ON THE CONTRACTED l^1-ALGEBRA OF A POLYCYCLIC MONOID

M.J. CRABB and W.D. MUNN

Recommended by J. Almeida

Abstract: Let $P(X)$ denote the polycyclic monoid (Cuntz semigroup) on a nonempty set X and let A denote the Banach algebra $l^1(P(X))/Z$, where Z is the (closed) ideal spanned by the zero of $P(X)$. Then A is primitive. Moreover, A is simple if and only if X is infinite.

The l^1-algebra $l^1(S)$ of a semigroup S consists of all functions $a: S \to \mathbb{C}$ (the complex field) of finite or countably infinite support and such that $\sum_{x \in S} |a(x)| < \infty$, where addition and scalar multiplication are defined pointwise and multiplication is taken to be convolution. As noted in [1], $l^1(S)$ is a Banach algebra with respect to the norm $\|a\| := \sum_{x \in S} |a(x)|$. By identifying each $x \in S$ with its characteristic function, we can write a typical element of $l^1(S)$ in the form $\sum_{x \in S} \alpha_x x$, where $\sum_{x \in S} |\alpha_x| < \infty$, ($\alpha_x \in \mathbb{C}$).

The semigroup algebra $\mathbb{C}[S]$ is the subalgebra consisting of all functions $a: S \to \mathbb{C}$ of finite support. When S is a nontrivial semigroup with zero z, it is often helpful to replace $\mathbb{C}[S]$ by $\mathbb{C}[S]/\mathbb{C}z$, where $\mathbb{C}z$ is the ideal $\{\alpha z : \alpha \in \mathbb{C}\}$. We have thus, in effect, simply identified z with the zero of the algebra. In [4, Chapter 5], $\mathbb{C}[S]/\mathbb{C}z$ is called the ‘contracted semigroup algebra’ of S over \mathbb{C} and is denoted by $\mathbb{C}_0[S]$. With this in mind, we call the Banach algebra $l^1(S)/\mathbb{C}z$ the contracted l^1-algebra of S and denote it by $l^1_0(S)$. A typical element u of $l^1_0(S)$ can be written in the form $u = \sum_{x \in S \setminus 0} \alpha_x x$, where $\sum_{x \in S \setminus 0} |\alpha_x| < \infty$, and we define its support, $\text{supp}(u)$, to be $\{x \in S \setminus 0 : \alpha_x \neq 0\}$.

Received: May 5, 2004.
In this paper, we study \(l^1_0(S) \) for the case in which \(S \) is the polycyclic monoid \(P(X) \) on nonempty a set \(X \) [13]. It is shown that \(l^1_0(S) \) is primitive for all choices of \(X \) (Theorem 1) and is simple if and only if \(X \) is infinite (Theorem 2).

We begin by recalling the definition of \(P(X) \). Let \(M(X) \) denote the free monoid on \(X \). For \(w = x_1x_2 \ldots x_n \in M(X) \), where each \(x_i \in X \), we define the length \(l(w) \) and the content \(c(w) \) of \(w \) by \(l(w) := n \) and \(c(w) := \{ x_1, x_2, \ldots, x_n \} \).

In addition, we take \(l(1) := 0 \) and \(c(1) := \emptyset \), where \(1 \) denotes the identity of \(M(X) \) (the empty word). We say that \(u \in M(X) \) is an initial segment of \(v \in M(X) \), written \(u \preceq v \), if and only if \(v = uw \) for some \(w \in M(X) \). For \(u, v \in M(X) \), we write \(u \parallel v \) if and only if \(u \nleq v \) and \(v \nleq u \).

Let \(P(X) := (M(X) \times M(X)) \cup \{0\} \) and define a multiplication in \(P(X) \) by

\[
(a, b)(c, d) = \begin{cases}
(au, d) & \text{if } c = bu \text{ for some } u \in M(X) \\
(a, dv) & \text{if } b = cv \text{ for some } v \in M(X) \\
0 & \text{if } b \parallel c
\end{cases}
\]

\[0(a, b) = (a, b)0 = 0^2 = 0 \,.
\]

Then \(P(X) \) is a monoid with identity \((1, 1) \) and zero \(0 \); further, it admits an involution \(* \) given by

\[(a, b)^* = (b, a) \, , \quad 0^* = 0 \,.
\]

(In fact, \(P(X) \) is an example of a 0-bisimple inverse semigroup in which \(* \) denotes inversion and in which each subgroup is trivial.) Note that \((a, b)^2 = (a, b) \) if and only if \(a = b \). Thus the set \(E(X) \) of idempotents of \(P(X) \) is

\[
\{(a, a) : a \in M(X)\} \cup \{0\} \,.
\]

Clearly \(E(X) \) is a commutative submonoid of \(P(X) \) (the ‘semilattice’ of \(P(X) \)) and it is easily seen to be partially ordered by

\[(a, a) \succeq (b, b) \iff a \preceq b \, , \quad (a, a) > 0 \,.
\]

Observe that \((a, a) \succeq (b, b) \) if and only if \((a, a)(b, b) = (b, b)(a, a) \).

