ВЕСОВЫЕ ОЦЕНКИ ДЛЯ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ НА ПОЛУОСИ С МОНОТОННЫМИ ЯДРАМИ
В. Д. Степанов, Е. П. Ушакова

Аннотация: Даются критерии ограниченности интегральных операторов на полуоси с неотрицательными монотонными ядрами в весовых пространствах Лебега.
Ключевые слова: весовые пространства Лебега, интегральный оператор.

Введение
В работе изучаются условия, при которых для всех измеримых по Лебегу функций $f(x) \geq 0$ на полуоси $\mathbb{R}_+ := (0, \infty)$ с константой $C \geq 0$, не зависящей от f, выполняется неравенство

$$\left(\int_0^\infty |Kf(x)|^q u(x) \, dx \right)^{1/q} \leq C \left(\int_0^\infty |f(x)|^p v(x) \, dx \right)^{1/p} \tag{1}$$

с измеримыми весовыми функциями $u(x) \geq 0$ и $v(x) \geq 0$ и интегральным оператором

$$Kf(x) := \int_0^\infty k(x, y) f(y) \, dy, \tag{2}$$

где измеримое на $\mathbb{R}_+ \times \mathbb{R}_+$ ядро $k(x, y) \geq 0$ монотонно по одной или двум переменным. Примерами таких операторов являются преобразования Лапласа, Гильберта, Стильтьеса и ряд других, для которых оценки вида (1) изучались в работах [1–3].

При $p = 1$, ∞ и $1 \leq q \leq \infty$ или $q = 1$, ∞ и $1 \leq p \leq \infty$ неравенства (1) характеризуются общей теоремой (см. [4, гл. XI, §1.5, теорема 4]), а при $1 < q \leq \infty$ известен неявный критерий («тест Шура») [5, гл. I, теорема 4.8]. Отметим также, что при $0 < p < 1$, $q \leq \infty$ неравенство (1) выполняется только в тривиальном случае (см. [6, теорема 2]).

Целью данной работы является получение явных условий в терминах ядра и весовых функций, необходимых и/или достаточных для выполнения (1) при $0 < q < \infty$, $1 \leq p < \infty$, $q \neq 1$. В §2 даются ключевые леммы. Основные результаты доказаны в §2 и проиллюстрированы в §3 примерами, обобщающими в том числе работы [1–3].

Работа обоих авторов выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03–01–00017) и гранта 04–03–Г–01–049 ДВО РАН.

© 2004 Степанов В. Д., Ушакова Е. П.
Весовые оценки для интегральных операторов

Всюду в статье соотношение $A \ll B$ подразумевает неравенство $A \leq cB$ с константой c, зависящей только от параметров суммирования p и q, причем $p' := p/(p - 1)$ при $0 < p < \infty$, $p \neq 1$ и $r := pq/(p - q)$ при $0 < q < p < \infty$. Если $A \ll B \ll A$ или $A = cB$, мы пишем $A \approx B$. Неопределенности вида $0 \cdot \infty$ полагаются равными нулю.

§ 1. Вспомогательные утверждения

Для $0 < q < \infty$ положим

$$K_q f(x) := \int_0^\infty |k(x, y)|^q f(y) \, dy,$$

$$K_q^* g(y) := \int_0^\infty |k(x, y)|^q g(x) \, dx, \quad K^* g := K_q^* g,$$

а также

$$H f(x) := \int_0^x f(y) \, dy, \quad H^* g(y) := \int_y^\infty g(x) \, dx,$$

$$U(x) := \int_0^x [u(y)]^{1-p'} \, dy, \quad V^*(y) := \int_y^\infty v(x) \, dx.$$

Лемма 1. Пусть ядро $0 \leq k(x, y) \leq 1$ убывает по y. Предположим, что $1 < q < \infty$ и $\int_0^\infty (K f)^q v < \infty$. Тогда

$$\alpha_q \int_0^\infty f(H f)^{q-1} K_q^* v \leq \int_0^\infty (K f)^q v \leq \beta_q \int_0^\infty f(H f)^{q-1} K^* v, \quad (3)$$

