EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR BEAM EQUATIONS *

P. Amster and P.P. Cárdenas Alzate

Abstract: We study the existence of solutions for some nonlinear ordinary differential equations under a nonlinear boundary condition which arise on beam theory. Assuming suitable conditions we prove the existence of at least one solution applying topological methods.

1 – Introduction

This work is devoted to the study of the existence of solutions for some nonlinear ordinary differential equations under a nonlinear boundary condition. In 1995 Rebelo and Sanchez [9] have considered the second order problem

\[
\begin{align*}
 u'' + g(t, u) &= 0 & 0 < t < T \\
 u'(0) &= -f(u(0)) \\
 u'(T) &= f(u(T))
\end{align*}
\]

with \(g : [0, T] \times \mathbb{R} \to \mathbb{R} \) for \(g \) satisfying a sign condition or either nondecreasing with respect to \(u \), and \(f \in C(\mathbb{R}, \mathbb{R}) \) continuous and strictly nondecreasing. This equation may be regarded as a mathematical model for the axial deformation of a nonlinear elastic beam, with two nonlinear elastic springs acting at the extremities according to the law \(u'(0) = -f(u(0)) \), \(u'(\pi) = f(u(\pi)) \), and the total force exerted by the nonlinear spring undergoing the displacement \(u \) given by \(g(t, u) \).

Received: February 28, 2005; Revised: June 8, 2005.

* This work was partially supported by Fundación Antorchas.
On the other hand, the following fourth order problem for the deflection of a beam resting on elastic bearings was considered, among other authors, by Grossinho and Ma (see [3], [6], and also [4] for asymmetric boundary conditions):

$$
\begin{align*}
\begin{cases}
 u^{(4)}(t,u) + g(t,u) &= 0 & 0 < t < T \\
 u''(0) &= u''(T) = 0 \\
 u'''(0) &= -f(u(0)) \\
 u'''(T) &= f(u(T)) .
\end{cases}
\end{align*}
$$

(2)

In section 2 we study (1) for $g = g(t,u,u')$. We remark that in this more general situation the problem is no longer variational; for this reason we shall apply instead topological methods. On the other hand, in order to find a priori bounds for the derivative we shall assume as in [2] the following Nagumo type condition:

$$
|g(t,u,v)| \leq \psi(|v|) \quad \forall (t,u,v) \in E .
$$

(3)

Here E is a subset of $[0,T] \times \mathbb{R}^2$ to be specified, and $\psi : [0, +\infty) → (0, +\infty)$ is a continuous function satisfying the inequality

$$
\int_r^M \frac{1}{\psi(s)} \, ds > T
$$

for some constants M and r to be specified. Under these assumptions we shall prove the existence of solutions by the method of upper and lower solutions.

Moreover, in section 3 we obtain an existence result under Landesman–Lazer type conditions (see e.g. [8]) applying topological degree methods [7].

Finally, in section 4 we consider the fourth order problem (2) for $g = g(t,u,u',u'',u'''$. More precisely, we prove the existence of symmetric solutions, i.e. such that $u(t) = u(T - t)$, under appropriate Landesman–Lazer and Nagumo type conditions.

2 – The second order case. Upper and lower solutions

In this section we prove an existence result for the following second order problem:

$$
\begin{align*}
\begin{cases}
 u'' + g(t,u,u') &= 0 & 0 < t < T \\
 u'(0) &= -f(u(0)) \\
 u'(T) &= f(u(T)) .
\end{cases}
\end{align*}
$$

(4)
We shall assume the existence of an ordered couple of a lower and an upper solution. Namely, we shall assume there exist \(\alpha, \beta : [0, T] \to \mathbb{R} \) such that \(\alpha(t) \leq \beta(t) \),
\[
\alpha''(t) + g(t, \alpha, \alpha') \geq 0 ,
\]
\[
\beta''(t) + g(t, \beta, \beta') \leq 0 ,
\]
and
\[
\begin{align*}
\alpha'(0) & \geq -f(\alpha(0)), & \alpha'(T) & \leq f(\alpha(T)) \\
\beta'(0) & \leq -f(\beta(0)), & \beta'(T) & \geq f(\beta(T)).
\end{align*}
\]

