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Dipping into the mathematical papers of Paul Erd}os is like wandering into
Aladdin's Cave. The beauty, the variety and the sheer wealth of all that one
�nds is quite overwhelming. There are fundamental papers on number theory,
probability theory, real analysis, approximation theory, geometry, set the-
ory and, especially, combinatorics. These great contributions to mathematics
span over six decades; Erd}os and his collaborators have left an indelible mark
on the mathematics of the 20th century. The areas of probabilistic number
theory, partition calculus for in�nite cardinals, extremal combinatorics, and
the theory of random graphs have all practically been created by Erd}os, and
no-one has done more to develop and promote the use of probabilistic meth-
ods throughout mathematics.

Erd}os is the mathematician par excellence: he thrives on mathematics, liv-
ing in a state of continuous excitement; he raises, answers and communicates
questions, picking up the problems of others and making incisive contribu-
tions to them with lightning speed.

Considering what a mild-mannered man he is, it is surprising that every-
thing about Erd}os and his mathematics is extreme. He has written over 1400
papers, more than any mathematician since Euler, and has more than 400
coauthors. If the Guinness Book of Records had categories related to math-
ematical activities, Paul Erd}os would hold many of the records by a margin
one could not even attempt to estimate, like the thousands of problems posed,
the millions of miles travelled, the tens of thousands of mathematical discus-
sions held, the thousands of di�erent beds slept in, the thousands of lectures
delivered at di�erent universities, the hundreds of mathematicians helped,
and so on.

Today we live in the age of big mathematical theories, bringing together
many sophisticated branches of mathematics. These powerful theories can
be very successful in solving down-to-earth problems, as in the case of An-
drew Wiles's wonderful proof of Fermat's Last Theorem. But no matter how
important and valuable these big theories are, they cannot constitute all of
mathematics. There are a remarkable number of basic mathematical ques-
tions that we would love to answer (nay, we should answer!) which seem to
withstand all our assaults. There is a danger that we turn our backs on such
questions, persuading ourselves that they are not interesting when in fact we
mean only that we cannot tackle them with our favourite theories. Of course,
such an attitude would not be in the proper spirit of science; surely, we should
say that we do want to answer these questions, by whatever means. And if
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there are no theories to help us, no bulldozers to move the earth, then we
must rely on our bare hands and ingenuity. It is not that we do not want
to use big theories to crack our problems, but that the big theories around
are unable to say anything deep about our questions. And, with luck, our
hands-on approach will tie up with available theories or, better still, will lead
to new, more sensitive theories.

Ernst Straus, who as a young man was Einstein's assistant, reported that
the reason why Einstein had chosen physics over mathematics was that math-
ematics was so full of beautiful and attractive questions that one might easily
waste one's life working on the \wrong" questions. Einstein was con�dent that
in physics he could identify the \central" questions, and he felt that it was the
duty of a scientist to pursue these questions and not let himself be seduced
by any problem { no matter how di�cult or attractive it might be.

The philosophy of Erd}os has been completely di�erent. Throughout his
long career, he has been happy to pursue the beautiful problems he encoun-
tered, and has raised many others. But this is not an ad hoc process: Erd}os
has an amazing instinct for discerning beautiful problems that, while appear-
ing innocuous, in fact go right to the heart of the matter. These problems
are not chosen indiscriminately; they frequently lead to the discovery of un-
expected and exciting phenomena. Like Ramanujan, Erd}os uses particular
instances of problems to explore an area. Rather than taking whole countries
in one sweeping move, he prefers �rst to occupy some nearby castles, from
which he can weigh up the unknown territory before making his next move.

For over sixty years now, Erd}os has been the world's most celebrated
problem solver and problem poser. unrivalled, king, non-pareille, ... He has
been called an occidental Ramanujan, a modern-day Euler, the Mozart of
mathematics. These glowing epithets accurately capture the di�erent facets
of Paul Erd}os { each is correct in its own way. He has a unique talent to pose
penetrating questions. It is easy to ask questions that lead nowhere, questions
that are either impossibly hard or too easy. It is a completely di�erent matter
to raise, as Erd}os does, innocent-looking problems whose solutions shed light
on the shape of the mathematical landscape.

An important feature of the problems posed by Erd}os is that they carry
di�ering monetary rewards. Needless to say, this is done in jest, but the prizes
do indicate Erd}os's assessment of the di�culty of the problems. How di�erent
this is from the annoying habit of some mathematicians, who casually men-
tion a problem as if they hadn't even thought about it, when in fact they are
telling you the central problem they have been working on for a long time!

Two features of his mathematical �uvre stand out: his mastery of ele-
mentary methods and his advocacy of random methods. Starting with his
very �rst papers, Erd}os championed elementary methods in diverse branches
of mathematics. He showed, again and again, that elementary methods often
succeed against overwhelming odds. In many brilliant proofs he showed that,
rather than bringing somewhat foreign machinery to bear on some problems,
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and thereby trying to �t a square peg into a round hole, one can progress
considerably further by facing the complications, going deep into the prob-
lem, and tailoring our approach to the intrinsic di�culties of the problem.
This philosophy can pay unexpected dividends, as shown by Charles Read's
solution of the Invariant Subspace Problem, Mikl�os Laczkovich's solution of
Tarski's problem of \Squaring the Circle", and Tim Gowers' recent solutions
of Banach's last unsolved problems, including the Hyperplane Problem.

As to probabilistic methods, by now it is widely acknowledged that these
can be remarkably e�ective in tackling main-line questions in diverse areas
of mathematics that have nothing to do with probability. It is worth remem-
bering, though, that when Erd}os started it all, the idea was very startling
indeed. That today we take it in our stride is a sign of the tremendous success
of the random method, which is very much his method, still frequently called
the Erd}os method.

Paul Erd}os was born on 26th March 1913, in Budapest. His parents were
teachers of mathematics and physics; his father translated a book on aircraft
design from English into Hungarian. The young Paul did not go to elementary
school, but was brought up by his devoted mother, Anna, and, for three years,
between the ages of 3 and 6, he had a German Fraulein. His exceptional talent
for mathematics was evident by the time he was three: his agility at mental
arithmetic impressed all comers, and he was not yet four when he discovered
negative numbers for himself. With the outbreak of the First World War,
his father was drafted into the Austro-Hungarian army, and served on the
Eastern Front. He was taken prisoner by the Russians, and sent to Siberia to
a prisoner of war camp, from which he returned only after about six years.

After the unconditional surrender of Hungary at the end of the War, the
elected government resigned, as it could not accept the terms of the Allies.
These terms left Hungary only the rump of her territory, and in March 1919
the communists took over the country, with the explicit aim of repelling the
Allies. The communists formed a Dictatorship of the Prolatariat , usually
referred to as the Commune, after its French equivalent in 1871, and set
about defending the territory and forcibly reforming the social order.

The Commune could not resist the invasion by the Allies and the Hun-
garian \white" o�cers under Admiral Horthy, and it fell after a struggle of
three months. Unfortunately for the Erd}os family, Anna Erd}os had a minor
post under the Commune, and when Horthy came to power, she lost her job,
never to teach again. Later she worked as a technical editor.

He studied elementary school privately with his mother. After that, in
1922, the young Erd}os went to Tavaszmez}o gymnasium, the �rst year as a
private pupil, the second and third years as a normal student, and the fourth
year again as a private pupil. After the fourth year he attended St. Stephen's
School (Szent Istv�an Gimn�azium) where his father was a high school teacher.
At this time Erd}os also received signi�cant instruction from his parents as
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well. As it happened, my father entered the school just as Erd}os left it, so
they share many classmates, although they met only many years later.

