CHARACTERIZATION OF NON-DEGENERATE PLANE CURVE SINGULARITIES

BY EVELIA R. GARCÍA BARROSO, ANDRZEJ LENARCIK AND ARKADIUSZ PŁOSKI

Abstract. We characterize plane curve germs (non-degenerate in Kouch-nirenko’s sense) in terms of characteristics and intersection multiplicities of branches.

1. Introduction. In this paper we consider (reduced) plane curve germs C, D, \ldots centered at a fixed point O of a complex nonsingular surface. Two germs C and D are equisingular if there exists a bijection between their branches which preserves characteristic pairs and intersection numbers. Let (x, y) be a chart centered at O. Then a plane curve germ has a local equation of the form $\sum c_{\alpha, \beta} x^{\alpha} y^{\beta} = 0$. Here $\sum c_{\alpha, \beta} x^{\alpha} y^{\beta}$ is a convergent power series without multiple factors. The Newton diagram $\Delta_{x,y}(C)$ is defined to be the convex hull of the union of quadrants $(\alpha, \beta) + (\mathbb{R}_+)^2, c_{\alpha, \beta} \neq 0$. Recall that the Newton boundary $\partial \Delta_{x,y}(C)$ is the union of the compact faces of $\Delta_{x,y}(C)$. A germ C is called non-degenerate with respect to the chart (x, y) if the coefficients $c_{\alpha, \beta}$, where (α, β) runs over integral points lying on the faces of $\Delta_{x,y}(C)$, are generic (see Preliminaries to this Note for the precise definition). It is a well-known fact that the equisingularity class of a germ C non-degenerate with respect to (x, y) depends exclusively on the Newton polygon formed by the faces of $\Delta_{x,y}(C)$: if $(r_1, s_1), (r_2, s_2), \ldots, (r_k, s_k)$ are subsequent vertices of $\partial \Delta_{x,y}(C)$, then the germs C and C' with local equation $x^{r_1} y^{s_1} + \cdots + x^{r_k} y^{s_k} = 0$ are equisingular. Our aim is to give an explicit description of the non-degenerate plane curve germs in terms of characteristic pairs and intersection numbers of branches. In particular, we show that if two germs C and D are equisingular,
then \(C \) is non-degenerate if and only if \(D \) is non-degenerate. The proof of our result is based on a refined version of Kouchnirenko’s formula for the Milnor number and on the concept of contact exponent.

2. Preliminaries. Let \(\mathbb{R}_+ = \{ x \in \mathbb{R} : x \geq 0 \} \). For any subsets \(A, B \) of the quarter \(\mathbb{R}_+^2 \), we consider the arithmetic sum \(A + B = \{ a + b : a \in A \) and \(b \in B \} \). If \(S \subset \mathbb{N}^2 \), then \(\Delta(S) \) is the convex hull of the set \(S + \mathbb{R}_+^2 \). The subset \(\Delta \) of \(\mathbb{R}_+^2 \) is a Newton diagram if \(\Delta = \Delta(S) \) for a set \(S \subset \mathbb{N}^2 \) (see [11, 12]). Following Teissier we put \(\{ \frac{a}{b} \} = \Delta(S) \) if \(S = \{(a, 0), (0, b)\} \), \(\{ \frac{a}{b} \} = (a, 0) + \mathbb{R}_+^2 \), and \(\{ \frac{a}{b} \} = (0, b) + \mathbb{R}_+^2 \) for any \(a, b > 0 \) and call such diagrams elementary Newton diagrams. The Newton diagrams form a semigroup \(\mathcal{N} \) with respect to the arithmetic sum. The elementary Newton diagrams generate \(\mathcal{N} \). If \(\Delta = \sum_{i=1}^{r} \left(\frac{a_i}{b_i} \right) \), then \(a_i/b_i \) are the inclinations of edges of the diagram \(\Delta \) (by convention, \(\frac{a}{\infty} = 0 \) and \(\frac{\infty}{b} = \infty \) for \(a, b > 0 \)). We also put \(a + \infty = \infty \), \(a \cdot \infty = \infty \), \(\inf \{ a, \infty \} = a \) if \(a > 0 \) and \(0 \cdot \infty = 0 \).