In this context, set
\[
r = \min \left\{ \max \left\{ \frac{|\alpha(0) - \beta(T)|}{T}, \frac{|\alpha(T) - \beta(0)|}{T} \right\}, \max_{\alpha(0), \alpha(T) \leq \beta(0), \beta(T)} |f(s)| \right\},
\]
fix a constant \(M > r \) such that
\[
M \geq \max \left\{ \|\alpha'\|_{C([0, T])}, \|\beta'\|_{C([0, T])} \right\}
\]
and define
\[
\mathcal{E} = \left\{ (t, u, v) \in [0, T] \times \mathbb{R}^2 : \alpha(t) \leq u \leq \beta(t), \ |v| \leq M \right\}.
\]

Theorem 2.1. With the previous notations, assume there exists an ordered couple of a lower and an upper solution of (4). Furthermore, assume that \(g \) satisfies the Nagumo condition (3). Then the boundary value problem (4) admits at least one solution \(u \), with
\[
\alpha(t) \leq u(t) \leq \beta(t), \quad |u'(t)| < M \quad \forall t \in [0, T].
\]

Proof: Set \(\lambda > 0 \) and consider the functions \(P : [0, T] \times \mathbb{R} \to \mathbb{R}, Q : \mathbb{R} \to \mathbb{R} \) given by
\[
P(t, x) = \begin{cases}
x & \alpha(t) \leq x \leq \beta(t) \\
\beta(t) & x > \beta(t) \\
\alpha(t) & x < \alpha(t),
\end{cases}
\]
\[
Q(x) = \begin{cases}
x & -M \leq x \leq M \\
M & x > M \\
-M & x < -M.
\end{cases}
\]
We define a compact fixed point operator \(\phi : C^1([0,T]) \rightarrow C^1([0,T]) \) in the following way: for each \(v \in C^1([0,T]) \), let \(u = \phi(v) \) be the unique solution of the linear Neumann problem

\[
\begin{align*}
u'' - \lambda u &= g(t, P(t,v), Q(v')) - \lambda P(t, v), \\
u'(0) &= -f(P(0, v(0))), \quad u'(T) = f(P(T, v(T))).
\end{align*}
\]

By standard results, \(\phi \) is well defined and compact. Moreover, multiplying the previous equation by \(u \) it follows that

\[
- \int_0^T (u'' - \lambda u) u \leq C \|u\|_{L^2}
\]

for some constant \(C \). Hence

\[
\|u''\|_{L^2} + \lambda \|u\|_{L^2} \leq C \|u\|_{L^2} + f(P(T, v(T))) u(T) + f(P(0, v(0))) u(0),
\]

and it follows that \(\|u\|_{H^1} \leq C \) for some constant \(C \). We conclude that \(\|u\|_{C^1} \leq C \) for some constant \(C \), and by a straightforward application of Schauder Theorem it follows that \(\phi \) has a fixed point \(u \). We claim that

\[
\alpha(t) \leq u(t) \leq \beta(t), \quad |u'(t)| < M \quad \forall t \in [0,T],
\]

and hence \(u \) is a solution of the problem. Indeed, if for example \((u - \beta)(t_0) > 0 \) for some \(t_0 \in (0,T) \) maximum, then \(P(t_0, u(t_0)) = \beta(t_0), u'(t_0) = \beta'(t_0), \) and

\[
(u - \beta)''(t_0) - \lambda (u - \beta)(t_0) \geq g(t_0, P(t_0, u(t_0)), Q(u'(t_0))) - \lambda P(t_0, u(t_0))
\]

\[
- \left[g(t_0, \beta(t_0), \beta'(t_0)) - \lambda \beta(t_0)\right] = 0,
\]

a contradiction. Now, if \(u - \beta \) attains an absolute positive maximum for example at \(t = 0 \), then \((u - \beta)'(0) \leq 0\). Moreover, as \(P(0, u(0)) = \beta(0) \) we deduce that \((u - \beta)'(0) = -f(P(0, u(0))) - \beta'(0) \geq 0\), and hence \((u - \beta)'(0) = 0\). On the other hand, in a neighborhood of 0 we have that \(u(t) > \beta(t) \) and then

\[
(u - \beta)'' - \lambda (u - \beta) \geq g(t, P(t,u), Q(u')) - \lambda P(t,u) - \left[g(t, \beta, \beta') - \lambda \beta\right]
\]

\[
= g(t, \beta, Q(u')) - g(t, \beta, \beta').
\]

