ON THE BIANCHI IDENTITIES IN A GENERALIZED WEYL SPACE

GÜLÇİN ÇIVİ

Faculty of Science and Letters, Istanbul Technical University
80626 Maslak-Istanbul, Turkey

Abstract. In this paper, we show that the first Bianchi identity is valid for a generalized Weyl space having a semi-symmetric E-connection and that the second Bianchi identity is satisfied for a recurrent generalized Weyl space provided that the recurrence vector ψ_l and the Vranceanu vector Ω_l are related by $\psi_l = \frac{2}{n-1}\Omega_l$.

1. Introduction

An n-dimensional differentiable manifold W_n^* having an asymmetric connection ∇^* and asymmetric conformal metric tensor g^* preserved by ∇^* is called a generalized Weyl space [1]. For such a space, in local coordinates, we have the compatibility condition

$$\nabla^*_k g^*_{ij} - 2T^*_k g^*_{ij} = 0,$$ (1.1)

where T^*_k are the components of a covariant vector field called the complementary vector field of the generalized Weyl space.

The coefficients L^i_{jk} of the connection ∇^* are obtained from the compatibility condition as [2]

$$L^i_{jk} = \Gamma^i_{jk} + \frac{1}{2} \left[\Omega^h_{kl} g^*_j(h) + \Omega^h_{jl} g^*_k(h) + \Omega^h_{jk} g^*_l(h) \right] g^{*(l)i}$$ (1.2)

or, putting

$$Q^i_{jk} = \frac{1}{2} \left[\Omega^h_{kl} g^*_j(h) + \Omega^h_{jl} g^*_k(h) + \Omega^h_{jk} g^*_l(h) \right] g^{*(l)i}$$ (1.3)

* This work is supported by TÜBİTAK, Research Center of Turkey.