CONFORMAL SCHWARZIAN DERIVATIVES
AND DIFFERENTIAL EQUATIONS

HAJIME SATO† and TETSUYA OZAWA‡

† Graduate School of Mathematics, Nagoya University
Chikusa-ku, 464-8602 Nagoya, Japan
‡ Department of Mathematics, Meijo University
Tempaku-ku, 468-8502 Nagoya, Japan

Abstract. We investigate the fundamental system of equations in the
theory of conformal geometry, whose coefficients are considered as
the conformal Schwarzian derivative. The integrability condition of
the system is obtained in a simple method, which allow us to find a
natural geometric structure on the solution space. From the solution
spaces, using this geometric structure, we get a transformation whose
Schwarzian derivative is equal to the given coefficients of the equation.

1. Introduction

Some years ago Sasaki and Yoshida [10] gave the fundamental system of linear
equations, which is the key system connecting the theory of conformal connec-
tions and the uniformizing differential equations in the geometry of symmetric
domains of type IV. It is a system of equations with \(n \) variables such that
the maximal dimension of the solution space is \(n + 2 \). The solutions natu-
 rally provide a map into the projective space whose image is contained in the
hyperquadric, and accepts the conformal transformation group as its symmetry.
Sasaki and Yoshida considered the equations as a higher dimensional analogue
of Gauss–Schwarz equation. In projective geometry of higher dimension, they
defined Schwarzian derivatives as a difference of normal Cartan connections
moved by a diffeomorphism. Using the Schwarzian derivatives, they got the
system of linear equations such that the maximal dimension of the solution
space is \(n + 1 \) on \(n \) variables [9, 12]. In conformal geometry of higher dimen-
sion, the problem is much harder. As the Schwarzian derivatives we need more