An alternative approach to the monoid described above is as follows. Let \(FI(X) \) denote the free monoid with involution* on a nonempty set \(X \). Adjoin a zero \(0 \) to \(FI(X) \), take \(0^* = 0 \) and write \(Q(X) := (FI(X) \cup \{0\})/\rho \), where \(\rho \) is the congruence determined by the relations \(x^*x = 1 \) \((x \in X) \) and \(x^*y = 0 \) \((x, y \in X \text{ and } x \neq y) \). This monoid is termed the Cuntz semigroup on \(X \). Note that every nonzero \(\rho \)-class has a unique representative of the form \(ab^* \) \((a, b \in M(X)) \). We identify this element with its \(\rho \)-class and so can write
$Q(X) = \{ab^*: a, b \in M(X)\} \cup \{0\}$. It is routine to verify that $\theta: P(X) \to Q(X)$ is an isomorphism. Various aspects of algebras associated with $Q(X)$ have been studied in [5], [6] and [2]; see also [14]. For an extended discussion of polycyclic monoids, see [9, §9.3].

Next, we review the concept of primitivity. Let A be a complex algebra and let V be a nonzero right A-module under the action \circ. A vector $v \in V \setminus 0$ is called cyclic if and only if $v \circ A = V$. Recall that V is termed

(i) faithful if and only if, for all $a \in A$, $V \circ a = 0$ implies $a = 0$,

(ii) strictly irreducible if and only if every nonzero vector in V is cyclic.

We say that A is (right) primitive if and only if there exists a faithful strictly irreducible right A-module.

For the case in which A is a Banach algebra, V a Banach space with norm $\|\cdot\|_V$ and \circ a right action of A on V with $\|v \circ a\|_V \leq \|v\|_V \|a\|$ ($v \in V$, $a \in A$), we make a further definition. We say that V is topologically irreducible if and only if, for all $v \in V \setminus 0$, all $u \in V$ and a given positive real number ϵ, there exists $a \in A$ such that

$$\|v \circ a - u\|_V < \epsilon .$$

The following result ([8], [10]) is required below. For convenience, we include a proof.

Lemma. Let A and V be as in the preceding paragraph. If V is topologically irreducible and possesses a cyclic vector then V is strictly irreducible.

Proof: Let V be topologically irreducible, with a cyclic vector v_1. Since the mapping $f: A \to V$ defined by $f(a) = v_1 \circ a$ is continuous, the open mapping theorem shows that, for some positive real number δ,

$$\left\{ v \in V: \|v\|_V < \delta \right\} \subseteq \left\{ f(a): a \in A \text{ and } \|a\| < 1 \right\} .$$

Let $v \in V \setminus 0$. Since V is topologically irreducible, there exists $b \in A$ such that $\|v_1 - v \circ b\|_V < \delta$. Hence there exists $a \in A$ with $\|a\| < 1$ such that $v_1 - v \circ b = v_1 \circ a$. Consider $c \in A$ defined by $c = -\sum_{r=1}^{\infty} a^r$. Then $a + c - ac = 0$. Hence

$$v \circ (b - bc) = (v_1 - v_1 \circ a) - (v_1 - v_1 \circ a) \circ c$$

$$= v_1 - v_1 \circ (a + c - ac) = v_1 .$$

Consequently, v is cyclic. Thus V is strictly irreducible. ■
We now come to our first result. Note that since the polycyclic monoid on X admits an involution, so also does its contracted l^1-algebra. Thus the term ‘primitive’ can be used without qualification.

Theorem 1. For every nonempty set X, $l_0^1(P(X))$ is primitive.

Proof: For a given nonempty set X write $S := P(X)$, $E := E(X)$ and $V := l_0^1(E)$.