Minkowski’s area \(\Delta, \Delta' \in \mathbb{N} \cup \{ \infty \} \) of two Newton diagrams \(\Delta, \Delta' \) is uniquely determined by the following conditions:

\[
\begin{align*}
(m_1) & \quad [\Delta_1 + \Delta_2, \Delta'] = [\Delta_1, \Delta'] + [\Delta_2, \Delta'], \\
(m_2) & \quad [\Delta, \Delta'] = [\Delta', \Delta], \\
(m_3) & \quad \left[\left\{ \frac{a}{b} \right\}, \left\{ \frac{a'}{b'} \right\} \right] = \inf \{ ab', a'b \}.
\end{align*}
\]

We define the Newton number \(\nu(\Delta) \in \mathbb{N} \cup \{ \infty \} \) by the following properties:

\[
\begin{align*}
(v_1) & \quad \nu(\sum_{i=1}^{k} \Delta_i) = \sum_{i=1}^{k} \nu(\Delta_i) + 2 \sum_{1 \leq i < j \leq k} [\Delta_i, \Delta_j] - k + 1, \\
(v_2) & \quad \nu\left(\left\{ \frac{a}{b} \right\} \right) = (a - 1)(b - 1), \quad \nu\left(\left\{ \frac{1}{\infty} \right\} \right) = 0.
\end{align*}
\]

A diagram \(\Delta \) is convenient (resp., nearly convenient) if \(\Delta \) intersects both axes (resp., if the distances of \(\Delta \) to the axes are \(\leq 1 \)). Note that \(\Delta \) is nearly convenient if and only if \(\nu(\Delta) \neq \infty \). Fix a complex nonsingular surface, i.e., a complex holomorphic variety of dimension 2. Throughout this paper, we consider reduced plane curve germs \(C, D, \ldots \) centered at a fixed point \(O \) of this surface. We denote by \((C, D)\) the intersection multiplicity of \(C \) and \(D \) and by \(m(C) \) the multiplicity of \(C \). There is \((C, D) \geq m(C)m(D)\); if \((C, D) = m(C)m(D)\), then we say that \(C \) and \(D \) intersect transversally. Let \((x, y)\) be a chart centered at \(O \). Then a plane curve germ \(C \) has a local equation \(f(x, y) = \sum c_{\alpha \beta} x^\alpha y^\beta \in \mathbb{C}(x, y) \) without multiple factors. We put \(\Delta_{x,y}(C) = \Delta(S) \), where \(S = \{(\alpha, \beta) : \alpha, \beta \in \mathbb{N}^2 : c_{\alpha \beta} \neq 0\} \). Clearly, \(\Delta_{x,y}(C) \) depends on \(C \) and \((x, y)\). We note two fundamental properties of Newton diagrams:
\((N_1)\) If \((C_i)\) is a finite family of plane curve germs such that \(C_i\) and \(C_j\) \((i \neq j)\) have no common irreducible component, then

\[
\Delta_{x,y} \left(\bigcup_i C_i \right) = \sum_i \Delta_{x,y}(C_i).
\]

\((N_2)\) If \(C\) is an irreducible germ (a branch) then

\[
\Delta_{x,y}(C) = \begin{cases} (C, y = 0) & \text{if } x \neq 0 \\ (C, x = 0) & \text{if } y \neq 0 \end{cases}.
\]

For the proof, we refer the reader to \[1\], pp. 634–640.