As \(u'(0) = \beta'(0) \in [-M, M] \), the right-hand term vanishes at \(t = 0 \), meanwhile \(u(0) - \beta(0) > 0 \). It follows that \((u - \beta)'' \geq \lambda (u - \beta) + g(t, \beta, Q(u')) - g(t, \beta, \beta') > 0\) in \((0, \delta)\) for some \(\delta > 0 \), which contradicts the fact that 0 is an absolute maximum
EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR BEAM EQUATIONS

of \(u - \beta \). In the same way, it follows that \(u - \beta \) cannot attain a positive absolute maximum at \(T \). We deduce in a similar way that \(u(t) \geq \alpha(t) \) for every \(t \in [0, T] \).

Next, assume for example that \(u'(t_0) = M \) for some \(t_0 \).

If \(r = \max_{\alpha(0), \alpha(T) \leq s \leq \beta(0), \beta(T)} |f(s)| \), then \(|u'(0)|, |u'(T)| \leq r \); otherwise there exists \(\tilde{t} \) such that

\[
u'(\tilde{t}) = \frac{u(T) - u(0)}{T} \leq \frac{\beta(T) - \alpha(0)}{T} \leq r.
\]

In both cases, we deduce the existence of \(t_1 \) such that \(u'(t_1) = r \). We may assume that \(r < u'(t) < M \) for any \(t \) between \(t_1 \) and \(t_0 \), and hence

\[
T < \int_r^M \frac{1}{\psi(s)} \, ds = \int_{t_1}^{t_0} \frac{u''(t)}{\psi(u'(t))} \, dt \leq \left| \int_{t_1}^{t_0} \frac{g(t, u, u')}{\psi(u'(t))} \, dt \right| \leq |t_0 - t_1|,
\]

a contradiction. The proof is analogous if \(u'(t_0) = -M \). \(\blacksquare \)

Remark 2.2. In particular, the conditions of the previous theorem hold if there exist two constants \(\alpha < \beta \) such that

\[g(t, \alpha, 0) \geq 0 \geq g(t, \beta, 0)\]

and

\[f(\alpha) \geq 0 \geq f(\beta)\]

provided that \(g \) satisfies \(|g(t, u, v)| \leq \psi(|v|) \) for \(\alpha \leq u \leq \beta \), \(|v| < M \) and \(\int_0^M \frac{1}{\psi(s)} \, ds > T \). \(\square \)

Remark 2.3. When \(f \) is nondecreasing, a more general result is proved in [1]. \(\square \)

3 – Landesman–Lazer type conditions

In this section we prove the existence of solutions of (4) under Landesman–Lazer type conditions. We shall assume that \(f \) is one-side globally bounded, i.e. \(f \leq r \) or \(f \geq -r \) for some positive constant \(r \), and that \(g \) satisfies the Nagumo condition (3) over the set

\[
\mathcal{E} = \left\{ (t, u, v) \in [0, T] \times \mathbb{R}^2 : |v| \leq M \right\}
\]

for some \(M > r \).
Moreover, we shall assume that the limits
\[\limsup_{u \to \pm \infty} g(t, u, v) := g_s^\pm(t) \]
and
\[\liminf_{u \to \pm \infty} g(t, u, v) := g_i^\pm(t) \]
exist, and that they are uniform for \(|v| < M\). We also define the (possibly infinite) quantities
\[\limsup_{u \to \pm \infty} f(u) := f_s^\pm \]
and
\[\liminf_{u \to \pm \infty} f(u) := f_i^\pm. \]

Then we have:

Theorem 3.1. Under the previous assumptions, problem (4) admits at least one solution, provided that one of the following conditions holds:

(8) \[2 f_s^+ + \int_0^T g_s^+(t) \, dt < 0 < 2 f_i^- + \int_0^T g_i^-(t) \, dt \]

(9) \[2 f_s^- + \int_0^T g_s^-(t) \, dt < 0 < 2 f_i^+ + \int_0^T g_i^+(t) \, dt. \]

Remark 3.2. Conditions of this kind are known in the literature as Landesman–Lazer type conditions after the pioneering paper of E. Landesman and A. Lazer [5]. In particular, taking \(f = 0 \) in Theorem 3.1 we obtain standard Landesman–Lazer conditions for the Neumann problem.

