CONFORMAL MAPPINGS AND SPECIAL NETWORKS
OF WEYL SPACES

FÜSUN ÖZEN and SEZGIN ALTAY

Faculty of Sciences and Letters, Department of Mathematics
Istanbul Technical University, 80626 Maslak, Istanbul, Turkey

Abstract. In this paper, we show that a totally umbilical hypersurface of a recurrent Weyl space is conformally recurrent. Also, while a totally umbilical hypersurface of a recurrent Weyl space is conharmonically recurrent or conharmonically Ricci-recurrent, theorems concerning some special nets are proved.

1. Introduction

A differentiable manifold of dimension n having conformal metric tensor g and symmetric connection \(\nabla \) satisfying the compatibility condition

\[
\nabla g = 2(TXg)
\]

where \(T \) is a 1-form (complementary covector field) is called a Weyl space which is denoted by \(W_n(g, T) \). After renormalization of the metric tensor \(g \)

\[
\tilde{g} = \lambda^2 g
\]

the vector field \(T \) is transformed [1] into

\[
\tilde{T} = T + d\ln \lambda
\]

An object \(A \) defined on \(W_n(g, T) \) is called a satellite of \(g \) of weight \{p\} if it admits a transformation of the form \(\tilde{A} = \lambda^p A \) under the renormalization of \(g \). Suppose that the metrics of \(W_n \) and \(W_{n+1} \) are elliptic and that they are given, respectively, by \(g_{ij} \, du^i \, du^j \) and \(g_{ab} \, dx^a \, dx^b \) which are connected by the relations

\[
g_{ij} = g_{ab} x_i^a x_j^b \quad i, j = 1, 2, \ldots, n, \quad a, b = 1, 2, \ldots, n + 1
\]
where x^a_i denotes the covariant derivative of x^a with respect to u^i. The prolonged derivative and the prolonged covariant derivative in the direction of vector x of the satellite A of g of weight $\{p\}$ are defined by the laws, respectively,

$$\ddot{A} = \partial A - p(TX A), \quad \nabla A = \nabla A - p(TX A) \quad (1)$$

where ∂h is the partial derivative of A [2–4]. By $\bar{g} = \lambda^2 g$ and second equality in (1) it follows that for every z, $\nabla z g = 0$. It is easy to see that prolonged covariant derivative preserve weights of the satellites.

The prolonged covariant derivative of A, relative to W_n and W_{n+1}, are related by

$$\nabla_k A = x^a_k \nabla_a A. \quad (2)$$

Let n^a be the contravariant components of the vector field in W_{n+1} normal to W_n, and let it be normalized by the condition $g_{ab}n^a n^b = 1$. The moving frame $\{x^i_a, n_a\}$ in W_n, reciprocal to the moving frame $\{x^a_i, n^a\}$ is defined by the relations [4]

$$n^a_a = 1, \quad n_a x^a = 0, \quad n^a x_i^a = 0, \quad x^a_i x^a_j = \delta_i^j. \quad (3)$$

Differentiating covariantly with respect to u^k both sides of the last equality (3) and remembering that

$$\nabla_k x^a_i = \nabla_k x^a_i = w_{ik} n^a \quad (4)$$

we find that $\nabla_k x^a_i$, regarded as a function of x’s, is a vector of W_n, and so it can be expressed in the form [5]

$$\nabla_k x^a_i = \nabla_k x^a_i = \Omega^a_k n_a. \quad (5)$$

Let $v^i (r = 1, 2, \ldots, n)$ be the contravariant components of the n independent vector fields v in W_n which are normalized by the condition $g_{ij} v^i v^j = 1$. Following [1], we define the covector fields \tilde{v}^i satisfying the equalities

$$v^i \tilde{v}^j = \delta^i_j, \quad v^i \tilde{v}^p = \delta^p_r \quad r, p = 1, 2, \ldots, n. \quad (6)$$

Let v^a and v^i be, respectively, the contravariant components of the vector fields v in W_n relative to W_{n+1} and W_n. Then, we have

$$v^a = x^a_i v^i. \quad (7)$$
The generalised Gauss equation is obtained, in the following form [6]

$$R_{hijk} = w_{hj}w_{ik} - w_{hk}w_{ij} + \bar{R}_{bced}x^b_i x^c_j x^d_k$$ \hspace{1cm} (8)

where \bar{R}_{bced} is the covariant curvature tensor of W_{n+1}.