The topological boundary of \(\Delta_{x,y}(C)\) is the union of two half-lines and a finite number of compact segments (faces). For any face \(S\) of \(\Delta_{x,y}(C)\) we let

\[
\frac{\partial f_S}{\partial x}(x, y) = \frac{\partial f_S}{\partial y}(x, y) = 0
\]

has no solutions in \(\mathbb{C}^* \times \mathbb{C}^*\). We say that the germ \(C\) is non-degenerate if there exists a chart \((x, y)\) such that \(C\) is non-degenerate with respect to \((x, y)\).

For any reduced plane curve germs \(C\) and \(D\) with irreducible components \((C_i)\) and \((D_j)\), we put

\[
d(C, D) = \inf_{i,j} \{(C_i, D_j)/(m(C_i)m(D_j))\}
\]

call \(d(C, D)\) the order of contact of germs \(C\) and \(D\). Then for any \(C, D, E\):

\[
\begin{align*}
(d_1) & \quad d(C, D) = \infty \text{ if and only if } C = D \text{ is a branch,} \\
(d_2) & \quad d(C, D) = d(D, C), \\
(d_3) & \quad d(C, D) \geq \inf\{d(C, E), d(E, D)\}.
\end{align*}
\]

The proof of \((d_3)\) is given in \[2\] for the case of irreducible \(C, D, E\), which implies the general case. Condition \((d_3)\) is equivalent to the following: at least two of three numbers \(d(C, D), d(C, E), d(E, D)\) are equal and the third is not smaller than the other two. For each germ \(C\), we define

\[
d(C) = \sup\{d(C, L) : L \text{ runs over all smooth branches}\}
\]

and call \(d(C)\) the contact exponent of \(C\) (see \[4\], Definition 1.5, where the term “characteristic exponent” is used). Using \((d_3)\) we check that \(d(C) \leq d(C, C)\).

\((d_4)\) For every finite family \((C_i)\) of plane curve germs we have

\[
d(\bigcup_i C_i) = \inf\{\inf d(C^i), \inf d(C^i, C^j)\}.
\]

The proof of \((d_4)\) is given in \[3\] (see Proposition 2.6). We say that a smooth germ \(L\) has maximal contact with \(C\) if \(d(C, L) = d(C)\). Note that \(d(C) = \infty\) if and only if \(C\) is a smooth branch. If \(C\) is singular then \(d(C)\) is a rational
number and there exists a smooth branch L which has maximal contact with C (see [4, 1]).

3. Results. Let C be a plane curve germ. A finite family of germs $(C^{(i)})_i$ is called a decomposition of C if $C = \cup_i C^{(i)}$ and $C^{(i)}, C^{(i_1)}$ ($i \neq i_1$) have no common branch. The following definition will play a key role.

Definition 3.1. A plane curve C is Newton’s germ (shortly an \mathcal{N}-germ) if there exists a decomposition $(C^{(i)})_{1 \leq i \leq s}$ of C such that the following conditions hold

1. $1 \leq d(C^{(1)}) < \ldots < d(C^{(s)}) \leq \infty$.
2. Let $(C^{(i)})_j$ be branches of $C^{(i)}$. Then
 - (a) if $d(C^{(i)}) \in \mathbb{N} \cup \{\infty\}$ then the branches $(C^{(i)})_j$ are smooth,
 - (b) if $d(C^{(i)}) \notin \mathbb{N} \cup \{\infty\}$ then there exists a pair of coprime integers (a_i, b_i) such that each branch $C^{(i)}_j$ has exactly one characteristic pair (a_i, b_i).
 Moreover, $d(C^{(i)}_j) = d(C^{(i)})$ for all j.
3. If $C^{(i)}_l \neq C^{(i_1)}_k$, then $d(C^{(i)}_l, C^{(i_1)}_k) = \inf\{d(C^{(i)}), d(C^{(i_1)})\}$.