By the early 1920s the Mathematical Journal for Secondary Schools
(K�oz�episkolai Matematikai Lapok) was a successful journal, catering for
pupils with talent for mathematics. The journal had been founded in 1895
by a visionary young man, D�aniel Arany, who hoped to raise the level of
mathematics in the whole of Hungary by enticing students to mathematics
through beautiful problems. The backbone of the journal was the year-long
competition. Every month a number of problems were set for each age group;
the readers were invited to submit their solutions, which were marked, and
the best published under the names of the authors.

The young Erd}os became an ardent reader of this journal, and his love
of mathematics was greatly fanned by the intriguing problems in it. In some
sense, Erd}os's earliest publications date to this time, with the appearance of
his solutions in the journal. On one occasion Paul Erd}os and Paul Tur�an were
the only ones who managed to solve a particular problem, and their solution
was published under their joint names. This was Erd}os's �rst \joint paper"
with Tur�an, whom he had not even met at the time, and who later became
one of his closest friends and most important collaborators.

Mathematicians, and especially young mathematicians, learn much from
each other. Erd}os was very lucky in this respect, for when at the age of 17
he entered the P�azm�any P�eter Tudom�anyegyetem (the science university of
Budapest) he found there an excellent group of about a dozen youngsters
devoted to mathematics. Not surprisingly, Erd}os became the focal point of
this group, but the long mathematical discussions stimulated him greatly.

This little group included Paul Tur�an, the outstanding number theorist;
Tibor Gallai, the excellent combinatorialist; Dezs}o L�az�ar, who was later trag-
ically killed by the Nazis; George Szekeres and Esther Klein, who later mar-
ried and subsequently emigrated to Australia; L�aszl�o Alp�ar, who became an
important member of the Hungarian Mathematical Institute; M�arta Sv�ed,
another member of the group who went to live in Australia; and several oth-
ers. Not only did they discuss mathematics at the university, but also in the
afternoons and evenings, when they used to meet at various public places,
especially by the Statue of Anonymous, commemorating the �rst chronicler
of Hungarian history.

Two of Erd}os's professors stand out: Lip�ot Fej�er, the great analyst, and
D�enes K�onig, who introduced Erd}os to graph theory. The lectures of K�onig led
to the �rst results of Erd}os in graph theory: in answer to a question posed in
the lectures, in 1931 he extended Menger's theorem to in�nite graphs. Erd}os
never published his proof, but it was reproduced in K�onig's classic, published
in 1936.

As an undergraduate, Erd}os worked mostly on number theory, obtain-
ing several substantial results. He was not even twenty, when in Berlin the
great Issai Schur lectured on Erd}os's new proof of Bertrand's postulate. He
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wrote his doctoral dissertation as a second year undergraduate, and it was
not long before he got into correspondence with several mathematicians in
England, including Louis Mordell, the great number theorist in Manchester,
and Richard Rado and Harold Davenport in Cambridge. All three became
Erd}os's close friends.

When in 1934 Erd}os �nished university, he accepted Mordell's invitation
to Manchester. He left Hungary for England in the autumn of 1934, not
knowing that he would never again live in Hungary permanently. On 1st
October 1934 he was met at the railway station in Cambridge by Davenport
and Rado, who took him to Trinity College, and they immediately embarked
on the �rst of their many long mathematical discussions. Next day Erd}os met
Hardy and Littlewood, the giants of English mathematics, before hurrying
on to Mordell.

Mordell put together an amazing group of mathematicians in Manchester,
and Erd}os was delighted to join them. First he took up the Bishop Harvey
Goodwin Fellowship, and was later awarded a Royal Society Fellowship. He
was free to do research under Mordell's guidance, and he was soon producing
papers with astonishing rapidity. In 1937 Davenport left Cambridge to join
Mordell and Erd}os, and their life-long friendship was soon cemented. I have a
special reason to be grateful for the Erd}os-Davenport friendship: many years
later, I was directed to my present home, Trinity College, Cambridge, only
because Davenport was a Fellow here, and he was a good friend of Erd}os.

In 1938 Erd}os was o�ered a fellowship at the Institute for Advanced Study
in Princeton, so he soon thereafter sailed for the U.S., where he was to spend
the next decade. The war years were rather hard on Erd}os, as it was not
easy to hear from his parents in Budapest, and when he received news, it was
never good. His father died in August 1942, his mother later had to move
to the Ghetto in Budapest, and his grandmother died in 1944. Many of his
relatives were murdered by the Nazis.

In spite of being cut o� from his home, Erd}os continued to pour forth
wonderful mathematics at a prodigious rate. Having arrived in America, he
spent a year and a half at Princeton, before starting on his travels. He visited
Philadelphia, Purdue, Notre Dame, Stanford, Syracuse, Johns Hopkins, to
mention but a few places, and the pattern was set: like a Wandering Scholar
of the Middle Ages, Erd}os never stopped again. In addition to the many
important papers he wrote by himself, he collaborated more and more with
mathematicians from diverse areas, writing outstanding joint papers with
Mark Kac, Wintner, Kai Lai Chung, Ivan Niven, Arye Dvoretzky, Shizuo
Kakutani, Arthur A. Stone, Leon Alaoglu, Irving Kaplansky, Alfred Tarski,
Gabor Szeg}o, William Feller, Fritz Herzog, George Piranian, and others.
Through correspondence, he continued his collaboration with Paul Tur�an,
Harold Davenport, Chao Ko and Tibor Gallai (Gr�unwald).

In 1954, he left the U.S. to attend the International Congress of Math-
ematicians in Amsterdam. He had also asked for a reentry permit at that
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time but his request was denied. So he left without a reentry permit since
in his own words, \Neither sam nor joe can restrict my right to travel." Left
without a country, Israel came to his aid, o�ering him employment at the
Hebrew University in Jerusalem, and a passport. He arrived in Israel on 30th
November 1954, and from then on he has been to Israel practically every year.
Before leaving Israel for Europe in July 1955, he applied for a return visa to
Israel. When the o�cials asked him whether he wanted to become an Israeli
citizen, he politely refused, saying that he did not believe in citizenship.

After the upheaval following his trip to Amsterdam, he �rst returned to
the U.S. in 1959; the relationship between Erd}os and the U.S. Immigration
Department was �nally normalized in 1963, and since then he has had no
problems with them.

In the Treaty of Yalta, Hungary was placed within the Soviet sphere of
inuence; the communists, aided by the Russians, took over the government,
and turned Hungary into a People's Republic. For ordinary Hungarians, leav-
ing Hungary even for short trips to the West became very di�cult. Neverthe-
less, in 1955 Erd}os managed to return to Hungary for a short time, when his
good friend, George Alexits, pulled strings and convinced the o�cials that,
if Erd}os were to enter the country, he should be allowed to leave.

Later Erd}os could return to Hungary at frequent intervals, in order to
spend more and more time with his mother, as well as to collaborate with a
large number of Hungarian mathematicians, especially Tur�an and R�enyi. In
those dark days, Erd}os was the main link between many Hungarian mathe-
maticians and the West.

As a young pupil, I �rst heard him lecture during one of his visits: not
only did he talk about fascinating problems but he also cut a amboyant
�gure, with his suntan, Western suit and casual mention of countries I was
sure I could never visit. I got to know him during his next visit: in 1958,
having won the National Competition, I was summoned to the elegant hotel
he stayed in with his mother. They could not have been kinder: Erd}os told
to me a host of intriguing questions, and did not talk down to me, while his
mother (whom, as most of their friends, I learned to call Annus N�eni or Aunt
Anna) treated me to cakes, ice cream and drinks. Three years later they got
to know my parents, and from then on they were frequent visitors to our
house, especially for Sunday lunches. My father, who was a physician, looked
after both Erd}os and Annus N�eni.