A hypersurface of a Weyl space is called **totally umbilical** if the following expression holds

$$w_{ij} = \mu g_{ij}$$ \hspace{1cm} (9)

where μ is a satellite of g_{ij} with weight $\{-1\}$. From this definition, it follows that $\mu = \frac{M}{n}$ where M is the mean curvature of the hypersurface, defined by $M = w_{ij}g^{ij}$. A hypersurface of a Weyl space is totally geodesic if

$$w_{ij} = 0.$$ \hspace{1cm} (10)

We will use the following relations [7]

$$B_{hi...jk}^{ab...cd} = x^a_i x^b_j \cdots x^d_k.$$ \hspace{1cm} (11)

If \bar{a}^a_{ρ} and a^i_{ρ}, respectively, the components of the Chebyshev vector fields of the first kind with respect to W_{n+1} and W_n, then the following relations hold (see [5] and [8])

$$\bar{a}^a_{\rho} = \kappa n^a_{\rho} + a^i_{\rho} x^a_i, \hspace{1cm} r \neq p$$

$$a^i_{\rho} = \frac{v^k}{p} \bar{\nabla}_k v^i_{\rho}, \hspace{1cm} r \neq p$$

$$\kappa = w_{ik} v^i_{\rho} v^k_{\rho}.$$ \hspace{1cm} (11)

Let any net (v_1, v_2, \ldots, v_n) in W_n be a Chebyshev net of the first kind with respect to W_{n+1}, in this case, the following condition holds [9]

$$\bar{a}^a_{\rho} = 0.$$ \hspace{1cm} (12)

If \bar{b}^a_{ρ} and b^i_{ρ} are, respectively, the components of the Chebyshev vector fields of the second kind with respect to W_{n+1} and W_n, then the following relations hold [5, 8]

$$\bar{b}^a_{\rho} = (-\Omega^i_k v^j_{\rho} v^k_{\rho}) n_a + b^i_{\rho} x^a_i b_i = \frac{v^k}{r_k} \bar{\nabla}_k v^i_{\rho} \Omega^i_k = w_{km} g^{mi}$$ \hspace{1cm} (13)

(no summation over r).
Let any net \((v, v', \ldots, v_n)\) in \(W_n\) be a Chebyshev net of the second kind with respect to \(W_{n+1}\), in this case, the following condition holds [9]

\[
\frac{r}{b_n} = 0. \tag{14}
\]

If \(\bar{c}_a^r\) and \(c_i^r\) are, respectively, the components of the geodesic vector fields of the net \((v, v', \ldots, v_n)\) with respect to \(W_{n+1}\) and \(W_n\), then they are connected by the relations [5, 8]

\[
\bar{c}_a^r = \kappa \iota^a r + c_i^r x_i^a c_i^r = v^k \hat{\nabla}_k v^r \kappa = w_{ik} v^i v^k. \tag{15}
\]

Let any net \((v, v', \ldots, v_n)\) in \(W_n\) be a geodesic net with respect to \(W_{n+1}\), in this case the following condition holds [9]

\[
\bar{c}_a^r = 0.
\]

If \(W_n\) admits of a tensor field \(T_{\ldots}\) such that

\[
\hat{\nabla}_k T_{\ldots} = \lambda_k T_{\ldots} \tag{16}
\]

where \(\lambda_k\) is non-zero vector field of \(W_n\), then \(W_n\) is called a \textit{T-recurrent Weyl space}. We note that since the prolonged covariant derivative preserves the weight, \(\lambda_s\) is a satellite of \(g_{ij}\) with weight \(\{0\}\).

Let \(W_n\) be a hypersurface of recurrent Weyl space \(W_{n+1}\) with recurrence vector \(\lambda_a\) which is not orthogonal to the hypersurface \(W_n\). If we denote the tangential component of \(\phi_a\) by \(\phi_r\), then we have

\[
\phi_k = \phi_a x_a^r.
\]

Since \(W_{n+1}\) is recurrent Weyl space, we can write

\[
\hat{\nabla}_r \bar{R}_{abcd} = \phi_r \bar{R}_{abcd}. \tag{17}
\]

According to [6], we have

\[
\hat{\nabla}_r R_{hi,jk} = \hat{\nabla}_r \Omega_{hi,jk} + \phi_c \bar{R}_{abcd} B_{hi,jkr}^a + \bar{R}_{abcd} B_{ijkl} w_{hr} n^a
\]

\[
+ \bar{R}_{abcd} B_{hi,jk} w_{r} n^b + \bar{R}_{abcd} B_{hak} w_{jr} n^c + \bar{R}_{abcd} B_{hi,j} w_{kr} n^d.
\]
2. Conformal Mappings and Special Nets of Weyl Spaces

Let τ be a conformal mapping of $W_n(g, T)$ onto $W^*_n(g^*, T^*)$. In this case, we have

$$g^* = g.$$ \hspace{1cm} (18)

The covariant vector P_k is defined by

$$P = T - T^*$$ \hspace{1cm} (19)

is called the vector of the conformal mapping. Clearly, P has zero weight.