где

$$\alpha_q := \min(2, 2^{q-1}), \quad \beta_q := \begin{cases} 2/(q-1), & 1 < q \leq 2, \\ 2^{q-1}, & q > 2. \end{cases}$$

Доказательство. Заметим, что если $F(y, t) = F(t, y)$, то

$$\int_0^\infty \int_0^\infty F(y, t) \, dy \, dt = 2 \int_0^\infty dy \int_0^y F(y, t) \, dt.$$

Отсюда по теореме Фубини

$$\int_0^\infty (K f)^2 v = \int_0^\infty v(x) \, dx \int_0^\infty k(x, y) k(x, t) f(y) f(t) \, dy \, dt = 2 \int_0^\infty v(x) \, dx \int_0^\infty dy \int_0^y k(x, y) k(x, t) f(y) f(t) \, dt = 2 \int_0^\infty f(y) \, dy \int_0^\infty f(t) \, dt \int_0^\infty k(x, y) k(x, t) v(x) \, dx. \quad (4)$$
В. Д. Степанов, Е. П. Ушакова

Поскольку \(k(x, y) \leq k(x, t) \leq 1 \) для \(0 \leq t \leq y \), то

\[
2 \int_0^\infty f(Hf)K^*_v \leq \int_0^\infty (Kf)^2 v \leq 2 \int_0^\infty f(Hf)K^* v. \tag{5}
\]

Пусть \(q > 2 \), \(w = v(Kf)^{q-2} \). Из (5) следует, что

\[
\int_0^\infty (Kf)^q v = \int_0^\infty (Kf)^2 w \leq 2 \int_0^\infty f(Hf)K^* w.
\]

По неравенству Гельдера с показателями \((q - 1)/(q - 2)\), \(q - 1 \)

\[
K^* w(y) = \int_0^\infty k(x, y)v(x) dx \left(\int_0^\infty k(x, z)f(z) dz \right)^{q-2} \leq \left(\int_0^\infty k(x, y)v(x) dx \right)^{1/(q-1)} \times \left(\int_0^\infty k(x, y)v(x) dx \left(\int_0^\infty k(x, z)f(z) dz \right)^{q-1} \right)^{(q-2)/(q-1)}.
\]

Отсюда, еще раз применяя неравенство Гельдера, имеем

\[
\int_0^\infty (Kf)^q v \leq 2 \int_0^\infty f(Hf)(K^* v)^{1/(q-1)}(K^*[v(Kf)^{q-1}])^{(q-2)/(q-1)} \leq 2 \left(\int_0^\infty f(Hf)^{q-1}K^* v \right)^{1/(q-1)} \left(\int_0^\infty fK^*[v(Kf)^{q-1}] \right)^{(q-2)/(q-1)} = 2 \left(\int_0^\infty f(Hf)^{q-1}K^* v \right)^{1/(q-1)} \left(\int_0^\infty (Kf)^q v \right)^{(q-2)/(q-1)},
\]

откуда следует оценка сверху в (3). Аналогично проведем оценку снизу:

\[
\int_0^\infty (Kf)^q v = \int_0^\infty (Kf)^2 w \geq 2 \int_0^\infty f(Hf)K^2 w \geq 2 \int_0^\infty f(y) dy \int_0^y f(t) dt \int_0^\infty [k(x, y)]^2 v(x) dx \left(\int_0^y k(x, z)f(z) dz \right)^{q-2} \geq 2 \int_0^\infty f(y)[Hf(y)]^{q-1} dy \int_0^\infty [k(x, y)]^q v(x) dx.
\]
При $1 < q < 2$, пользуясь (4), запишем

$$\int_0^{\infty} (Kf)^q v = \int_0^{\infty} (Kf)^2 w = 2 \int_0^{\infty} f(y) dy \int_0^{\infty} f(t) dt \int_0^{\infty} k(x, y) k(x, t) v(x) dx \left(\int_0^{\infty} k(x, z) f(z) dz \right)^{q-2}. $$