A branch is Newton’s germ if it is smooth or has exactly one characteristic pair. Let C be Newton’s germ. The decomposition $(C^{(i)})$ satisfying (1), (2) and (3) is not unique. Take for example a germ C that has all $r > 2$ branches smooth intersecting with multiplicity $d > 0$. Then for any branch L of C, we may put $C^{(1)} = C \setminus \{L\}$ and $C^{(2)} = \{L\}$ (or simply $C^{(1)} = C$). If C and D are equisingular germs, then C is an \mathcal{N}-germ if and only if D is an \mathcal{N}-germ.

Our main result is

Theorem 3.2. Let C be a plane curve germ. Then the following two conditions are equivalent

1. The germ C is non-degenerate with respect to a chart (x, y) such that C and $\{x = 0\}$ intersect transversally,
2. C is Newton’s germ.

We give a proof of Theorem 3.2 in Section 5 of this paper. Let us note here

Corollary 3.3. If a germ C is unitangent, then C is non-degenerate if and only if C is an \mathcal{N}-germ.

Every germ C has the tangential decomposition $(\tilde{C}^i)_{i=1,\ldots,t}$ such that

1. \tilde{C}^i are unitangent, that is for every two branches $\tilde{C}^i_j, \tilde{C}^i_k$ of \tilde{C}^i there is $d(\tilde{C}^i_j, \tilde{C}^i_k) > 1$.
2. $d(\tilde{C}^i, \tilde{C}^{i_1}) = 1$ for $i \neq i_1$.
We call \((\tilde{C}^i)_{i=1,...,t}\) tangential components of \(C\). Note that \(t(C) = t\) (the number of tangential components) is an invariant of equisingularity.

Theorem 3.4. If \((\tilde{C}^i)_{i=1,...,t}\) is the tangential decomposition of the germ \(C\) then the following two conditions are equivalent

1. The germ \(C\) is non-degenerate.
2. All tangential components \(\tilde{C}^i\) of \(C\) are \(N\)-germs and at least \(t(C) - 2\) of them are smooth.

Using Theorem 3.4, we get

Corollary 3.5. Let \(C\) and \(D\) be equisingular plane curve germs. Then \(C\) is non-degenerate if and only if \(D\) is non-degenerate.

4. Kouchnirenko’s theorem for plane curve singularities.

Let \(\mu(C)\) be the Milnor number of a reduced germ \(C\). By definition, \(\mu(C) = \dim \mathbb{C}\{x,y\}/(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})\), where \(f = 0\) is an equation without multiple factors of \(C\). The following properties are well-known (see e.g. [9]).

\((\mu_1)\) \(\mu(C) = 0\) if and only if \(C\) is a smooth branch.

\((\mu_2)\) If \(C\) is a branch with the first characteristic pair \((a, b)\) then \(\mu(C) \geq (a - 1)(b - 1)\). Moreover, \(\mu(C) = (a - 1)(b - 1)\) if and only if \((a, b)\) is the unique characteristic pair of \(C\).

\((\mu_3)\) If \((C^{(i)})_{i=1,...,k}\) is a decomposition of \(C\), then

\[
\mu(C) = \sum_{i=1}^{k} \mu(C^{(i)}) + 2 \sum_{1 \leq i < j \leq k} (C^{(i)}, C^{(j)}) - k + 1.
\]

Now we can give a refined version of Kouchnirenko’s theorem in two dimensions.

Theorem 4.1. Let \(C\) be a reduced plane curve germ. Fix a chart \((x, y)\).

Then \(\mu(C) \geq \nu(\Delta_{x,y}(C))\) with equality holding if and only if \(C\) is non-degenerate with respect to \((x, y)\).