Let C be a smooth curve in $W_n(g, T)$ and let C^* be its image under the conformal mapping τ. Denote the parameters of C and C^* by S and S^*, respectively. Denote the coordinates of a current point P on C by x^i and those of the corresponding point P^* by x^*_i. Then for the tangent vectors v^i and v^*_i at corresponding points, we have

$$v^*_i = v^i.$$ \hspace{1cm} (20)

Let ∇ and ∇^* be the Weyl connections of $W_n(g, T)$ and $W^*_n(g^*, T^*)$ and let the connection coefficients be denoted by Γ^*_{jk} and Γ^i_{jk}, respectively, then the tensor T^i_{jk} is called the affine deformation tensor, where

$$T^i_{jk} = \Gamma^i_{jk} - \Gamma^*_i_{jk}.$$ \hspace{1cm} (21)

Another expression for affine deformation tensor can be written in [10] as follows

$$T^i_{jk} = P_j \delta^i_k + P_k \delta^i_j - P_m g^{im} g_{jk}.$$ \hspace{1cm} (22)

In this case, from the conformal transformation which is given by (1), (2), (3) and (4), the covariant curvature tensor $R_{hi,jk}$ transforms $R^*_{hi,jk}$ as in the following expression, [11]

$$R_{hi,jk} = R_{hi,jk} + g_{hk} P_{ij} + g_{ij} P_{hk} - g_{ik} P_{hj} - g_{hj} P_{ik} + 2 g_{ih} \nabla[k] P_{lj}$$ \hspace{1cm} (22)

where we have put

$$P_{ij} = \nabla_i P_j - P_i P_j + \frac{1}{2} g^{kl} g_{ij} P_k P_l$$

and

$$R^* = R + 2(n - 1) P_m^m.$$ \hspace{1cm} (23)
From this transformation, using (5) and (6), we can easily obtain that the conformal curvature tensor of W_n Weyl space is in the following form, [12]

$$
C_{ijk}^h = R_{ijk}^h - \frac{1}{n-2} (\delta_k^h R_{ij} - \delta_j^h R_{ik} + g_{ij} g^{hm} R_{mk} - g_{ik} g^{hm} R_{mj}) \\
+ \frac{2}{n(n-2)} (\delta_k^h R_{[ij]} - \delta_j^h R_{[ik]} + g_{ij} g^{hm} R_{[mk]} - g_{ik} g^{hm} R_{[mj]}) - (n-2) \delta_i^h R_{[jk]} + \frac{R}{(n-1)(n-2)} (\delta_k^h g_{ij} - \delta_j^h g_{ik}) .
$$

(24)

Let us suppose that the conformal transformation (1) be a conharmonic one, we obtain from the above expression, [11]

$$
P_h^h = g^{hk} \nabla_h P_k + \frac{1}{2} (n-2) P^h P_h = 0 .
$$

(25)

In this case, the conharmonic curvature tensor of Weyl space is in the following form, [13]

$$
K_{ijk}^h = R_{ijk}^h - \frac{1}{n} (\delta_k^h R_{ij} - \delta_j^h R_{ik} + g_{ij} g^{hm} R_{mk} - g_{ik} g^{hm} R_{mj}) + 2 \delta_i^h R_{[jk]} \\
- \frac{1}{n-2} (\delta_k^h R_{(ij)} - \delta_j^h R_{(ik)} + g_{ij} g^{hm} R_{(mk)} - g_{ik} g^{hm} R_{(mj)})
$$

(26)

where $R_{[ij]} = \frac{1}{2} (R_{ij} - R_{ji})$ and $R_{(ij)} = \frac{1}{2} (R_{ij} + R_{ji})$. From (9), the conharmonic Ricci tensor of a Weyl space can be easily obtained in the form

$$
K_{ij} = \frac{R}{2-n} g_{ij} , \quad n \neq 2 .
$$

Now, we prove the following theorems about the conformally recurrent and conharmonically Ricci-recurrent Weyl spaces.

Theorem 1. If W_n is a totally umbilical hypersurface of a recurrent Weyl space W_{n+1} then W_n is also conformally recurrent.

Proof: If we consider that W_n is a totally umbilical hypersurface of a recurrent Weyl space W_{n+1} then we have, [6]

$$
\hat{\nabla}^r R_{hijk} = \phi_r R_{hijk} + \frac{M}{n^2} [(\hat{\nabla}^r M) G_{hivk} + (\hat{\nabla}^k M) G_{hijr} + (\hat{\nabla}^r M) G_{kfrh} \\
+ (\hat{\nabla}^h M) G_{kjir}] + \frac{2M}{n^2} (\hat{\nabla}^r M) G_{hjik} - \frac{M^2}{n^2} \phi_r G_{hijk}
$$

(27)

where $G_{hijk} = g_{hi} g_{jk} - g_{hk} g_{ij}$.