Имеем

$$\int_0^{\infty} k(x, z) f(z) dz \geq \int_0^{t} k(x, z) f(z) dz \geq k(x, t) Hf(t).$$

Отсюда, так как $k(x, t) \leq 1$, получим

$$\int_0^{\infty} (Kf)^q v \leq 2 \int_0^{\infty} f(y) dy \int_0^{\infty} [Hf(t)]^{q-2} f(t) dt \int_0^{\infty} k(x, y) [k(x, t)]^{q-1} v(x) dx$$

$$\leq 2 \int_0^{\infty} f(y) K^* v(y) dy \int_0^{\infty} (Hf)^{q-2} dHf = \frac{2}{q-1} \int_0^{\infty} f(Hf)^{q-1} K^* v,$$

и оценка сверху в (3) доказана. Для оценки снизу применим неравенство Гёльдера с показателями $1/(q - 1), 1/(2 - q)$:

$$K_q^* v(t) = \int_0^{\infty} [k(x, t)]^q v(x) dx$$

$$= \int_0^{\infty} [k(x, t)]^{q-1} [Kf(x)]^{(q-2)(q-1)} [Kf(x)]^{(2-q)(q-1)} k(x, t) v(x) dx$$

$$\leq \left(\int_0^{\infty} [k(x, t)]^2 [Kf(x)]^{q-2} v(x) dx \right)^{q-1} \left(\int_0^{\infty} k(x, t) [Kf(x)]^{q-1} v(x) dx \right)^{2-q}. $$

Из последнего неравенства вытекает, что

$$\int_0^{\infty} f(Hf)^{q-1} K_q^* v \leq \int_0^{\infty} f(t) dt \left(Hf(t) \int_0^{\infty} [k(x, t)]^2 [Kf(x)]^{q-2} v(x) dx \right)^{q-1}$$

$$\times \left(\int_0^{\infty} k(x, t) [Kf(x)]^{q-1} v(x) dx \right)^{2-q}$$

(второй раз применив неравенство Гёльдера)

$$\leq \left(\int_0^{\infty} f(t) Hf(t) dt \int_0^{\infty} [k(x, t)]^2 [Kf(x)]^{q-2} v(x) dx \right)^{q-1}. $$
Левое неравенство в (5) влечет

$$I_1 = \int_0^\infty f(Hf)K^*_2 w \leq \frac{1}{2} \int_0^\infty (Kf)^q v,$$

а также

$$I_2 = \int_0^\infty (Kf)^q v.$$

Отсюда

$$2^q - 1 \int_0^\infty f(Hf)^q - 1 K^*_q v \leq \int_0^\infty (Kf)^q v. \quad \square$$

Лемма 2. Пусть ядро $k(x, y) \geq 0$ убывает по y, $1 < q < \infty$ и $\int_0^\infty (Kf)^q v < \infty$. Тогда

$$\alpha_q \int_0^\infty f(Hf)^q - 1 K^*_q v \leq \int_0^\infty (Kf)^q v \leq \beta_q \int_0^\infty f(H^* f)^q - 1 K^*_q v. \quad (6)$$

Доказательство. Оценка снизу доказана в лемме 1. Покажем оценку сверху. Из (4), используя неравенство

$$k(x, y) \leq k(x, t), \quad t \leq y,$$

получаем

$$\int_0^\infty (Kf)^2 v \leq 2 \int_0^\infty f(y) dy \int_0^\infty f(t) dt \int_0^\infty [k(x, t)]^2 v(x) dx = 2 \int_0^\infty f(t)K^*_2 v(t)H^* f(t) dt. \quad (7)$$