Proof. Let \(f = 0, f \in \mathbb{C}\{x,y\}\) be the local equation without multiple factors of the germ \(C\). To abbreviate the notation, we put \(\mu(f) = \mu(C)\) and \(\Delta(f) = \Delta_{x,y}(C)\). If \(f = x^a y^b \varepsilon(x,y)\) in \(\mathbb{C}\{x,y\}\) with \(\varepsilon(0,0) \neq 0\) then the theorem is obvious. Then we can write \(f = x^a y^b f_1\) in \(\mathbb{C}\{x,y\}\), where \(a, b \in \{0,1\}\) and \(f_1 \in \mathbb{C}\{x,y\}\) is an appropriate power series. A simple calculation based on properties \([\nu_2]\), \([\mu_3]\) and \([\mu_1]\), \([\nu_2]\) shows that \(\mu(f) - \nu(\Delta(f)) = \mu(f_1) - \nu(\Delta(f_1))\). Moreover, \(f\) is non-degenerate if and only if if \(f_1\) is non-degenerate and the theorem reduces to the case of an appropriate power series which is proved in [8] (Theorem 1.1).
Remark 4.2. The implication \(\mu(C) = \nu(\Delta_{x,y}(C)) \Rightarrow C \) is non-degenerate” is not true for hypersurfaces with isolated singularity (see [5], Remarque 1.21).

Corollary 4.3. For any reduced germ \(C \), there is \(\mu(C) \geq (m(C) - 1)^2 \).

The equality holds if and only if \(C \) is an ordinary singularity, i.e., such that \(t(C) = m(C) \).

Proof. Use Theorem 4.1 in generic coordinates. \(\square \)

5. Proof of Theorem 3.2. We start with the implication (1) \(\Rightarrow \) (2). Let \(C \) be a plane curve germ and let \((x, y) \) be a chart such that \(\{ x = 0 \} \) and \(C \) intersect transversally. The following result is well-known ([7], Proposition 4.7).

Lemma 5.1. There exists a decomposition \(\{ C(i) \}_{i=1,\ldots,s} \) of \(C \) such that

1. \(\Delta_{x,y}(C(i)) = \left\{ \left\{ C(i), y = 0 \right\} \right\}_i \)
2. Let \(d_i = \frac{(C(i), y=0)}{m(C(i))} \). Then \(1 \leq d_1 < \cdots < d_s \leq \infty \) and \(d_s = \infty \) if and only if \(C(s) \) is non-degenerate with respect to the chart \((x, y) \).
3. Let \(n_i = m(C(i)) \) and \(m_i = n_i d_i = (C(i), y = 0) \). Suppose that \(C \) is non-degenerate with respect to the chart \((x, y) \). Then \(C(i) \) has \(r_i = \gcd(n_i, m_i) \) branches \(C_j(i) : y^{r_i/m_i} - a_{ij} x^{m_i/r_i} + \cdots = 0 \) \((j = 1, \ldots, r_i) \) and \(a_{ij} \neq a_{i'j} \), if \(j \neq j' \).

Using the above lemma, we prove that any germ \(C \) which is non-degenerate with respect to \((x, y) \) is an \(N \)-germ. From \(d_1 \) we get \(d(C(i)) = d_i \). Clearly, each branch \(C_j(i) \) has exactly one characteristic pair \(\left(\frac{n_i}{r_i}, \frac{m_i}{r_i} \right) \) or is smooth. A simple calculation shows that

\[
d(C_j(i), C_j(i_1)) = \frac{(C_j(i), C_j(i_1))}{m(C_j(i)) m(C_j(i_1))} = \inf\{d_i, d_{i_1}\}.
\]

To prove the implication (2) \(\Rightarrow \) (1), we need some auxiliary lemmas.

Lemma 5.2. Let \(C \) be a plane curve germ whose all branches \(C_i \) \((i = 1, \ldots, s) \) are smooth. Then there exists a smooth germ \(L \) such that \((C_i, L) = d(C) \) for \(i = 1, \ldots, s \).