For the sake of completeness, we summarize the main aspects of coincidence degree theory. Let \(\mathcal{V} \) and \(\mathcal{W} \) be real normed spaces, \(L : \Dom(L) \subset \mathcal{V} \to \mathcal{W} \) a linear Fredholm mapping of index 0, and \(N : \mathcal{V} \to \mathcal{W} \) continuous. Moreover, set two continuous projectors \(\pi_\mathcal{V} : \mathcal{V} \to \mathcal{V} \) and \(\pi_\mathcal{W} : \mathcal{W} \to \mathcal{W} \) such that \(\Dom(\pi_\mathcal{V}) = \Ker(L) \) and \(\Ker(\pi_\mathcal{W}) = \Dom(L) \). And an isomorphism \(J : \Dom(\pi_\mathcal{W}) \to \Ker(L) \). It is readily seen that
\[L\pi_\mathcal{V} := L|_{\Dom(L) \cap \Ker(\pi_\mathcal{V})} : \Dom(L) \cap \Ker(\pi_\mathcal{V}) \to \Dom(L) \]
is one-to-one; denote its inverse by $K_{\pi\Psi}$. If Ω is a bounded open subset of \(\mathcal{V} \), N is called L-compact on Ω if $\pi\Psi N(\Omega)$ is bounded and $K_{\pi\Psi}(I - \pi\Psi)N : \Omega \to \mathcal{V}$ is compact.

The following continuation theorem is due to Mawhin [7]:

Theorem 3.3. Let L be a Fredholm mapping of index zero and N be L-compact on a bounded domain $\Omega \subset \mathcal{V}$. Suppose that:

1. $Lx \neq \lambda Nx$ for each $\lambda \in (0, 1]$ and each $x \in \partial \Omega$.
2. $\pi\Psi N x \neq 0$ for each $x \in \text{Ker}(L) \cap \partial \Omega$.
3. $d(J\pi\Psi N, \Omega \cap \text{Ker}(L), 0) \neq 0$, where d denotes the Brouwer degree.

Then the equation $Lx = Nx$ has at least one solution in $\text{Dom}(L) \cap \Omega$.

Proof of Theorem 3.1: Set $\mathcal{V} = C([0, T])$, $\mathcal{W} = L^2(0, T) \times \mathbb{R}^2$, and the operators $L : H^2(0, T) \to \mathcal{W}$, $N : \mathcal{V} \to \mathcal{W}$ given by

$$Lu = (u'', u'(0), u'(T)),$$

$$Nu = (-g(\cdot, u, u'), -f(u(0), f(u(T))).$$

It is easy to verify that

$$\text{Ker}(L) = \mathbb{R}, \quad R(L) = \left\{ (\varphi, A, B) \in \mathcal{W} : \varphi = \frac{B-A}{T} \right\},$$

where φ denotes the usual average given by $\varphi = \frac{1}{T} \int_0^T \varphi(t) dt$. Then, we may define $\pi\Psi(X) = \pi\Psi(\varphi, A, B) = (\varphi - \frac{B-A}{T}, 0)$, and $J : R(\pi\Psi) \to \mathbb{R}$ given by $J(C, 0, 0) = C$. In this case, for $(\varphi, A, B) \in R(L)$, the function $U = K_{\pi\Psi}(\varphi, A, B)$ is defined as the unique solution of the problem

$$U'' = \varphi, \quad U'(0) = A, \quad U'(T) = B$$

that satisfies $U = 0$. Writing $U'(t) = A + \int_0^t \varphi$ and using Wirtinger inequality, L-compactness of N follows.