Seeing them together, there was no doubt that they were very happy
in each other's company: these were blissful days for both of them. Erd}os
thoroughly enjoyed being with his mother, and she was delighted to have
her son back for a while. They looked after each other lovingly; each worried
whether the other ate well and slept enough or, perhaps, was a little tired.
Annus N�eni was �ercely proud of her wonderful son, loved to see the many
signs that her son was a great mathematician, and revelled in her role as
the Queen Mother of Mathematics, surrounded by all the admirers and well-
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wishers. She was never far from Erd}os's mathematics either: she kept Erd}os's
hundreds of reprints in perfect order, sending people copies on demand.

Annus N�eni was not young, having been born in 1880, but her health was
good and she was very sharp. To compensate for the many years when they
had been kept apart, Annus N�eni started to travel with her son in her 80s;
their �rst trip together being to Israel in November 1964. From then on they
travelled much together: to England in 1965, many times to other European
countries and the U.S., and towards the end of 1968 to Australia and Hawaii.
When, tinged with envy, we told her that it must be wonderful to see the
world, she replied \You know that I don't travel because I like it but to be
with my son." It was a tragedy for Erd}os when, in 1971, Annus N�eni died
during a trip to Calgary. Her death devastated him and for years afterwards
he was not quite himself. He still hasn't recovered from the blow, and it is
most unlikely that he ever will.

Erd}os's brushes with o�cialdom were not quite over: the communists
also managed to upset him. In 1973 there was an international meeting in
Hungary, to celebrate his 60th birthday. Erd}os's friends from Israel were
denied a visa to enter Hungary; this outraged him so much that for three
years he did not return to Hungary.

With the collapse of communism and with the end of the Cold War, Erd}os
has entered a golden age of travel: not only can he go freely wherever he wants
to, but he is even welcomed by o�cials everywhere.

Having started as a mathematical prodigy, by now Erd}os is the doyen of
mathematicians, with more friends in mathematics than the number of peo-
ple most of us meet in a lifetime. As he likes to put it in his inimitable way,
he has progressed from prodigy to dotigy. As a Member of the Hungarian
Academy of Sciences, Erd}os has a permanent position in Budapest. During
summer months, he frequently stays in the Guest House of the Academy,
two doors away from my mother, visiting Vera S�os, Andr�as Hajnal, Mikl�os
Simonovits, Andr�as S�ark�ozy, Mikl�os Laczkovich, and inspiring many oth-
ers. Another permanent position awaits him in Memphis, where he stays
and works with Ralph Faudree, and his other friends, Dick Schelp and Cecil
Rousseau. In Israel he visits all the universities, including the Technion in
Haifa, Tel Aviv, Jerusalem and the Weizman Institute. But for years now,
Erd}os has had many other permanent ports of call, including Kalamazoo,
where Yousef Alavi looks after him; New Jersey and the New York area,
where he stays with Ron Graham and Fan Chung and talks to many others
as well, including J�anos Pach, Joel Spencer, Mel Nathanson, Peter Win-
kler, Endre Szemer�edi, Joseph Beck and Herb Wilf; Calgary, mostly because
of Eric Milner, Richard Guy and Norbert Sauer; Atlanta, with Dick Duke,
Vojt�ech R�odl, Ron Gould and Dwight Du�us. And the list could go on and
on, with Athens, Baton Rouge, Berlin, Bielefeld, Boca Raton, Bonn, Boston,
Cambridge, Chicago, Los Angeles, Lyon, Minneapolis, Paris, Pozna�n, Prague,
Urbana, Warsaw, Waterloo, and many others.
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Honours have been heaped upon Erd}os, although he could not care less.
Every �fth year there is an International Conference in Cambridge on his
birthday, and in 1991 Cambridge also awarded him a prestigious Honorary
Doctorate, as did the Charles University of Prague a year later, and many
other universities since. On the occasion of his 80th birthday, he was honoured
at a spate of conferences, not only in Cambridge, but also in Kalamazoo, Boca
Raton, Prague and Keszth�ely.

Nowadays Erd}os lectures in more places than ever, interspersing his math-
ematical problems with stories about mathematicians and his remarks about
life. He dislikes cold but, above all, hates old age and stupidity, and so he
appreciates the languages in which these evils sound similar. Thus, old and
cold and alt and kalt go hand in hand in English and German, and in no other
language he knows. But Hindi is better still because the two greatest evils
sound almost the same: buddha is old and budu is stupid.

Erd}os is fond of paraphrasing poems, especially Hungarian poems, to
illustrate various points. The great Hungarian poet at the beginning of this
century, Endre Ady, wrote: Legyen �atkozott aki a helyembe �all! (Let him be
cursed who takes my place!) As a mathematician builds the work of others, so
that his immortality depends on those who continue his work, Erd}os professes
the opposite: Let him be blessed who takes my place!

But Erd}os does not wait for posterity to �nd people to continue his work:
his extraordinary number of collaborators ensures that many people carry on
his work all around the world. The collaborators who particularly stand out
are Paul Tur�an, Harold Davenport, Richard Rado, Mark Kac, Alfr�ed R�enyi,
Andr�as Hajnal, Andr�as Sark�ozy, Vera S�os and Ron Graham: they have all
done much major work with Erd}os. In a moment we shall see a brief account
of some of this work. Needless to say, our review of Erd}os's mathematics
will be woefully brief and inadequate, and will also reect the taste of the
reviewer.

Erd}os wrote his �rst paper as a �rst-year undergraduate, on Bertrand's
postulate that, for every n � 1, there is a prime p satisfying n < p � 2n.
Bertrand's postulate was �rst proved by Chebyshev, but the original proof
was rather involved, and in 1919 Ramanujan gave a considerably simpler
proof of it. In his fundamental book, Vorlesungen �uber Zahlentheorie, pub-
lished in Leipzig in 1927, Landau gave a rather simple proof of the assertion
that for some q > 1 and every n � 1, there is a prime between n and qn.
However, Landau's q could not be taken to be 2. In his �rst paper, Erd}os
sharpened Landau's argument, and by studying the prime factors of the bi-
nomial coe�cient

�
2a
a

�
, gave a simple and elementary proof of Bertrand's

postulate.
Erd}os was quick to develop further the ideas in his �rst paper. In 1932,

Breusch made use of L-functions to generalize Bertrand's postulate to the
arithmetic progressions 3n + 1; 3n + 2; 4n + 1 and 4n + 3: for every m � 7
there are primes of the form 3n+1; 3n+2; 4n+1and 4n+3 between m and 2m.
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By constructing expressions containing, as factors, all terms of the arithmetic
progression at hand, and rather few other factors, Erd}os managed to give an
elementary proof of Breusch's theorem, together with various extensions of it
to other arithmetic progressions. These results constituted the Ph.D. thesis
Erd}os wrote as a second-year undergraduate, and published in S�arospatak
in 1934.

Schur, who had been Breusch's supervisor in Berlin, was quick to recog-
nize the genius of the author of the beautiful elementary proof of Breusch's
theorem. When, a little later, Erd}os proved a conjecture of Schur on abundant
numbers, and solved another problem of Schur, Erd}os became \der Zauberer
von Budapest" (\the magician of Budapest") { no small praise from the great
German for a young man of twenty.