Proof. If \(d(C) = \infty \), then \(C \) is smooth and we take \(L = C \). If \(d(C) = 1 \), then we take a smooth germ \(L \) such that \(C \) and \(L \) are transversal. Let \(k = d(C) \) and suppose that \(1 < k < \infty \). By formula \(d_k \), we get \(\inf\{C_i, C_j \} : i, j = 1, \ldots, s = k \). We may assume that \((C_1, C_2) = \cdots = (C_1, C_r) = k \) and \((C_1, C_j) > k \) for \(j > r \) for an index \(r, 1 \leq r \leq s \). There is a system of
coordinates \((x, y)\) such that \(C_j\) \((j = 1, \ldots, r)\) have equations \(y = c_jx^k + \ldots\) It suffices to take \(L : y - cx^k = 0\), where \(c \neq c_j\) for \(j = 1, \ldots, r\).

Lemma 5.3. Suppose that \(C\) is an \(N\)-germ and let \((C^{(i)})_{1 \leq i \leq s}\) be a decomposition of \(C\) as in Definition 3.1. Then there is a smooth germ \(L\) such that \(d(C^{(i)}_j, L) = d(C^{(i)})\) for all \(j\).

Proof. Step 1. There is a smooth germ \(L\) such that \(d(C^{(s)}_j, L) = d(C^{(s)})\) for all \(j\). If \(d(C^{(s)}) \in \mathbb{N} \cup \{\infty\}\), then the existence of \(L\) follows from Lemma 5.2. If \(d(C^{(s)}) \notin \mathbb{N} \cup \{\infty\}\), then all components \(C^{(s)}_j\) have the same characteristic pair \((a_s, b_s)\). Fix a component \(C^{(s)}_{j_0}\) and let \(L\) be a smooth germ such that \(d(C^{(s)}_{j_0}, L) = d(C^{(s)}_j)\).

Let \(j_1 \neq j_0\). Then \(d(C^{(s)}_{j_1}, L) \geq \inf \{d(C^{(s)}_{j_1}, C^{(s)}_{j_0}), d(C^{(s)}_{j_0}, L)\} = d(C^{(s)}_j)\). On the other hand, \(d(C^{(s)}_{j_1}, L) \leq d(C^{(s)}_{j_1}) = d(C^{(s)}_j)\) and we get \(d(C^{(s)}_{j_1}, L) = d(C^{(s)}_j)\).

Step 2. Let \(L\) be a smooth germ such that \(d(C^{(s)}_j, L) = d(C^{(s)})\) for all \(j\). We will check that \(d(C^{(i)}_j, L) = d(C^{(i)})\) for each \(i\) and \(j\). To this purpose, fix \(i < s\). Let \(C^{(s)}_{j_0}\) be a component of \(C^{(s)}\). Then \(d(C^{(i)}_j, C^{(s)}_{j_0}) = \inf \{d(C^{(i)}_j), d(C^{(s)}_{j_0})\} = d(C^{(i)})\) and \(d(C^{(s)}_{j_0}, C^{(i)}_j) = \inf \{d(C^{(s)}_{j_0}), d(C^{(i)}_j)\} = d(C^{(i)}).

By the above lemma, we get \(d(C^{(i)}_j, L) \geq \inf \{d(C^{(i)}_j, C^{(s)}_{j_0}), d(C^{(s)}_{j_0}, L)\} = \inf \{d(C^{(i)}_j), d(C^{(s)}_{j_0})\} = d(C^{(i)}_j)\). On the other hand, \(d(C^{(i)}_j, L) \leq d(C^{(i)}_j) = d(C^{(i)})\), which completes the proof.

Remark 5.4. In the notation of the above lemma we have \((C^{(i)}_j, L) = m(C^{(i)})d(C^{(i)})\) for \(i = 1, \ldots, s\).