Пусть $q > 2$. Применяя (7), находим

$$\int_0^\infty (Kf)^q v \leq 2 \int_0^\infty f(H^* f)K^*_2 w.$$

По неравенству Гельдера

$$K^*_2 w(t) = \int_0^\infty [k(x, t)]^2 v(x) dx \left(\int_0^\infty k(x, z)f(z) dz \right)^{q-2} \leq \left(\int_0^\infty [k(x, t)]^q v(x) dx \right)^{1/(q-1)} \left(\int_0^\infty k(x, t)v(x)[Kf(x)]^{q-1} dx \right)^{(q-2)/(q-1)}.$$
Весовые оценки для интегральных операторов

Отсюда

\[\int_0^\infty (Kf)^q v \leq 2 \int_0^\infty f(H^* f)(K^*_q v)^{1/(q-1)} (K^*v(Kf)^{q-1})^{(q-2)/(q-1)} \leq 2 \left(\int_0^\infty f(H^* f)^{q-1} K^*_q v \right)^{1/(q-1)} \left(\int_0^\infty (Kf)^q v \right)^{(q-2)/(q-1)} \]

и приходим к правому неравенству в (6).

Пусть \(1 < q < 2 \). Из (4) перестановкой интегралов получаем

\[\int_0^\infty (Kf)^q v = \int_0^\infty (Kf)^2 w \]

\[= 2 \int_0^\infty f(y) dy \int_0^y f(t) dt \int k(x, y)k(x, t)v(x)|Kf(x)|^{q-2} dx \]

\[= 2 \int_0^\infty f(t) dt \int_0^\infty f(y) dy \int k(x, y)k(x, t)v(x)|Kf(x)|^{q-2} dx \]

\[\leq 2 \int_0^\infty f(t) dt \int_0^\infty k(x, t)v(x) dx \int_0^\infty k(x, y) f(y) dy \left(\int_0^\infty k(x, z)f(z) dz \right)^{q-2} \]

\[\leq \frac{2}{q-1} \int_0^\infty f(t) dt \int_0^\infty k(x, t)v(x) dx \left(\int_0^\infty k(x, z)f(z) dz \right)^{q-1} \leq \frac{2}{q-1} \int_0^\infty f(H^* f)^{q-1} K^*_q v. \] \(\square \)

ЗАМЕЧЕНИЕ 1. В доказательстве левой оценки в (3) использовалась только монотонность ядра \(k(x, y) \) по \(y \), а для получения правой оценки в (3) при \(q \geq 2 \) — только ограниченность ядра \(k(x, y) \leq 1 \).

ЗАМЕЧЕНИЕ 2. Утверждения, аналогичные леммам 2 и 1, справедливы для ядер \(k(x, y) \geq 0 \), убывающих по \(x \). В этом случае аналогом (6) является

\[\alpha_q \int_0^\infty f(Hf)^{q-1} K_q v \leq \int_0^\infty (K^*_q f)^q v \leq \beta_q \int_0^\infty f(H^* f)^{q-1} K_q v, \] \(8 \)

и если \(k(x, y) \leq 1 \), то правую часть в (8) можно заменить оценкой

\[\int_0^\infty (K^*_q f)^q v \leq \beta_q \int_0^\infty f(Hf)^{q-1} K v. \]

Тем же способом доказываются аналогичные оценки для ядер \(k(x, y) \geq 0 \), возрастающих по \(x, y \). Детали мы опускаем.
§ 2. Основные результаты

Мы будем считать константу $C \geq 0$ в неравенстве (1) выбранной наименьшей из возможных. Если $A \leq C \leq \overline{A}$, то условие $A < \infty$ достаточно для выполнения (1), а $A < \infty$ необходимо.

Нам потребуются критерии выполнения весового неравенства Харди (см. [7, § 1.3; 8])

$$
\left(\int_0^\infty (Hf)^q \right)^{1/q} \leq C \left(\int_0^\infty f^p \right)^{1/p},
$$
(9)

согласно которым при $1 < p \leq q < \infty$

$$
C \approx \sup_{t>0} [V^*(t)]^{1/q}[U(t)]^{1/p'},
$$
(10)

при $0 < q < p < \infty$, $p > 1$

$$
C \approx \left(\int_0^\infty (V^*)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r},
$$
(11)

а при $0 < q < 1 = p$

$$
C \approx \left(\int_0^\infty u^{q/(q-1)} (V^*)^{q/(1-q)} v \right)^{(1-q)/q},
$$
(12)

где $u(t) = \text{ess inf}_{0 < x < t} u(x)$.