We claim there exists a constant R such that if $Lu = \lambda Nu$ with $0 < \lambda \leq 1$ then $\|u\|_{C^1} \leq R$. Indeed, suppose by contradiction that $Lu_n = \lambda_n Nu_n$, with $0 < \lambda_n \leq 1$ and $\|u_n\|_{C^1} \to \infty$. As $u_n'' = -\lambda_n g(t, u_n, u_n')$ and $u_n'(0) = -\lambda_n f(u_n(0))$, $u_n'(T) = \lambda_n f(u_n(T))$, by the Nagumo condition and using the fact that

$$\min \{u_n'(0), u_n'(T)\} \leq r \quad \text{and} \quad \max \{u_n'(0), u_n'(T)\} \geq -r,$$

it follows as in the previous section that $\|u_n'\|_{C([0, T])} < M$ for every n. Hence $\|u_n\|_{C([0, T])} \to \infty$, and $\|u_n - \pi\Psi_n\|_{C([0, T])} \leq C$ for some constant C. Taking
a subsequence, assume for example that \(P_{n} \to +\infty \) and that (8) holds; then

integrating the equation we obtain the equality

\[
f(u_{n}(T)) + f(u_{n}(0)) = -\int_{0}^{T} g(t, u_{n}, u'_{n}) \, dt,
\]

and thus

\[
0 \leq \limsup_{n \to \infty} f(u_{n}(T)) + \limsup_{n \to \infty} f(u_{n}(0)) + \int_{0}^{T} g_{+}(t) \, dt < 0
\]
a contradiction. The proof is similar for the other cases; hence, taking \(\Omega = B_{R}(0) \)
for \(R \) large enough, the first condition in Theorem 3.3 is fulfilled.

Further, the function \(J_{\pi W}N|_{\pi Ker(L)} = [-R, R] \) is given by

\[
J_{\pi W}N(s) = \frac{1}{T} \left(\int_{0}^{T} g(t, s, 0) \, dt + 2f(s) \right),
\]

and in the same way as before it follows that for \(R \) large enough

\[
J_{\pi W}N(R) J_{\pi W}N(-R) < 0.
\]

Thus, \(\deg(J_{\pi W}N, \Omega \cap Ker(L), 0) = \pm 1 \), and the proof is complete.

4 – Symmetric solutions for the general fourth order case

In this section we study the existence of symmetric solutions for the problem

\[
\begin{align*}
\begin{cases}
 u^{(4)} + g(t, u, u', u'', u''') = 0 & 0 < t < T \\
 u''(0) = u''(T) = 0 \\
 u'''(0) = -f(u(0)) \\
 u'''(T) = f(u(T)).
\end{cases}
\end{align*}
\]

(10)

We shall assume that \(g \) is symmetric with respect to \(t \), namely:

\[
g(t, u, v, w, x) = g(T - t, u, v, w, x).
\]

(11)

Our Nagumo condition for this problem reads:

\[
|g(t, u, v, w, x)| \leq \psi(|x|) \quad \forall (t, u, v, w, x) \in \mathcal{E}
\]

(12)
EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR BEAM EQUATIONS

with \(\mathcal{E} = [0, T] \times \mathbb{R}^3 \times [-M, M] \), and \(\psi : [0, +\infty) \to (0, +\infty) \) continuous, with
\[
\int_0^M \frac{1}{\psi(s)} \, ds > T.
\]
Moreover, assume that the limits
\[
\limsup_{s \to \pm \infty} g(t, s, v, w, x) := g^\pm_s(t)
\]
and
\[
\liminf_{s \to \pm \infty} g(t, s, v, w, x) := g^\pm_i(t)
\]
exist, and that they are uniform over the set
\[
\mathcal{C} = \{(v, w, x) \in \mathbb{R}^3 : |v| < \frac{T^2}{4} M, |w| < \frac{T}{2} M \text{ and } |x| < M \}.
\]
The quantities \(f^\pm_s \) and \(f^\pm_i \) are defined as before. Then we have:

Theorem 4.1. Under the previous assumptions, problem (10) admits at least one symmetric solution, provided that one of the conditions (8) or (9) holds.

