

REFERENCES

A VIABILITY RESULT FOR A FIRST-ORDER DIFFERENTIAL INCLUSION

Radouan Morchadi and Saïd Sajid,
Département de Mathématiques, Faculté des Sciences et Techniques,
BP 146 Mohammadia – MOROCCO
E-mail: morchadi@hotmail.com
saidsajid@hotmail.com