Теорема 1. Пусть ядро $0 \leq k(x, y) \leq 1$ убывает по y, причем $K^* v(\infty) = K^*_q v(\infty) = 0$. Тогда для константы C в (1) выполняются следующие оценки.

(a) Если $1 < p \leq q < \infty$, то

$$
\sup_{t>0} [K^*_q v(t)]^{1/q}[U(t)]^{1/p'} \ll C \ll \sup_{t>0} [K^* v(t)]^{1/q}[U(t)]^{1/p'}.
$$
(13)

(b) Если $1 < q < p < \infty$, то

$$
\left(\int_0^\infty (K^*_q v)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r} \ll C \ll \left(\int_0^\infty (K^* v)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r}.
$$
(14)

(c) Если $0 < q < 1 < p < \infty$, то

$$
\left(\int_0^\infty (K^*_q v)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r} \leq C \ll \left(\int_0^\infty (K^* v)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r}.
$$
(15)

(d) Если $0 < q < 1 = p$, то

$$
\text{ess sup}_{x<0} [K^*_q v(x)]^{1/q} [u(x)]^{-1} \leq C \ll \left(\int_0^\infty u^{q/(q-1)} (K^*_q v)^{q/(1-q)} d(-K^*_q v) \right)^{(1-q)/q},
$$
(16)
Весовые оценки для интегральных операторов

причем в утверждениях (c) и (d), а также в левой части оценок (13) и (14) ограничимость ядра \(k(x,y) \leq 1 \) не обязательна.

Доказательство. Пусть \(\Phi(x) \geq 0 \) не возрастает на \(\mathbb{R}_+ \) и \(\Phi(\infty) = 0 \). Тогда при \(q > 0 \) и фиксированной \(f \) имеем

\[
\int_0^\infty f(x)|Hf(x)|^{q-1}\Phi(x) \, dx = \frac{1}{q} \int_0^\infty |Hf(x)|^q \, d[-\Phi(x)],
\]

потому неравенства

\[
\left(\int_0^\infty f(x)|Hf(x)|^{q-1}\Phi(x) \, dx \right)^{1/q} \leq C \left(\int_0^\infty |f(x)|^p u(x) \, dx \right)^{1/p}
\]

и

\[
\left(\int_0^\infty |Hf(x)|^q \, d[-\Phi(x)] \right)^{1/q} \leq C \left(\int_0^\infty |f(x)|^p u(x) \, dx \right)^{1/p}
\]

(17)

эквивалентны. Применяя критерии (10), (11) к неравенству (17) и учтивая утверждение (3) леммы 1, получаем оценки (13) и (14).

Для доказательства (15), (16) предположим, что (1) выполняется с конечной константой \(C \). Тогда по неравенству Минковского

\[
\int_0^\infty f(K_q^* v)^{1/q} \leq \left(\int_0^\infty (Kf)^q v \right)^{1/q}.
\]

Отсюда по обратному неравенству Гёльдера

\[
\text{ess sup}_{x \in \mathbb{R}_+} [K_q^* v(x)]^{1/q} |u(x)|^{-1} \leq C, \quad p = 1,
\]

и

\[
\left(\int_0^\infty (K_q^* v)^{p'/q} u^{1-p'} \right)^{1/p'} \leq C, \quad 1 < p < \infty,
\]

мы приходим к левым оценкам в (15) и (16). Для доказательства правых оценок заметим, что при \(0 < q < 1 \) имеем

\[
\int_0^\infty (Kf)^q v = \int_0^\infty v(x) \, dx \int_0^\infty k(x,y)f(y) \, dy \left(\int_0^\infty k(x,t)f(t) \, dt \right)^{q-1}
\]

\[
= \int_0^\infty f(y) \, dy \int_0^\infty k(x,y)v(x) \, dx \left(\int_0^\infty k(x,t)f(t) \, dt \right)^{q-1} \leq \int_0^\infty f(Hf)^q K_q^* v,
\]