Indeed, if \(C^{(i)}_j\) are branches of \(C^{(i)}\), then
\[
(C^{(i)}_j, L) = \sum_j (C^{(i)}_j, L) = \sum_j m(C^{(i)}_j)d(C^{(i)}_j, L) = \sum_j m(C^{(i)}_j)d(C^{(i)}) = m(C^{(i)})d(C^{(i)}).
\]

Lemma 5.5. Let \(C\) be an \(N\)-germ and let \((C^{(i)})_{1 \leq i \leq s}\) be a decomposition of \(C\) as in Definition 3.1. Then
\[
\mu(C) = \sum_i (m(C^{(i)}) - 1)(m(C^{(i)})d(C^{(i)}) - 1) + 2 \sum_{i < j} m(C^{(i)})m(C^{(j)}) \inf \{d(C^{(i)}), d(C^{(j)})\} - s + 1.
\]

Proof. Use properties \((\mu_1), (\mu_2)\) and \((\mu_3)\) of the Milnor number.
To prove implication (2) ⇒ (1) of Theorem 3.2 suppose that C is an N-germ and let $(C^{(i)})_{i=1,...,s}$ be a decomposition of C such as in Definition 3.1. Let L be a smooth branch such that $(C^{(i)}, L) = m(C^{(i)})d(C^{(i)})$ for $i = 1, \ldots, s$ (such a branch exists by Lemma 5.3 and Remark 5.4). Take a system of coordinates such that \{x = 0\} and C are transversal and $L = \{y = 0\}$. Then we get

$$\Delta_{x,y}(C) = \sum_{i=1}^{s} \Delta_{x,y}(C^{(i)}) = \sum_{i=1}^{s} \left\{ \frac{(C^{(i)}, \{y = 0\})}{m(C^{(i)})} \right\} = \sum_{i=1}^{s} \left\{ \frac{m(C^{(i)})d(C^{(i)})}{m(C^{(i)})} \right\}$$

and consequently

$$\nu(\Delta_{x,y}(C)) = \sum_{i=1}^{s} (m(C^{(i)}) - 1)(m(C^{(i)})d(C^{(i)}) - 1)$$

$$+ 2 \sum_{1 \leq i < j \leq s} m(C^{(i)})m(C^{(j)}) \inf\{d(C^{(i)}), d(C^{(j)})\} - s + 1$$

$$= \mu(C)$$

by Lemma 5.5. Therefore, $\mu(C) = \nu(\Delta_{x,y}(C))$ and C is non-degenerate with respect to (x, y) by Theorem 4.1.

6. Proof of Theorem 3.4. The Newton number $\nu(C)$ of the plane curve germ C is defined to be $\nu(C) = \sup \{\nu(\Delta_{x,y}(C)) : (x, y) \text{ runs over all charts centered at } O\}$. Using Theorem 4.1 we get

Lemma 6.1. A plane curve germ C is non-degenerate if and only if $\nu(C) = \mu(C)$.

The proposition below shows that we can reduce the computation of the Newton number to the case of unitangent germs.

Proposition 6.2. If $C = \bigcup_{k=1}^{t} \tilde{C}^k$ ($t > 1$), where $\{\tilde{C}^k\}_k$ are unitangent germs such that $(\tilde{C}^k, \tilde{C}^l) = m(C^k)m(C^l)$ for $k \neq l$, then

$$\nu(C) - (m(C) - 1)^2 = \max_{1 \leq k < l \leq t} \{ (\nu(\tilde{C}^k) - (m(\tilde{C}^k) - 1)^2) + (\nu(\tilde{C}^l) - (m(\tilde{C}^l) - 1)^2) \}.$$
\[\nu(\Delta_{x,y}(C)) = \nu(\sum_{k=1}^{t} \Delta_{x,y}(\tilde{C}^{k})) = \nu(\Delta_{x,y}(\tilde{C}^{k_1})) + \nu(\Delta_{x,y}(\tilde{C}^{k_2})) + \sum_{k \neq k_1, k_2} \nu(\Delta_{x,y}(\tilde{C}^{k})) + 2 \sum_{1 \leq k < l \leq t} \left[\Delta_{x,y}(\tilde{C}^{k}), \Delta_{x,y}(\tilde{C}^{l}) \right] - t + 1 \]

