WEITZENBÖCK FORMULAS ON POISSON PROBABILITY SPACES

NICOLAS PRIVAULT

Grupo de Física Matemática, Universidade de Lisboa
2 Gama Pinto Ave, 1649-003 Lisboa, Portugal

Abstract. This paper surveys and compares some recent approaches to stochastic infinite-dimensional geometry on the space \(\Gamma \) of configurations (i.e. locally finite subsets) of a Riemannian manifold \(M \) under Poisson measures. In particular, different approaches to Bochner–Weitzenböck formulas are considered. A unitary transform is also introduced by mapping functions of \(n \) configuration points to their multiple stochastic integral.

1. Weitzenböck Formula under a Measure

Let \(M \) be a Riemannian manifold with volume measure \(dx \), covariant derivative \(\nabla \), and exterior derivative \(d \). Let \(\nabla^*_\mu \) and \(d^*_\mu \) denote the adjoints of \(\nabla \) and \(d \) under a measure \(\mu \) on \(M \) of the form \(\mu(dx) = e^{\phi(x)} dx \). The classical Weitzenböck formula under the measure \(\mu \) states that

\[
d^*_\mu d + dd^*_\mu = \nabla^*_\mu \nabla + R - \text{Hess} \phi,
\]

where \(R \) denotes the Ricci tensor on \(M \). In terms of the de Rham Laplacian \(H_R = d^*_\mu d + d d^*_\mu \) and of the Bochner Laplacian \(H_B = \nabla^*_\mu \nabla \) we have

\[
H_R = H_B + R - \text{Hess} \phi.
\]

In particular the term \(\text{Hess} \phi \) plays the role of a curvature under the measure \(\mu \).

* Permanent address: Université de La Rochelle, 17042 La Rochelle, France.