Proof: We proceed as in the proof of Theorem 3.1. Let
\[
\mathcal{V} = \left\{ u \in C^3([0, T]) : u(t) = u(T - t), u''(0) = 0 \right\},
\]
\[
\mathcal{W} = \left\{ u \in L^2(0, T) : u(t) = u(T - t) \right\} \times \mathbb{R}
\]
and define the operators \(L : H^1(0, T) \cap \mathcal{V} \to \mathcal{W}, N : \mathcal{V} \to \mathcal{W} \) by
\[
Lu = (u(4), u'''(0)), \quad Nu = -\left(g(\cdot, u, u', u'', u'''), f(u(0))\right).
\]
Again, it is easy to verify that
\[
\ker(L) = \mathbb{R}, \quad \text{R}(L) = \left\{ (\varphi, c) \in \mathcal{W} : \int_0^T \varphi(t) \, dt + 2c = 0 \right\}.
\]
Then, we may define \(\pi_\mathcal{V}(u) = \pi, \pi_\mathcal{W}(\varphi, c) = (\varphi + 2c, 0) \), and \(J : \text{R}(\pi_\mathcal{W}) \to \mathbb{R} \) given by \(J(C, 0) = C \). For \((\varphi, c) \in \text{R}(L) \), the function \(U = K_{\pi_\mathcal{V}}(\varphi, c) \) is defined as the unique solution of the problem
\[
\begin{cases}
U(4) = \varphi \\
U''(0) = 0, \quad U'''(0) = c \\
U(t) = U(T - t) \\
U = 0.
\end{cases}
\]
As before, it is easy to prove that N is L-compact. Next, if $Lu_n = \lambda_n Nu_n$, with $0 < \lambda_n \leq 1$ and $\|u_n\|_{C^3} \to \infty$, by the Nagumo condition and using the fact that $u_n'''(T) = 0$, it follows that $\|u_n'''\|_{C([0,T])} < M$ for every n. Moreover, for $t \leq \frac{T}{2}$ we have:

$$|u_n''| \leq \left| \int_0^T |u_n'''| \right| < \frac{T}{2} M$$

and

$$|u_n'| \leq \left| \int_t^\frac{T}{2} u_n'' \right| < \frac{T^2}{4} M .$$

As u_n is symmetric, we conclude that $(u_n'(t), u_n''(t), u_n'''(t)) \in \mathcal{C}$ for every $t \in [0, T]$. Then $\|u_n\|_{C([0,T])} \to \infty$, and $\|u_n - \bar{u}_n\|_{C^3([0,T])} \leq C$ for some constant C. The rest of the proof follows as in the second order case.

Some examples and remarks

Example 4.2. As an example of Theorem 4.1 we may consider a symmetric function g such that

$$g(t, u, v, w, x) = g_0(t, u) + \gamma(u) g_1(t, u, v, w, x) ,$$

where g_0 is bounded, $|g_1(t, u, v, w, x)| \leq A + B|x|$ and $\gamma(u) \to 0$ as $|u| \to \infty$.

Then $|g(t, u, v, w, x)| \leq C + D|x|$ for some positive constants C and D and the Nagumo condition is satisfied taking $\psi(x) = C + Dx$ and M large enough. Moreover,

$$\limsup_{u \to \pm \infty} g_0(t, u) = g_s^\pm(t) , \quad \liminf_{u \to \pm \infty} g_0(t, u) = g_i^\pm(t) ,$$

and the assumptions of Theorem 4.1 are fulfilled if (8) or (9) holds. For example, it suffices to assume that

$$\lim_{|u| \to \infty} f(u) \text{ sgn}(u) = +\infty \quad \text{or} \quad \lim_{|u| \to \infty} f(u) \text{ sgn}(u) = -\infty .$$