так как

\[
\int_0^\infty k(x,t)f(t) \, dt \geq \int_0^y k(x,t)f(t) \, dt \geq k(x,y)Hf(y).
\]
Поскольку $K_{q}^{*}v(x)$ не возрастает, в силу сделанного выше замечания константа C в (1) не превышает наилучшей константы $q^{1/q}C$ в неравенстве

$$
\left(\int_{0}^{\infty} (Hf)^{q} d(-K_{q}^{*}v)\right)^{1/q} \leq q^{1/q}C \left(\int_{0}^{\infty} f^{p} u\right)^{1/p}.
$$

Используя (11), получаем, что если $K_{q}^{*}v(\infty) = 0$, то

$$
C \ll \left(\int_{0}^{\infty} U^{\tau/p'}(K_{q}^{*}v)^{\tau/p'} d(-K_{q}^{*}v)\right)^{1/r} \approx \left(\int_{0}^{\infty} (K_{q}^{*}v)^{\tau/q} U^{\tau/q'} u^{1-p'}\right)^{1/r}, \quad p > 1.
$$

Если $p = 1$, то, применяя (12), имеем

$$
C \ll \left(\int_{0}^{\infty} u^{q/(q-1)} (K_{q}^{*}v)^{q/(1-q)} d(-K_{q}^{*}v)\right)^{(1-q)/q}.
$$

Теорема 2. Пусть ядро $k(x,y) \geq 0$ убывает по y, причем $K_{q}^{*}v(\infty) = 0$. Тогда правые оценки в (13), (14) нужно заменить следующими.

(a) Для $1 < p \leq q < \infty$

$$
C \ll \sup_{t > 0} \left(\int_{0}^{t} (K_{q}^{*}v)^{p'} u^{1-p'} dt\right)^{1/p'q} \left|U^{*}(t)\right|^{1/p'q'}. \quad (18)
$$

(b) Для $1 < q < p < \infty$

$$
C \ll \left(\int_{0}^{\infty} \left(\int_{0}^{t} (K_{q}^{*}v)^{p'} u^{1-p'} dt\right)^{r/qp'} \left|U^{*}(t)\right|^{1/qp'} dt\right)^{1/r}. \quad (19)
$$

Доказательство. По лемме 2 и неравенству Гельдера получаем

$$
\left(\int_{0}^{\infty} (Kf)^{q} v\right)^{1/q} \leq \beta_{q} \left(\int_{0}^{\infty} f(H^{*}f)^{q-1} K_{q}^{*}v\right)^{1/q}
\leq \beta_{q} \left(\int_{0}^{\infty} f^{p} u\right)^{1/qp} \left(\int_{0}^{\infty} (H^{*}f)^{p'(q-1)} (K_{q}^{*}v)^{p'} u^{1-p'}\right)^{1/qp'}.
$$

Поскольку $1 < p \leq q < \infty \iff 1 < p \leq p'(q - 1) < \infty$ и $1 < q < p < \infty \iff 1 < p'(q - 1) < p < \infty$, то (18) и (19) вытекают из критериев весовой ограниченности сопряженного оператора Харди. \Box
§ 3. Примеры

Символ \mathbb{N} обозначает множество всех натуральных чисел.
Пусть функции $a(t) \geq 0$ и $b(t) \geq 0$ возрастают на \mathbb{R}_+.