We begin by defining a right action of $l_0^1(S)$ on V. First note that, if $x \in S$ and $e \in E$ then $xx^*, x^*ex \in E$. Now define $\circ : E \times S \to E$ by the rule that

$$(\forall e \in E) \quad (\forall x \in S) \quad e \circ x = \begin{cases} x^*ex & \text{if } e \leq xx^*, \\ 0 & \text{otherwise.} \end{cases}$$

Let $e \in E$ and let $x, y \in S$. A straightforward calculation shows that

$$(1) \quad e \leq xx^* \land x^*ex \leq yy^* \iff e \leq xy(xy)^*.$$ Using this, we now prove that

$$(2) \quad (e \circ x) \circ y = e \circ (xy).$$

Suppose that $e \leq xy(xy)^*$. Then $e \circ (xy) = (xy)^*exy$. But, by (1), $e \leq xx^*$ and $x^*ex \leq yy^*$. Hence $(e \circ x) \circ y = (x^*ex) \circ y = y^*(x^*ex)y = (xy)^*exy$. Thus (2) holds in this case. Now suppose that $e \not\leq xy(xy)^*$. Then $e \circ (xy) = 0$. But, by (1), either $e \not\leq xx^*$ or $x^*ex \not\leq yy^*$. If $e \leq xx^*$ and $x^*ex \not\leq yy^*$ then $(e \circ x) \circ y = (x^*ex) \circ y = 0$, while if $e \not\leq xx^*$ then $e \circ x = 0$ and so again $(e \circ x) \circ y = 0$. Thus (2) holds in this case also. Since, for all $e \in E$ and $x \in S$, $||e \circ x|| \leq ||x^*ex|| \leq 1$ we can extend \circ to a right action, also denoted by \circ, of $l_0^1(S)$ on V; and, clearly, for all $v \in V$ and all $u \in l_0^1(S)$, $||v \circ u|| \leq ||v|| ||u||$.

We show next that V is faithful. Let S' and E' denote $S \setminus 0$ and $E \setminus 0$, respectively. Observe first that E' satisfies the maximal condition with respect to \leq; for if T is a nonempty subset of $M(X)$ and $s \in T$ is chosen such that $l(s) \leq l(t)$ for all $t \in T$ then (s, s) is maximal in the subset $\{(t, t) : t \in T\}$ of E'. Let $u \in l_0^1(S) \setminus 0$, say $u = \sum_{x \in S'} \alpha_x x$, with $\sum_{x \in S'} |\alpha_x| < \infty$ and not all $\alpha_x = 0$. Choose $e \in E'$ maximal in $\{xx^* : x \in \text{supp}(u)\}$. Then

$$(3) \quad e \circ u = \sum_{xx^* = e} \alpha_x (x^*ex).$$

Now let $x, y \in S'$ be such that $xx^* = yy^* = e$ and $x^*ex = y^*ey$. We have that $x = (a, b)$ and $y = (c, d)$ for some $a, b, c, d \in M(X)$. Thus $(a, a) = e = (c, c)$ and $(b, b) = x^*ex = y^*ey = (d, d)$. Hence $a = c = b = d$ and so $x = y$. It follows from (3) that $e \circ u \neq 0$. This shows that V is faithful.
To complete the proof, we show that \(V \) is strictly irreducible. Let \(v \in V \setminus 0 \) and let \(e \in \text{supp}(v) \), with coefficient \(\alpha \in \mathbb{C} \setminus 0 \). We prove first that, for a given positive real number \(\epsilon \), there exist \(v' \in V \) and \(u \in l_0^1(E) (\subseteq l_0^1(S)) \) such that

\[
(4) \quad v \circ u = \alpha e + v', \quad \|v'\| < \epsilon .
\]

Note that if \(e \) is minimal in \(\text{supp}(v) \) then \(v \circ e = \alpha e \) and so (4) holds with \(u = e \) and \(v' = 0 \). Suppose, therefore, that \(e \) is not minimal in \(\text{supp}(v) \). Write \(v = w + w' \), where \(w, w' \in V \) are such that

\[
(5) \quad e \in \text{supp}(w), \quad \text{supp}(w) \text{ is finite}, \quad \text{supp}(w) \cap \text{supp}(w') = \emptyset, \quad \|w'\| < \epsilon .
\]

Without loss of generality, we may assume that \(e \) is not minimal in \(\text{supp}(w) \). (If need be, transfer a term from \(w' \) to \(w \).) Let \(F := \{ f \in \text{supp}(w) : f < e \} \) and define \(u \in l_0^1(E) \) by

\[
u := \prod_{f \in F} (e - f) .
\]