Remark 4.3. In the situation of Theorem 4.1, if $g_s^\pm = g_i^\pm := g^\pm$ and $f_s^\pm = f_i^\pm := f^\pm$, integrating the equation it follows that if for example

$$g^+(t) \leq g \leq g^-(t) \quad \text{and} \quad f^+ < f < f^-$$

or

$$g^-(t) \leq g \leq g^+(t) \quad \text{and} \quad f^- < f < f^+$$

then the respective conditions (8) and (9) are also necessary.
Remark 4.4. The Nagumo condition (12) can be dropped if we assume that g has a linear growth of the type

$$|g(t, u, v, w, x)| \leq A + B|u| + C|v| + D|w| + E|x|$$

(with B, C, D and E small enough), and that the limits g^+_t and g^+_s are uniform on \mathbb{R}^3. Indeed, in this case if $Lu_n = \lambda_n Nu_n$, with $0 < \lambda_n \leq 1$, then using the fact that $u''''_n = \lambda_n \int_0^T g(s, u_n, u'_n, u''_n, u'''_n) ds$, we deduce:

$$(1 - \frac{TE}{2}) \|u''''_n\|_{C([0,T])} \leq \frac{T}{2} \left(A + B\|u_n\|_{C([0,T])} + C\|u'_n\|_{C([0,T])} + D\|u''_n\|_{C([0,T])} \right).$$

Integrating twice, as E, D and C are small, we obtain:

$$\|u''_n\|_{C([0,T])} \leq \delta (A + B\|u_n\|_{C([0,T])})$$

for some constant δ. By the mean value theorem, for $B < \delta$ we conclude that if for example $u_n \to +\infty$ then $\inf_{t \in [0,T]} u_n(t) \to +\infty$, and the rest of the proof follows as before. In particular, for $g = g(t, u)$ it suffices to take $B < \frac{16}{T^4}$. \(\square\)

Remark 4.5. In [3], Theorem 2, it is proved by variational methods that if $g = g(t, u)$ is symmetric on t, and $f, g(t, \cdot)$ are nondecreasing, then problem (10) admits a symmetric solution if and only if

$$2f(a) + \int_0^T g(t, a) dt = 0 \quad \text{for some } a \in \mathbb{R}.\$$

By monotonicity, this condition is equivalent to (9), unless $f(u) \equiv f(a)$ and $g(t, u) \equiv g(t, a)$ for all $u \geq a$ or for all $u \leq a$. Note that, in this last case, existence of solutions can be easily proved; thus, taking into account the previous remarks 4.3 and 4.4, when $|g(t, u)| \leq A + B|u|$ (with $B < \frac{16}{T^4}$) we may conclude that Theorem 4.1 is essentially equivalent to Theorem 2 in [3].

Moreover, without the monotonicity condition the authors prove (see [3], Theorem 5) the existence of a symmetric solution of (10) for g and f sublinear, i.e.

$$\frac{g(t, u)}{u} \to 0 \quad \text{as } |u| \to \infty$$

uniformly in t, and

$$\frac{f(u)}{u} \to 0 \quad \text{as } |u| \to \infty,$$

assuming a growth condition for f and g, and that one of the following hypotheses holds:
i) $g(t, u) \to \pm \infty$ as $u \to \pm \infty$ uniformly in t and f bounded by below.

ii) $f(u) \to \pm \infty$ as $u \to \pm \infty$ and g bounded by below.

It is clear that the sublinearity condition implies that $|g(t, u)| \leq A + B|u|$ for some $B < \frac{16}{T^4}$ and some A, and that if i) or ii) holds then the second inequality in condition (9) is fulfilled. Thus, some cases of Theorem 5 in [3] are covered by Theorem 4.1; in particular, if f is bounded by above for $u < 0$ in i) or if g is bounded by above for $u < 0$ in ii).

However, the first inequality in (9) does not necessarily hold under assumptions i) or ii): one may consider for instance the (sublinear) functions $f(u) = |u|^{1/2}$ and $g(t, u) = u^{1/3}$.

\[\Box \]

ACKNOWLEDGEMENTS – The authors would like to thank the anonymous referee for the careful reading of the original manuscript and his/her fruitful corrections and remarks.

REFERENCES

Pablo Amster,
FCEyN, Departamento de Matemática, Universidad de Buenos Aires,
Ciudad Universitaria, Pabellón I, (1428) Buenos Aires – ARGENTINA
E-mail: pamster@dm.uba.ar
and
CONICET

and

Pedro Pablo Cárdenas Alzate,
Departamento de Matemáticas, Universidad Tecnológica de Pereira,
Pereira – COLOMBIA
E-mail: ppablo@utp.edu.co