Пример 1. Пусть $\varphi(s)$ убывает, $0 \leq \varphi(s) \leq 1$, $\varphi(\infty) = 0$ и для любого $t \in \mathbb{R}_+$

$$\varphi(2t) \leq D[\varphi(t)]^2, \quad D > 0.$$ \hspace{1cm} (20)

Предположим также, что для всех $x \in \mathbb{R}_+$ выполнено неравенство

$$a(2x) \geq \delta a(x), \quad \delta > 1,$$ \hspace{1cm} (21)

и пусть $N_0 \in \mathbb{N}$ такое, что $\delta^{N_0} \geq 2$. Пусть существует $\Delta \geq 1$ такое, что для любого $x \in \mathbb{R}_+$

$$\int_0^{2x} v(s) \, ds \leq \Delta \int_0^x v(s) \, ds.$$ \hspace{1cm} (22)

Рассмотрим оператор

$$\mathcal{L} f(x) = \int_0^\infty \varphi[a(x)b(y)] f(y) \, dy.$$

При сделанных выше предположениях для всех $t \in \mathbb{R}_+$ таких, что $\mathcal{L}^* v(t) < \infty$, справедливо

$$\mathcal{L}^* v(t) = \int_0^\infty \varphi[a(x)b(t)] v(x) \, dx$$

$$= \int_0^\infty v(x) \, dx \int_0^\infty d(-\varphi[a(z), b(t)]) = \int_0^\infty d(-\varphi[a(z)b(t)]) \int_0^z v(x) \, dx$$

$$= \int_0^\infty d(-\varphi[a(2z)b(t)]) \int_0^{2z} v(x) \, dx \leq \Delta \int_0^\infty d(-\varphi[a(2z)b(t)]) \int_0^z v(x) \, dx$$

$$= \Delta \int_0^\infty v(x) \varphi[a(2z)b(t)] \, dx \leq \Delta \int_0^\infty \varphi[a(x)b(t)] v(x) \, dx.$$

Продолжим, если нужно, рассуждение N_3 раз. Тогда

$$\mathcal{L}^* v(t) \leq \Delta^{N_3} \int_0^\infty \varphi[\delta^{N_3}a(x)b(t)] v(x) \, dx$$

$$\leq \Delta^{N_3} \int_0^\infty \varphi[2a(x)b(t)] v(x) \, dx \leq D \Delta^{N_3} \int_0^\infty (\varphi[a(x)b(t)])^2 v(x) \, dx.$$

Повторяя, если это необходимо, последнее рассуждение N_q раз, где $N_q \in \mathbb{N}$ такое, что $2^{N_q} \geq q$ для фиксированного q, получаем

$$\mathcal{L}^* v(t) \leq (D \Delta^{N_q})^{N_q} \int_0^\infty (\varphi[a(x)b(t)])^2 v(x) \, dx = (D \Delta^{N_q})^{N_q} \mathcal{L}^* q v(t).$$

Отсюда в силу утверждений (a) и (b) из теоремы 1 вытекает следующий критерий.
Теорема 3. Пусть \(\varphi, a(x) \) и \(v \) удовлетворяют условиям (20), (21) и (22) соответственно. Тогда неравенство
\[
\left(\int_0^\infty |L f(x)|^q v(x) \, dx \right)^{1/q} \leq C \left(\int_0^\infty |f(x)|^p u(x) \, dx \right)^{1/p}
\]
для \(1 < p \leq q < \infty \) выполнено тогда и только тогда, когда
\[
\sup_{t>0} [L^*_q v(t)]^{1/q} U(t)^{1/p'} < \infty.
\]
При \(1 < q < p < \infty \) исходное неравенство выполняется, если и только если
\[
\left(\int_0^\infty (L^*_q v)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r} < \infty.
\]
Теорема 3 имеет двойственный вариант.