Abundant numbers �gured prominently among the early problems tack-
led by Erd}os. In his lectures on number theory, Schur conjectured that the
abundant numbers have positive density: limx!1A(x)=x exists, where A(x)
is the number of abundant numbers not exceeding x. (A natural number
n is abundant if �(n), the sum of its positive divisors, is at least 2n.) The
beautiful elementary proof Erd}os gave of this conjecture led him straight to
other problems concerning the distribution of the values of real-valued ad-
ditive arithmetical functions f(n), that is functions f : N ! R satisfying
f(ab) = f(a) + f(b) whenever (a; b) = 1.

These problems were �rst investigated by Hardy and Ramanujan in 1917,
but were more or less forgotten for over a decade. As eventually proved by
Erd}os and Wintner in 1939, a real-valued additive arithmetical function f(n)
behaves rather well if the following three series are convergent:X

jf(p)j>1

1=p;
X

jf(p)j�1
f(p)=p and

X
jf(p)j�1

f(p)2=p;

with the summations over primes p. To be precise, the three series above are
convergent if and only if limx!1Ac(x)=x exists for every real c, where Ac(x)
stands for the number of natural numbers n � x with f(n) < c.

In 1934, Tur�an gave a marvelous proof of an extension of the Hardy-
Ramanujan theorem on the \typical number of divisors" of a natural number.
Writing �(n) for the number of distinct prime factors of n (so that �(12) = 2),
Tur�an proved that

NX
n=1

f�(n)� log logng2 = N log logN + o(N log logN ):

It is a little disappointing that Hardy, one of the greatest mathematicians
alive, failed to recognize the immense signi�cance of this new proof. Erd}os,
on the other hand, not only saw the signi�cance of the paper, but was quick
to make use of the probabilistic approach and so became instrumental in
the birth of a very fruitful new branch of mathematics, probabilistic num-
ber theory . In a ground-breaking joint paper he wrote with Kac in 1939,
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Erd}os proved that if a bounded real-valued arithmetical function f(n) satis-
�es

P
p f(p)2=p = 1 then, for every x 2 R,

lim
m!1Ax(m)=m = �(x);

where Ax(m) is the number of positive integers n � m satisfying

f(n) <
X
p�m

f(p)=p + x

0
@X

p�m
f(p)2=p

1
A

1=2

;

and, as usual

�(x) =
1p
2�

Z x

�1
e�t

2=2dt

is the standard normal distribution. In other words, the arithmetical function
f(n) satis�es the Gaussian law of error! It took the mathematical community
quite a while to appreciate the signi�cance and potential of results of this
type.

Note that for �(n), the number of prime factors of n, the Erd}os-Kac
theorem says that if x 2 R is �xed then

lim
m!1

1

m
jfn � m and �(n) � log logm + x(log logm)1=2gj = �(x) :

Starting with his very �rst papers, Erd}os championed \elementary" meth-
ods in number theory. That the number theorists in the 1930s appreciated
elementary methods was due, to some extent, to Shnirelman's great success
in studying integer sequences, with a view of attacking, perhaps, the Gold-
bach conjecture. To study integer sequences, Shnirelman introduced a density,
now bearing his name: an integer sequence 0 � a1; < a2 < : : : is said to have
Shnirelman density � if

inf
x�1

1

x

X
an�x

1 = �:

Thus if a1 > 1 then the Shnirelman density of the sequence (an)1n=1 is 0.
Khintchine discovered the rather surprising fact that if (an)1n=1 is an

integer sequence of Shnirelman density � with 0 < � < 1, and (bn)1n=1 is
the sequence of squares 02; 12; 22; : : :, then the \sum-sequence" (an + bm) has
Shnirelman density strictly greater than �. The original proof of this result,
although elementary, was rather involved.

When Landau lectured on Khintchine's theorem in 1935 in Cambridge, he
presented a somewhat simpli�ed proof he had found with Buchstab. Never-
theless, talking to Landau after his lecture, Erd}os expressed his view that the
proof should be considerably simpler and, to Landau's astonishment, as soon
as the next day he came up with a \proper" proof that was both elementary
and short. In addition, the new proof also made it clear what the result had
to do with squares: all one needs is that every positive integer is the sum of
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at most four squares. If (bn) is such that every positive integer is the sum of
at most k terms bn, then the sum-sequence (an+bm) has Shnirelman density
at least � + �(1 � �)=2k. It says much about Landau, that he immediately
included this beautiful theorem of Erd}os into the Cambridge \Tract" he was
writing at the time (Neue Ergebnisse der additiven Zahlentheorie, published
in 1937).

The di�erence between consecutive primes has attracted much attention.
Writing pn for the nth prime, the twin prime conjecture states that pn+1�pn is
in�nitely often equal to 2, that is lim infn!1(pn+1�pn) = 2. At the moment
we seem to be very far from a proof of this conjecture; in fact, there seems to
be no hope to prove that lim infn!1(pn+1 � pn) < 1. The Prime Number
Theorem, asserting that �(x) � x= logx, where �(x) is the number of primes
p � x, implies that c = lim infn!1(pn+1 � pn)= logpn � 1, but Erd}os was
the �rst to prove, in 1940, that c < 1. Later Rankin showed that c � 59=60,
and then Selberg that c � 15=16. Subsequent improvements were obtained
by Bombieri and Davenport and by Huxley; the present record, c � 0:248, is
held by Maier.

Independently, Erd}os and Ricci showed that the set of limit points of
the sequence (pn+1 � pn)= logpn has positive Lebesgue density and yet, no
number is known to be a limit point .

Concerning large gaps between consecutive primes, Backlund proved
in 1929 that lim supn!1(pn+1 � pn)= logpn � 2. In quick succession, this
was improved by Brauer and Zeitz (1930), by Westzynthius (1931), and then
by Ricci (1934), to

lim sup
n!1

pn+1 � pn
logpn log log logpn

> 0:

By making use of the method of Brauer and Zeitz, Erd}os proved in 1934 that

lim sup
n!1

(pn+1 � pn)(log log log pn)2

log pn log logpn
> 0:

In 1938 this result was improved by Rankin, who smuggled a factor
log log log log pn into the denominator: there is a c > 0 such that

pn+1 � pn > c
log pn log logpn log log log log pn

(log log log pn)2
(1)

for in�nitely many values of n. It seems to be extremely di�cult to improve
this result, to the extent that Erd}os is o�ering (according to him, perhaps a
little rashly) $10000 for a proof that (1) holds for every c. The original value
of c given by Rankin was improved by Maier and Pomerance in 1990.

Although in the 1930s elementary methods were spectacularly successful
in additive number theory and in the study of additive arithmetical functions,
they did not seem to be suitable for the study of the distribution of primes. It
was not only a desire for diverse proofs that urged mathematicians to search
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for elementary proofs of results proved by deep analytical methods: many
mathematicians, including Hardy, felt that if the Prime Number Theorem
(PNT) could be proved by elementary methods then the Riemann Hypothesis
itself might yield to a similar attack. This belief was reinforced by the result
of Norbert Wiener in 1930 that the prime number theorem is equivalent to
the fact that the zeta function �(s) = �(�+ it) has no zero on the line � = 1.