\[= \nu(\Delta_{x,y}(\tilde{C}^{k_1})) + \nu(\Delta_{x,y}(\tilde{C}^{k_2})) + \sum_{k \neq k_1, k_2} (\tilde{n}_k - 1)^2 + 2 \sum_{1 \leq k < l \leq t} \tilde{n}_k \tilde{n}_l - t + 1 \]

\[= \nu(\Delta_{x,y}(\tilde{C}^{k_1})) - (\tilde{n}_{k_1} - 1)^2 \]

\[+ \nu(\Delta_{x,y}(\tilde{C}^{k_2})) - (\tilde{n}_{k_2} - 1)^2 + (m(C) - 1)^2. \]

The germs \(\tilde{C}^{k_1} \) and \(\tilde{C}^{k_2} \) are unitangent and transversal. Thus it is easy to see that there exists a chart \((x_1, y_1)\) such that \(\nu(\Delta_{x_1,y_1}(\tilde{C}^{k})) = \nu(\tilde{C}^{k}) \) for \(k = k_1, k_2 \).

If \(\{x = 0\} \) (or \(\{y = 0\} \)) and \(C \) are transversal, then there exists a \(k \in \{1, \ldots, t\} \) such that \(\nu(\Delta_{x,y}(C)) = \nu(\Delta_{x,y}(\tilde{C}^{k})) - (\tilde{n}_k - 1)^2 + (m(C) - 1)^2 \) and the proposition follows from the previous considerations.

Now we can pass to the proof of Theorem 3.4. If \(t(C) = 1 \) then \(C \) is non-degenerate with respect to a chart \((x, y)\) such that \(C \) and \(\{x = 0\} \) intersect transversally and Theorem 3.4 follows from Theorem 3.2. If \(t(C) > 1 \), then by Proposition 6.2 there are indices \(k_1 < k_2 \) such that

\[(\alpha) \quad \nu(C) - (m(C) - 1)^2 = \nu(\tilde{C}^{k_1}) - (m(\tilde{C}^{k_1}) - 1)^2 + \nu(\tilde{C}^{k_2}) - (m(\tilde{C}^{k_2}) - 1)^2. \]

On the other hand, from basic properties of the Milnor number we get

\[(\beta) \quad \mu(C) - (m(C) - 1)^2 = \sum_{k} \mu(\tilde{C}^{k}) - (m(\tilde{C}^{k}) - 1)^2. \]

Using (\(\alpha \)), (\(\beta \)) and Lemma 6.1, we check that \(C \) is non-degenerate if and only if \(\mu(\tilde{C}^{k_1}) = \nu(\tilde{C}^{k_1}), \mu(\tilde{C}^{k_2}) = \nu(\tilde{C}^{k_2}) \) and \(\mu(\tilde{C}^{k}) = (m(\tilde{C}^{k}) - 1)^2 \) for \(k \neq k_1, k_2 \). Now Theorem 3.4 follows from Lemma 6.1 and Corollary 4.3.

7. Concluding remark. M. Oka in [6] proved that the Newton number like the Milnor number is an invariant of equisingularity. Therefore, the invariance of non-degeneracy (Corollary 3.5) follows from the equality \(\nu(C) = \mu(C) \) characterizing non-degenerate germs (Lemma 6.1).

Acknowledgements. The third author (A.P.) is grateful to La Laguna University, where a part of this work was prepared.
References

Received February 28, 2007

Departamento de Matemática Fundamental
Facultad de Matemáticas
Universidad de La Laguna
38271 La Laguna, Tenerife
España
e-mail: ergarcia@ull.es

Department of Mathematics
Technical University
Al. 1000 L PP7
25-314 Kielce
Poland
e-mail: ztpal@tu.kielce.pl

Department of Mathematics
Technical University
Al. 1000 L PP7
25-314 Kielce
Poland
e-mail: matap@tu.kielce.pl