We now show that

\[
(6) \quad (\forall g \in E') \quad g \circ u = \begin{cases} g & \text{if } g \leq e \text{ and, for all } f \in F, \ g \napprox f, \\ 0 & \text{if } g \leq e \text{ and, for some } f \in F, \ g \leq f, \\ 0 & \text{if } g \napprox e. \end{cases}
\]

Suppose first that \(g \in E' \) is such that \(g \leq e \) and that, for all \(f \in F \), \(g \napprox f \). Then, for all \(f \in F \), \(g \circ (e - f) = g \) and so \(g \circ u = g \). Next, suppose that \(g \in E' \) is such that \(g \leq e \) and that there exists \(f \in F \) with \(g \leq f \). Then \(g \circ (e - f) = g - g = 0 \) and so \(g \circ u = 0 \). Finally, suppose that \(g \in E' \) is such that \(g \napprox e \). Then, for any \(f \in F \), \(g \napprox f \) and so \(g \circ (e - f) = 0 \). Hence again \(g \circ u = 0 \). This establishes (6).

It follows from (6) that \(w \circ u = \alpha e \). Write \(v' := w' \circ u \). Since, by (6), for all \(g \in \text{supp}(w') \), \(g \circ u \) is either \(g \) or 0 we have that \(\|v'\| \leq \|w'\| \). Thus, from (5), we see that (4) holds.

Next, let \(f \in E' \). There exist \(a, b \in M(X) \) such that \(e = (a, a) \) and \(f = (b, b) \). Write \(x := (a, b) \). Then \(xx^a = e \) and

\[
(7) \quad e \circ x = f .
\]

Hence, from (4), \(v \circ (ux) = \alpha f + (v' \circ x) \) and, in addition, \(\|v' \circ x\| \leq \|v'\| < \epsilon \). Thus

\[
\|v \circ (ux) - \alpha f\| < \epsilon ,
\]

from which we deduce that \(V \) is topologically irreducible. But, from (7), it follows that \(e \) is a cyclic vector in \(V \). Hence, by the Lemma, \(V \) is strictly irreducible. ■
The corresponding result for $C_0[P(X)]$ is a consequence of a theorem of Domanov [7]. A short proof is given in [12]. As already remarked, $P(X)$ is a special case of a 0-bisimple inverse semigroup with only trivial subgroups. In [3], we show that if S is a 0-bisimple inverse semigroup with a nonzero maximal subgroup G such that $l^1(G)$ is primitive then $l^0_1(S)$ is primitive. This generalises Theorem 1 above, but is harder to prove since we have to allow for the presence of nontrivial subgroups and cannot assume that the semilattice of S satisfies the maximal condition under the natural partial ordering.

Our second result gives a necessary and sufficient condition for $l^0_1(P(X))$ to be a simple algebra.

Theorem 2. Let X be a nonempty set. Then $l^0_1(P(X))$ is simple if and only if X is infinite.

Proof: Write $S := P(X)$ and $S' := S\setminus 0$. Assume first that X is infinite. Let T be a nonzero ideal of $l^0_1(S)$. We show that $T = l^0_1(S)$.

Let $t \in T \setminus 0$. Choose $a \in M(X)$ such that a has minimal length amongst the first components of the elements of supp(t); and choose $b \in M(X)$ such that $(a, b) \in$ supp(t). Then, for some positive integer n, we may write t in the form

\[t = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n + v, \]

where u_1, u_2, \ldots, u_n are distinct elements of supp(t) with $u_1 = (a, b)$, $\alpha_i \in C \setminus 0$ ($i = 1, 2, \ldots, n$) and $v \in l^0_1(S)$ is such that $\|v\| < |\alpha_1|$. Write $u_i = (a_i, b_i) \in M(X) \times M(X)$ ($i = 1, 2, \ldots, n$) and assume, without loss of generality, that for some $k \in \{1, 2, \ldots, n\}$, $(a =) a_1 = a_2 = \cdots = a_k$, while $a_i \neq a$ if $k < i \leq n$. Since u_1, u_2, \ldots, u_k are distinct, it follows that $(b =) b_1, b_2, \ldots, b_k$ are distinct.