Next to the PNT, Dirichlet's classical theorem on primes in an arithmeti-
cal progression, proved in 1837, was a test case for the power of elementary
methods. In 1948 Atle Selberg found an ingenious elementary proof of Dirich-
let's theorem; indeed, Selberg proved that if k and l are relatively prime
numbers then

lim inf
x!1

1

logx

X
p�x;p�l(mod k)

p�1 log p > 0 :

Shortly after this, Selberg proved the following fundamental formula:X
p�x

(log p)2 +
X
pq�x

log p log q = 2x logx+ O(x); (2)

where p and q run over primes. This formula is an easy consequence of the
PNT, but what caused the excitement was that Selberg gave a completely
elementary proof. Thus the fundamental formula could be a starting point
for elementary proofs of various theorems in number theory which previously
seemed inaccessible by elementary methods.

Using Selberg's fundamental formula, Erd}os quickly proved that
pn+1=pn ! 1 as n ! 1, where pn is, as before, the nth prime. Even more,
Erd}os proved (in an entirely elementary way) that if c > 1 then

lim inf
x!1

logx

x
(�(cx) � �(x)) > 0: (3)

Erd}os communicated this proof of (3) to Selberg, who, two days later, us-
ing (2), (3) and the ideas in the proof of (3), deduced the PNT

limx!1
�(x) log x

x
= 1. Thus an elementary proof of the PNT was found!

A little later Selberg found it possible to argue directly from (2), without
making any use of (3); this is the way he wrote up his paper in the autumn
of 1948. In a separate paper, Erd}os stated (2), referred to Selberg's �nal proof
of the PNT (not published at the time), gave his own proof of (3), Selberg's
deduction of the PNT from (2) and (3), and a joint simpli�ed deduction
of the PNT from (2). In the Mathematical Reviews the great Cambridge
mathematician A.E. Ingham found it convenient to review these two papers
together. As he wrote, \All previous proofs have been by \transcendental"
arguments involving some appeal to the theory of functions of a complex
variable. Successive proofs have moderated the demands on this theory, or
invoked alternative analytical theories (e.g., Fourier transforms), but there
remained a nucleus of complex variable theory, namely the proposition that
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Riemann zeta-function �(s) = �(� + it) has no zeros on the line � = 1; and
this could hardly be avoided, except by a radically new approach, since the
PNT is in a clearly de�nable sense \equivalent" to this property of �(s). It has
long been recognized that an \elementary" proof of the PNT, not depending
on analytical ideas remote from the problem itself, would (if indeed possible)
constitute a discovery of the �rst importance for the logical structure of the
theory of the distribution of primes. An elementary (though not easy) proof
is given, in various forms, in these two papers.

\In principle, [the papers] open up the possibility of a new approach, in
which the old logical arrangement is reversed and analytical properties of �(s)
are deduced from arithmetical properties of the sequence of primes. How far
the practical e�ects of this revolution of ideas penetrate into the structure of
the subject, and how much of the theory will ultimately have to be rewritten,
it is too early to say."

For the startling elementary proof of the Prime Number Theorem Selberg
was awarded a Fields Medal , and Erd}os a Cole Prize, given every fourth year
to the author of the best paper in algebra and number theory published in
an American journal.

Let us say a few words about the contributions of Erd}os to asymptotic
formulae. One of the glorious achievements of the Hardy-Ramanujan partner-
ship was the striking formula for p(n), the number of di�erent partitions of n
(ignoring the order of the summands). By using powerful analytic methods
that eventually led to the celebrated circle method of Hardy and Littlewood,
in 1918 Hardy and Ramanujan gave an extremely good approximation for
p(n); later Rademacher improved the approximation a little and turned it
into an analytic expression for p(n). A weak form of the Hardy-Ramanujan
result states that

p(n) � 1

4
p

3n
e�
p

2n=3;

and Hardy and Ramanujan also gave an elementary proof of

logp(n) � �
p

2n=3:

Two decades later, Erd}os set about proving that elementary methods can
go considerably further, and in 1942 he proved that

p(n) � a

n
e�
p

2n=3

for some positive constant a.
Taking his cue from the Hardy-Ramanujan result mentioned a little ear-

lier, that most integers n have about log logn prime factors, Erd}os also
proved, with Lehner, that \almost all" partitions of a positive integer n con-
tain about

A(n) =
1

�

p
3n=2 logn
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summands. Furthermore, there is also a beautiful distribution about A(n): for
x 2 R, the probability that a random partition of n has at most A(n) +x

p
n

summands tends to

e�
p
6

� e��
p
x=6

:

Some years later, in 1946, Erd}os returned to another variant of this problem.
Given n 2 N, what is the most likely number of summands in a random
partition of n? Writing k0(n) for this number, it is not clear that k0(n) is well-
de�ned although, as was shown later by Szekeres, this is the case. However,
what does seem to be clear is that k0(n) is about A(n). Erd}os proved that,
in fact,

k0(n) = A(n) +

p
6

�

 
log

p
6

�

!
p
n+ o(

p
n):

Another circle of problems that has occupied Erd}os for over sixty years
originated with a question raised by Sidon when Erd}os and Tur�an went to
see him. Given a sequence S of natural numbers and k 2 N, write rk(n) for
the number of representations of n in the form

n = a1 + a2 + : : :+ ak;

with ai 2 S and 1 � a1 < a2 < : : : < ak. Call S an asymptotic basis of
order k if rk(n) � 1 whenever n is su�ciently large. In 1932 Sidon asked
Erd}os the following question. Is there an asymptotic basis of order 2 such
that r2(n) = o(n�) for every � > 0? The young Erd}os con�dently reassured
Sidon that he would come up with such a sequence. Erd}os was right, but it
took him over twenty years: he proved in 1954 in Acta (Szeged) that for some
constant c there is a sequence S such that

1 � r2(n) � c logn

if n is large enough.
What can one say about rk(n) rather than r2(n)? In 1990, Erd}os and

Tetali proved that for every k � 2 there are positive constants c1; c2, and
a sequence S such that c1 logn � rk(n) � c2 logn if n is large enough.
In fact, Erd}os and Tetali gave two proofs of this theorem; the easier of
the two gets the result as a fairly simple consequence of Janson's pow-
erful and ingenious correlation inequality. The related conjecture of Erd}os
and Tur�an, made in 1941, that if r2(n) � 1 for all su�ciently large n then
lim supn!1 r2(n) = 1, is still far from being solved, although it seems pos-
sible that much more is true, namely if r2(n) � 1 whenever n is large enough
then lim supn!1 r2(n)= logn > 0.

In 1956, Erd}os and Fuchs proved a remarkable theorem somewhat related
to Sidon's problem but originating in a result of Hardy and Landau. Let us
write r(n) for the number of lattice points in Z2 in the circle of radius

p
n,

so that r(n) is the number of integer solutions of the inequality x2 + y2 � n.
Gauss was the �rst to prove that r(n) stays rather close to its expectation,
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namely r(n) � �n = O(n1=2). In 1906, Sierpi�nski returned to the study of
r(n), and showed that, in fact, r(n)��(n) = O(n1=3). The question whether
this bound is essentially best possible or could be improved, intrigued many
of the best number theorists in the �rst few decades of this century, including
Hardy, Littlewood, Landau and Wal�sz. In 1925 Hardy and Landau gave an
exact expression for r(n) � �(n) is terms of Bessel functions. They showed
also that r(n) does not stay too close to its expectation �n, namely that

lim sup
n!1

jr(n)� �nj
(n logn)1=4

> 0:

Erd}os and Fuchs, proved that this result has nothing to do with the
sequence of squares 02; 12; : : : but it holds in great generality. Indeed, let
0 � a1 � a2 � : : : be any sequence of integers, and for n 2 N let r�(n) be the
number of solutions of the inequality ai + aj � n. Then, as proved by Erd}os
and Fuchs for every positive real � we have

lim sup
n!1

jr�(n) � �nj
(n logn)1=4

> 0:

Erd}os contributed much to the theory of diophantine approximation. Re-
call that a sequence (�n) � [0; 1] is said to be uniformly distributed if for all
0 � � < � � 1 we have

lim
n!1

1

n

X
k�n;���k��

1 = � � �: (4)

Weyl proved in 1916 that (�n) � [0; 1] is uniformly distributed if, and only
if,

lim
n!1

1

n

nX
j=1

e2�ik�j = 0

for every non-zero integer k. Needless to say, this necessary and su�cient
condition gives no information about the speed in (4). To get some infor-
mation about the speed of convergence, one needs a \�nite" form of Weyl's
criterion. A �nite form was given by van der Corput and Koksma in 1936,
but a stronger conjecture of Koksma in his 1936 book on Diophantine ap-
proximation remained unproved until 1948, when Erd}os and Tur�an proved
the following remarkable theorem.