If we consider the form \(\hat{\nabla}_r C_{hijk} - \phi_r C_{hijk} \), taking the prolonged covariant derivative of the conformal curvature tensor, then we obtain from (7)

\[
\hat{\nabla}_r C_{hijk} = \phi_r C_{hijk} + (\hat{\nabla}_r R_{hijk} - \phi_r R_{hijk}) - \frac{M}{n^2} ((\hat{\nabla}_j M) G_{hijk} + (\hat{\nabla}_k M) G_{hijr} + (\hat{\nabla}_i M) G_{kjrh} + (\hat{\nabla}_h M) G_{kjir} + (2(\hat{\nabla}_r M) - M\phi_r) G_{hijk}).
\] (28)

From (10) and (11), we can obtain

\[\hat{\nabla}_r C_{hijk} = \phi_r C_{hijk} \]

which is the required result. □

Theorem 2. Let a totally umbilical hypersurface \(W_n \) of recurrent Weyl space \(W_{n+1} \) be conharmonically Ricci-recurrent \((n > 2)\). If any net \((v_1, v_2, \ldots, v_n)\) in \(W_n \) is a Chebyshev net of the first kind with respect to \(W_{n+1} \), it is also a Chebyshev net of the first kind with respect to \(W_n \) and the converse is also true.

Proof: Let a totally umbilical hypersurface \(W_n \) of recurrent Weyl space \(W_{n+1} \) be conharmonically Ricci recurrent \((n > 2)\). According to [14], we say that \(W_n \) is also recurrent.

If a totally umbilical hypersurface of a recurrent Weyl space is recurrent then we have, [15]

\[M = 0, \quad \lambda_r \neq 0, \quad n > 2. \] (29)

With the help of (9), (12) and (12), we get

\[\bar{a}_r = a_r^i x_i^a, \quad r \neq p. \] (30)

From (12), (13) and (30) the proof is clear. □

Theorem 3. Let a totally umbilical hypersurface \(W_n \) of recurrent Weyl space \(W_{n+1} \) be conharmonically Ricci-recurrent \((n > 2)\). If any net \((v_1, v_2, \ldots, v_n)\) in \(W_n \) is a Chebyshev net of the second kind with respect to \(W_{n+1} \), it is also a Chebyshev net of the second kind with respect to \(W_n \), and the converse is also true.

Proof: Let a totally umbilical hypersurface \(W_n \) of recurrent Weyl space \(W_{n+1} \) be conharmonically Ricci-recurrent \((n > 2)\). Then, \(M = 0 \). From (9) and (14), we get

\[\bar{b}_a = b_i x_i^a. \] (31)
Using (14), (15) and (31) the proof is completed. □

Theorem 4. Let a totally umbilical hypersurface W_n of a recurrent Weyl space W_{n+1} be conharmonically Ricci-recurrent ($n > 2$). If any net (v_1, v_2, \ldots, v_n) in W_n is a geodesic net with respect to W_{n+1}, it is also a geodesic net with respect to W_n and conversely.

Proof: Let a totally umbilical hypersurface W_n of recurrent Weyl space W_{n+1} be conharmonically Ricci-recurrent ($n > 2$). Then, $M = 0$. In this case, using (9) and (16), we get

$$\bar{c}^a_r = c^i r_i^a. \quad (32)$$

With the help of the equations (16) and (32) and the expression $\bar{c}^a_r = 0$, the result is easily obtained. □

Remark 1. Conharmonically recurrent Weyl space is also conharmonically Ricci-recurrent, [13].

Corollary 1. Let a totally umbilical hypersurface W_n of recurrent Weyl space W_{n+1} be conharmonically recurrent ($n > 2$). If any net (v_1, v_2, \ldots, v_n) in W_n is a Chebyshev net of the first kind with respect to W_{n+1}, it is also a Chebyshev net of the first kind with respect to W_n and the converse is also true.

Corollary 2. Let a totally umbilical hypersurface W_n of recurrent Weyl space W_{n+1} be conharmonically recurrent ($n > 2$). If any net (v_1, v_2, \ldots, v_n) in W_n is a Chebyshev net of the second kind with respect to W_{n+1}, it is also a Chebyshev net of the second kind with respect to W_n and conversely.

Corollary 3. Let a totally umbilical hypersurface W_n of recurrent Weyl space W_{n+1} be conharmonically recurrent ($n > 2$). If any net (v_1, v_2, \ldots, v_n) in W_n is a geodesic net with respect to W_{n+1}, it is also a geodesic net with respect to W_n and conversely.

References