Let Y denote $\bigcup_{i=1}^{n} (c(a_i) \cup c(b_i))$. Since Y is a finite subset of the infinite set X, there exists $x \in X \setminus Y$. Write

\[e := (ax, ax), \quad f := (bx, bx). \]

We shall show that

\[eu_1f = \begin{cases} (ax, bx) & \text{if } i = 1, \\ 0 & \text{if } 2 \leq i \leq n. \end{cases} \]

Suppose first that $1 \leq i \leq k$. Then $eu_1f = (ax, ax)(a, b_i)(bx, bx) = (ax, b_ix)(bx, bx)$. In particular, $eu_1f = (ax, bx)$. Now consider the case where $2 \leq i \leq k$. Here $b_ix \neq bx$; for otherwise, since $x \notin c(b)$, we would have $b_i = b$. Similarly, $bx \neq b_ix$.

332

M.J. CRABB and W.D. MUNN

332
Hence $eu_i f = 0$. Next, suppose that $k < i \leq n$. Then, by the choice of x, $ax \not\parallel a_i$. Further, $a_i \not\parallel ax$; for otherwise $a_i \leq a$, which is impossible since $l(a_i) \not\parallel l(a)$ and $a_i \neq a$. Hence $ax \parallel a_i$ and so $eu_i = (ax, ax)(a_i, b_i) = 0$, which gives $eu_i f = 0$. Thus we have established (2).

Take $p := (1, ax)$ and $q := (bx, 1)$. Then, from (1) and (2),

$$pe tf q = \alpha_1(1, 1) + pe vf q .$$

But, since $p, e, f, q \in S'$, we have that $\|pe vf q\| \leq \|v\| < |\alpha_1|$. Thus

$$\|\alpha_1^{-1}(pe tf q) - (1, 1)\| < 1 .$$

Consequently, $\alpha_1^{-1}(pe tf q)$ is invertible in $l_0^1(S)$; thus there exists $r \in l_0^1(S)$ such that $\alpha_1^{-1}(pe tf q r) = (1, 1)$. Since $t \in T$, it follows that $(1, 1) \in T$ and so $T = l_0^1(S)$.

This shows that $l_0^1(S)$ is simple.

Now assume that X is finite, with elements $x_1, x_2, ..., x_n$. For $(a, b) \in S'$ define $w_{a,b} \in l_0^1(S)$ by

$$w_{a,b} := (a, b) - \sum_{i=1}^{n} (ax_i, bx_i) .$$

Then $\|w_{a,b}\| = n + 1$. Define a subspace T of $l_0^1(S)$ by

$$T := \left\{ \sum_{(a,b) \in S'} \alpha_{a,b} w_{a,b} : \alpha_{a,b} \in \mathbb{C} \text{ and } \sum_{(a,b) \in S'} |\alpha_{a,b}| < \infty \right\} .$$

Let $(a, b), (c, d) \in S'$ and consider the product $w_{a,b}(c,d)$. If $b = cu$ for some $u \in M(X)$ then $w_{a,b}(c,d) = (a, du) - \sum_{i=1}^{n} (ax_i, du x_i) = w_{a,du} \in T$. If $c = bx_r v$ for some r and some $v \in M(X)$ then $w_{a,b}(c,d) = (ax_r v, d) - (ax_r v, d) = 0$. If $b \parallel c$ then $w_{a,b}(c,d) = 0$. Thus $T(c,d) \subseteq T$. This shows that T is a right ideal of $l_0^1(S)$.

A similar argument shows that it is a left ideal.

Finally, we prove that the ideal T is proper. Define $\phi : S' \to \mathbb{C}$ by $\phi((a, b)) = n^{-(1/2)(l(a) + l(b))}$. Since $|\phi((a, b))| \leq 1$, ϕ extends to a continuous linear functional on $l_0^1(S)$. Now, for all $(a, b) \in S'$,

$$\phi(w_{a,b}) = \phi((a, b)) - \sum_{i=1}^{n} \phi((ax_i, bx_i))$$

$$= n^{-(1/2)(l(a) + l(b))} - n \cdot n^{-(1/2)(l(a) + l(b) + 2)} = 0 .$$

Hence, by continuity, $\phi(t) = 0$ for all $t \in T$. But $\phi((1, 1)) = 1$ and so $(1, 1) \not\in T$. Thus T is proper.

The corresponding result for $\mathbb{C}_0[P(X)]$ was obtained in [11].
REFERENCES

M.J. Crabb and W.D. Munn,
Department of Mathematics, University of Glasgow,
Glasgow, G12 8QW — SCOTLAND, U.K.