Let �1; : : : ; �n 2 [0; 1], and set sk =
Pn

j=1 e
2�ik�j . Suppose that jskj �

 (k) for k = 1; : : : ;m. Then for all 0 � � < � � 1 we have������(� � �)n�
X

���j��
1

������ � C

(
n

m
+

nX
k=1

 (k)=k

)

for some absolute constant C.
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This result has had numerous applications, starting with the following
beautiful theorem from the original Erd}os-Tur�an paper. For n � 2, let

f(z) = zn + an�1zn�1 + : : :+ a1z + a0 =
nY

j=1

(z � zj)

be such that jzjj � 1 for every j. For 0 < � < 1 set M� = maxjzj=� jf(z)j and
de�ne g(n; �), 2 � g(n; �) � n, by

M�=
p
ja0j = en=g(n;�):

Then for all 0 � � < � � 2� we have������
� � �

2�
n�

X
��arg zj��

1

������ < C log(4=�)
n

log g(n; �)
;

where C is an absolute constant.
Note that if M�=

pja0j is \not too large", say at most e
p
n, then the error

term above is O(n= logn).
Other applications were found by Egerv�ary and Tur�an, K�ornyei, and oth-

ers. When, in 1988, Laczkovich cracked Tarski's �fty-year old problem on
squaring the circle, he made substantial use of this theorem of Erd}os and
Tur�an from 1948.

There are very few people who have contributed more to the fundamen-
tal theorems in probability theory than Paul Erd}os; here we shall state only
a small fraction of the major results of Erd}os in probability theory. The
law of the iterated logarithm was proved around 1930 by Khintchine and
Kolmogorov, with further contributions from L�evy. To state this fundamen-
tal result, let X1; X2; : : : be independent Bernoulli random variables, with
P(Xn = �1) = P(Xn = 1) = 1

2 for every n, and set Sn =
Pn

i=1Xi. The
law of the iterated logarithm states that lim supn!1 Sn=

p
2n log logn = 1

almost surely. Putting it another way, for t 2 [0; 1], let t = 0:�1(t)�2(t) : : :
be its dyadic expansion, or equivalently, set �n(t) = 0 or 1 according as the
integer part of 2nt is even or odd. (Thus the variables Xn(t) = 2�n(t)� 1 are
as above.) Set fn(t) =

Pn
k=1 �k(t) � n

2 . Then the law of iterated logarithm
states that

lim sup
n!1

fn(t)�
n
2

log logn
�1=2 = 1

for almost every t 2 [0; 1].
Let �(n) be a monotone increasing non-negative function de�ned for all

su�ciently large integers. Following L�evy, this function �(n) is said to belong
to the upper class if, for almost all t,

fn(t) � �(n)
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provided n is su�ciently large, and it belongs to the lower class if, for almost
all t, fn(t) > �(n) for in�nitely many values of n. Then the law of the iterated
logarithm states that �(n) = (1+�)(n2 log logn)1=2 belongs to the upper class
if � > 0, and to the lower class if � < 0.

In 1942, Erd}os considerably sharpened this assertion when he proved that
a function�

n

2 log logn

�1=2�
log logn+

3

4
log3 n+

1

2
log4 n+ : : :

+
1

2
logk�1n +

�
1

2
+ �

�
logk n

�

belongs to the upper class if � > 0, and to the lower class if � < 0. (We
write logk for the k times iterated logarithm.) Not surprisingly, Erd}os gave
an elementary proof, and made no use of the results of Khintchine and Kol-
mogorov. Furthermore, as he indicated, the result could easily be extended to
the case of Brownian motion. Some years later, Erd}os returned to this topic
in a joint paper with K.L. Chung.

In addition to the papers that were instrumental in creating probabilistic
number theory , Erd}os wrote some important papers with Mark Kac proving
several basic results of probability theory . Let X1; X2; : : : ; Xn be indepen-
dent random variables, each with mean 0 and expectation 1. As before, set
Sk =

Pk
l=1Xl, k = 1; : : : ; n. In 1946, Erd}os and Kac determined the limit-

ing distributions of max1�k�n Sk and max1�k�n jSkj, which turned out to be
independent of the distribution of the Xi.

Although this result was important, the method of proof was even more
so: Erd}os and Kac proved that if the theorem can be established for one
particular sequence of independent random variables satisfying the conditions
of the theorem, then the conclusion of the theorem holds for all sequences
of independent random variables satisfying the conditions of the theorem.
Erd}os and Kac called this the invariance principle. Since then, this principle
has been widely applied in probability theory.

Erd}os and Kac promptly proceeded to apply their powerful invariance
principle to extending a beautiful result of Paul L�evy, proved in 1939. To
state this result, let X1; X2; : : : be independent random variables, each with
mean 0 and variance 1, such that the central limit theorem holds for the
sequence. As before, let Sk = X1 + : : :+ Xk, and let Nn be the number of
Sk, 1 � k � n, which are positive. Erd}os and Kac proved in 1947 that, in
this case,

lim
n!1P(Nn=n < x) =

2

�
arc sinx1=2

for all x, 0 � x � 1. Thus Nn=n tends in distribution to the arc sin distribu-
tion.

What Paul L�evy had proved in 1939 is that this arcsin law holds in the
binomial case P(Xk = 1) = P(Xk = �1) = 1=2.
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In 1953 Erd}os returned to this theme. In a joint paper with Hunt he
proved that if X1; X2; : : : are independent zero-mean random variables with
the same continuous distribution which is symmetric about 0 then, almost
surely,

lim
n!1

1

logn

nX
k=1

signSk
k

= 0:

In his joint papers with Dvoretzky, Kac and Kakutani, Erd}os contributed
much to the theory of random walks and Brownian motion. For example,
in 1940, Paul L�evy proved that almost all paths of a Brownian motion in
the plane have double points. This was extended by Dvoretzky, Erd}os and
Kakutani in 1950: they proved that for n � 3 almost all paths of a Brownian
motion inRn have double points, but for n � 4 almost all paths of a Brownian
motion inRn are free of double points. In 1954, in a paper dedicated to Albert
Einstein on his 75th birthday, Dvoretzky, Erd}os and Kakutani returned to this
topic, and proved that almost all paths of a Brownian motion in the plane
have k-multiple points for every k, k = 2; 3; : : :; in fact, for almost all paths
the set of k-multiple points is dense in the plane.