Теорема 4. Пусть \(\varphi, b(y) \) и \(v \) удовлетворяют условиям (20), (21) и (22) соответственно. Тогда неравенство
\[
\left(\int_0^\infty (L^*_q v)^q U(t)^{1/q} \right)^{1/q} \leq C \left(\int_0^\infty a(x) \right)^{1/p}
\]
выполнено тогда и только тогда, когда для \(1 < p \leq q < \infty \)
\[
\sup_{t>0} [L^*_q v(t)]^{1/q} U(t)^{1/p'} < \infty,
\]
а при \(1 < q < p < \infty \)
\[
\left(\int_0^\infty (L^*_q v)^{r/q} U^{r/q'} u^{1-p'} \right)^{1/r} < \infty.
\]

Пример 2. Пусть неотрицательные функции \(a(t), b(t) \) возрастают на \(\mathbb{R}_+ \) и существует обратная к \(b(t) \) функция \(b^{-1}(s) \). Далее, положим
\[
k(x, y) = \varphi[a(x) + b(y)],
\]
где \(\varphi \) монотонна и для всех \(x \in \mathbb{R}_+ \)
\[
\varphi(2x) \approx \varphi(x).
\]
Тогда
\[
K f(x) \approx \varphi[a(x)] \int_0^{b^{-1}(a(x))} f(y) \, dy + \int_{b^{-1}(a(x))}^\infty \varphi[b(y)] f(y) \, dy,
\]
следовательно,
\[
\int_0^\infty (K f)^q v \approx \int_0^\infty \left(\int_0^{b^{-1}(a(x))} f(y) \, dy \right)^q \varphi[a(x)]^q v(x) \, dx
\]
\[
+ \int_0^\infty \left(\int_{b^{-1}(a(x))}^\infty \varphi[b(y)] f(y) \, dy \right)^q v(x) \, dx.
\]
Применяя критерии выполнения неравенства Харди, получаем, что при $1 < p \leq q < \infty$

$$C \approx \sup_{t > 0} \left(\int_{t}^{\infty} (\varphi[a(x)])^q v(x) \, dx \right)^{1/q} \left(\int_{0}^{b^{-1}(a(t))} u^{1-p'} \right)^{1/p'}$$

$$+ \sup_{t > 0} \left(\frac{\int_{t}^{\infty} v}{\int_{0}^{\infty} (\varphi[b(y)])^p |u(y)|^{1-p'} \, dy} \right)^{1/p'},$$

для $0 < q < p < \infty$, $p > 1$

$$C \approx \left(\int_{0}^{\infty} \left(\int_{t}^{\infty} (\varphi[a(x)])^q v(x) \, dx \right)^{r/p} \left(\int_{0}^{b^{-1}(a(t))} u^{1-p'} \right)^{r/p'} (\varphi[a(t)])^q v(t) \, dt \right)^{1/r}$$

$$+ \left(\int_{0}^{\infty} \left(\int_{0}^{t} v \right)^{r/p} \left(\int_{b^{-1}(a(t))}^{\infty} (\varphi[b(y)])^p |u(y)|^{1-p'} \, dy \right)^{r/p'} v(t) \, dt \right)^{1/r},$$

а в случае $0 < q < 1 = p$

$$C \approx \left(\int_{0}^{\infty} \left(\int_{t}^{\infty} (\varphi[a(x)])^q v(x) \, dx \right)^{q/(1-q)} \left(\int_{0}^{b^{-1}(a(t))} (\varphi[a(t)])^q v(t) \, dt \right)^{(1-q)/q} \right)^{1/q}$$

$$+ \left(\int_{0}^{\infty} \left(\int_{0}^{t} v \right)^{q/(1-q)} \left(\int_{b^{-1}(a(t))}^{\infty} v(t) \, dt \right)^{(1-q)/q} \right)^{(1-q)/q},$$

где

$$u_1(t) = \operatorname{ess inf}_{0 < x < b^{-1}(a(t))} u(x), \quad u_2(t) = \operatorname{ess inf}_{b^{-1}(a(t)) < x < \infty} u(x).$$

Замечание 3. Пример 1 обобщает результаты работы [1], а пример 2 — работы [2, 3].

Литература

5. Коротков В. Б. Интегральные операторы. Новосибирск: Наука, 1983.

Статья поступила 19 июля 2004 г.

Степанов Владимир Дмитриевич, Ушакова Елена Павловна
Вычислительный центр ДВО РАН, ул. Тихоокеанская, 153, Хабаровск 680042
stepanov@as.khb.ru, ushakova@as.khb.ru