Let us say a few words about classical measure theory. A subset of a
metric space is of �rst category if it is a countable union of nowhere dense
sets. There are a good many striking similarities between the class of nullsets
and the class of sets of �rst category on the line. Indeed, both are �-ideals
(i.e. �-rings closed under taking subsets), both include all countable sets and
contain some sets of cardinality c, both classes have power 2c, both classes
are invariant under translation, neither class contains an interval, in fact, the
complement of any set of either class is a set dense in R, the complement of
any set of either class contains a member of the class with cardinality c, and
so on.

Of course, neither class includes the other; also, it is easily seen that
R= A[B, withA of �rst category andB a nullset. Nevertheless, the existence
of numerous common properties suggests that the two �-ideals are similar in
the sense that there is a one-to-one mapping f : R! R such that f(E) is a
nullset if and only if E is of �rst category. In 1934 Sierpi�nski proved that this
is indeed the case, provided we assume the continuum hypothesis. Sierpi�nski
went on to ask whether the stronger assertion is also true that, assuming
the continuum hypothesis, there is a function simultaneously mapping the
two classes into each other. In 1943 Erd}os answered this question in the
a�rmative.

Assuming the continuum hypothesis, there is a one-to-one map f : R! R

such that f(E) is a nullset if and only if E is of �rst category, and f(E) is of
�rst category if and only if E is a nullset. In fact, f can be chosen to sa�sfy
f = f�1.

Of the many results of Erd}os in approximation theory, let us mention
some beautiful theorems concerning Lagrange interpolation. Let X = fxing,
n = 1; 2; : : :, i = 1; 2; : : : ; n, be a triangular matrix with
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�1 � x1;n < x2;n < : : : < xn;n � 1 (5)

for every n. The values xin are the nodes of interpolation. As usual, for
1 � k � n, de�ne the fundamental polynomials lk;n(x) as

lk;n(x) =
Y
i 6=k

(x� xi;n)=
nX

j=1

Y
i6=j

(xk;n � xi;n):

so that lk;n(x) is the unique polynomial of degree n � 1 with zeros at xi;n,
i 6= k, with lk;n(xk;n) = 1.

The Lebesgue functions and the Lebesgue constants of the interpolation
are

�n(x) =
nX

k=1

jlk;n(x)j and �n = max
�1�x�1

�n(x):

In fact, one frequently considers a generalization of the Lebesgue constants
as well: for �1 � a < b � 1 set

�n(a; b) = max
a�x�b

�n(x);

so that �n = �n(�1; 1).
Faber showed before the First World War that if X is any set of nodes

satisfying (5) then �n � 1
6 logn for every n.

Much research was done on improving this inequality. After a series of
papers with Tur�an, in 1942 Erd}os proved the asymptotically best possible
inequality that

�n >
2

�
logn+ O(1)

for every matrix X.
In 1931 Faber's inequality was extended by Bernstein, who proved that

there is an absolute constant c > 0 such that

�n(a; b) � c logn;

provided �1 � a < b � 1, and n is su�ciently large, depending on (a; b). In
other words, the L1-norm of the restriction of �n(x) to the interval (a; b)
grows at least as fast as c logn.

In a beautiful paper, written jointly with Szabados, Erd}os proved in 1978
the much stronger result that a similar assertion holds for the normalized
L1-norms.

There is an absolute constant c > 0 such that if X is an arbitrary system
of nodes satisfying (5), �1 � a < b � 1, and n is su�ciently large, thenZ b

a

�n(x)dx � c(b� a) logn:
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In the special case a = �1, b = 1, the result had been announced by Erd}os
in 1961, but the proof in the Erd}os-Szabados paper in 1978 was along di�erent
lines and simpler.

Let us turn to a substantial extension of some classical results of Faber
and Bernstein. Given a system X of nodes satisfying (5), and a function F
on [�1; 1], let

Ln(F;X; x) =
nX

k=1

F (xk;n)lk;n(x)

be the nth Lagrange interpolation polynomial of F . Thus Ln(F;X; x) is the
unique polynomial of degree at most n�1 whose value at xkn is F (xkn), 1 �
k � n. Extending a result of Faber from 1914, Bernstein proved in 1931 that,
for every triangular matrix X satisfying (5), there is a continuous function
F and a point x0, �1 � x0 � 1, such that

lim sup
n!1

jLn(F;X; x0)j = 1: (6)

In 1936, G�eza Gr�unwald and Marcienkiewicz proved that if X is the
\good" Chebyshev matrix then for some continuous function F relation (6)
holds for almost every x0, and 1978 Privalov proved the same assertion for
the class of Jacobi matrices.

After these results concerning special classes of matrices, in 1980 Erd}os
and V�ertesi proved the striking result that a similar assertion holds for every
matrix X satisfying (5): there is always a continuous function F such that
(6) holds for almost every x0. The proof is intricate and ingenious.

To conclude our brief list of results on approximation theory, let us return
to an early major result of Erd}os. It has been known since Newton that
interpolation polynomials can be used to approximate de�nite integrals of
functions. Indeed, as proved by Stieltjes, if the nth row of X consists of the
roots of the nth Legendre polynomial then

lim
n!1

Z 1

�1
Ln(F;X; x)dx =

Z 1

�1
F (x)dx

for every Riemann integrable function F .
Later this result was extended to other matrices X formed by the zeros of

polynomials that were orthogonal in [�1; 1] with respect to a weight function
of the form (1�x)�(1 + x)� for some � and �. However, this was not known
for any general class of weight functions; furthermore, the result of Stieltjes
could not even be sharpened to

lim
n!1

Z 1

�1
jLn(F;X; x)� F (x)jdx = 1:

In 1937, Erd}os and Tur�an solved both problems. Let p(x) � M > 0 be
Riemann integrable over [�1; 1], and let !0(x); !1(x); : : : be orthogonal poly-
nomials in [�1; 1] with respect to p(x), with !n(x) being a monic polynomial
of degree n. Let An, Bn be constants with Bn � 0 such that
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Rn(x) = !n(x) + An!n�1(x) +Bn!n�2(x)

has n di�erent roots in [�1; 1], and let X be the set of nodes formed by the
roots of the polynomialsR1; R2; : : :. Erd}os and Tur�an proved that in this case
every Riemann integrable function F (x) on [�1; 1] satis�es

lim
n!1

Z 1

�1
jLn(F;X; x)� F (x)jdx = 0:

Much of Erd}os's work in real analysis concerns so-called Tauberian the-
orems. The origin of these results is a theorem of Tauber stating that ifP
anx

n ! s as x ! 1�, and nan ! 0 as n ! 1, then
P
an is convergent

(to sum s). Hence if nan ! 0 and
P
an is Ces�aro summable then

P
an is

convergent. Soon after the turn of the century, Landau, Hardy and Little-
wood founded a ourishing branch of analysis by making extensive use of
deep results resembling this theorem of Tauber. These Tauberian theorems
claim that if a series is summable with a certain method of summation and
satis�es certain additional conditions then it is also summable with a weaker
method of summation. For example, Hardy and Littlewood proved in 1911
that if

P
an is Borel summable (i.e. limx!1 e�x

P
snx

n=n! exists, where
sn = a1 + : : : + an) and

p
nan ! 0 then

P
an is convergent . The second

part of the elementary proof of the PNT was, essentially, such a Tauberian
theorem.

Shortly after the elementary proofs of the Prime Number Theorem were
found, Erd}os proved that the PNT can be deduced from Selberg's fundamen-
tal formula alone, without any reference to other properties of the sequence of
primes. What Erd}os needed was the following Tauberian theorem: if an � 0
and

Pn
k=1 ak(sn�k + k) = n2 + O(n) then sn = n + O(1). Here, as before,

sn = a1 + : : :+ an.
Hardy and Littlewood also considered lacunary series and proved, among

others, that under certain lacunarity conditions Abel-summability implies
summability. In 1943, Meyer-K�onig proved a similar lacunarity theorem for
Euler summability: if

P
an is Euler summable (i.e. limn!1 2�n

Pn
k=0

�
n
k

�
sk

exists) and an = 0 except if n = ni, where n1 < n2 < : : : satis�es ni+1=ni �
c > 1, then

P
an is convergent . Meyer-K�onig went on to conjecture the much

stronger assertion that instead of ni+1=ni � c > 1 it su�ces to demand that
ni+1� ni > A

p
ni for some A > 0. In 1952 Erd}os came very close to proving

this conjecture: he showed that the assertion is true if A > 0 is su�ciently
large.

Another Tauberian theorem of Erd}os, proved with Feller and Pollard
in 1949, is important in the theory of Markov chains. Let p0; p1; : : : be non-
negative, with

P
pk = 1 and � =

P
kpk, and suppose that P (z) =

P1
o pkz

k

is not a power series in zt for any integer t > 1. Then jP (z)j < 1 for jzj < 1;
in particular, (1� P (z))�1 is analytic in jzj < 1, say
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1

1� P (z)
=

1X
k=0

ukz
k :

The Erd}os-Feller-Pollard Theorem states that limk!1 uk = 1=� if � <1 and
uk ! 1 if � = 1. The theorem has important consequences in probability
theory, and in 1951 de Bruijn and Erd}os also used it to study recursion
formulae.

In a beautiful paper written with Niven in 1948, Erd}os extended a re-
sult relating the zeros of a complex polynomial to the zeros of its deriva-
tive. Among other results, Erd}os and Niven proved that if r1; r2; : : : ; rn are
the zeros of a complex polynomial, and R1; R2; : : : ; Rn�1 are the zeros of its
derivative then

1

n

nX
j=1

jz � rjj � 1

n� 1

n�1X
j=1

jz �Rjj

for every z 2 C , with equality if, and only if, all the zeros rj are on a half-line
emanating from z.

In a di�cult paper written with Szeg}o in 1942, Erd}os tackled a problem
concerning real polynomials. Extending Markov's classical theorem that if a
polynomialf of degree n satis�es jf(x)j � 1 for �1 � x � 1, then jf 0(x)j � n2

for �1 � x � 1, Schur proved in 1919 that if f is a polynomial of degree n
with jf(x)j � 1 for �1 � x � 1, then jf 0(x0)j � 1

2n
2, provided �1 � x0 � 1

and f 00(x0) = 0. Writing mn for the smallest constant that would do in the
inequality above instead of 1

2 , Erd}os and Szeg}o proved that for n > 3 the
extremum mnn

2 is attained for x0 = 1 (or �1) and the so-called Zolotarev
polynomials. This enabled Erd}os and Szeg}o to determine limn!1mn as well
(which turned out to be 0:3124 : : :).

Whatever branch of mathematics Erd}os works in, in spirit and attitude
he is a combinatorialist : his strength is the hands-on approach, making use
of ingenious elementary methods. Therefore it is not surprising that Erd}os
helped to shape 20th century combinatorics as no-one else: with his results,
problems, and inuence on people, much of combinatorics in this century
owes its existence to Erd}os.

One of the fundamental results in combinatorics is a theorem (to be pre-
cise, a pair of theorems) proved by F.P. Ramsey in 1930. Erd}os was the �rst
to realize the tremendous importance of this \super pigeon-hole principle",
and did much to turn Ramsey's �nite theorem into Ramsey theory , a rich
branch of combinatorics, as witnessed by the excellent monograph of Gra-
ham, Rothschild and Spencer . In a seminal paper written in 1935, Erd}os and
his co-author, George Szekeres, tackled the following beautiful problem of
Esther Klein: can we �nd, for a given n, a number N (n) such that from any
set of N points in the plane it is possible to select n points forming a con-
vex polygon? Erd}os and Szekeres showed that the existence of N (n) is an
easy consequence of Ramsey's theorem for �nite sets. In fact, they discovered
Ramsey's theorem for themselves, and were told only later that they had
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been beaten to it by Ramsey. It is remarkable that Ramsey, working in Cam-
bridge, and Erd}os and Szekeres, working in Budapest, arrived at the same
result independently and in totally di�erent ways, but within a few years of
each other. As it happened, the proof given by Erd}os and Szekeres is much
simpler than the original, and it also gives much better upper bounds for the
various Ramsey numbers. In particular, they proved that if k; l � 2 then

R(k; l) �
�
k + l � 2

k � 1

�
;

where the Ramsey number R(k; l) is the smallest value of n for which every
graph of order n contains either a complete graph of order k or l independent
vertices.

In view of the simplicity of the proof of the Erd}os-Szekeres bound, it is
amazing that over 50 years had to pass before the bound above was improved
appreciably. In 1986 R�odl showed that there is a positive constant c > 0 such
that

R(k; l) �
�
k + l � 2

k � 1

�
= logc(k + l);

and, simultaneously and independently, Thomason replaced the power of the
logarithm by a power of k + l. To be precise, Thomason proved that

R(k; l) � k�1=2+A
p

log k

�
k + l � 2

k � 1

�

for some absolute constant A > 0 and all k, l with k � l � 2.
Concerning the lower bounds for R(k; l), especially R(k; k), the situation

seems to be even more peculiar. It is not even obvious that R(k; k) is not
bounded from above by a polynomial of k. Indeed, it was again Erd}os, who

gave, in 1947, the following lower bound: if
�
n
k

�
2�(k

2
)+1 < 1 then R(k; k) > n.

Erd}os's proof is remarkable for its simplicity and its inuence on combina-
torics. Although there are very few mathematicians who do not know this
proof, we present it here, since it is delightful and brief. Consider the set

of all 2(n
2
) graphs on f1; 2; : : : ; ng. What is the average number of complete

subgraphs of order k? Since each of the
�
n
k

�
possible complete subgraphs of

order k is contained in 2(n
2
)�(k

2
) of our graphs, the average is

�
n
k

�
2�(k

2
) < 1=2.

Similarly, the average number of complete subgraphs of order k in the com-

plements of our graphs is also
�
n
k

�
2�(k

2
) < 1=2. Consequently, there is some

graph G on f1; 2; : : :; ng such that neither G nor its complement �G contains
a complete graph of order k. Hence R(k; k) > n, as claimed.

It took over three decades to improve this wonderfully simple lower bound:
in 1977 Spencer showed that an immediate consequence of the Erd}os-Lov�asz
Local Lemma is that

R(k; k) � k2k=2

 p
2

e
+ o(1)

!
;
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which is only about a factor 2 improvement. Needless to say, the combina-
torialists are eagerly awaiting a breakthrough that more or less eliminates
the gap between the upper and lower bounds for R(k; k), but judging by the
speed of improvements on the original bounds of Erd}os, we are in for a long
wait.

Erd}os did not fail to notice that the other theorem of Ramsey from 1930,
concerning in�nite sets, also had a tremendous potential. In the 1950s
and 1960s, mostly with his two great collaborators, Rado and Hajnal, Erd}os
revolutionized combinatorial set theory.

Ramsey's theorem concerning in�nite sets, in its simplest form, states
that if G is an in�nite graph then either G or its complement �G contains an
in�nite complete graph. While this is very elegant, in order to express more
complicated results succinctly, it is convenient to rely on the Erd}os-Rado
arrow notation. Given cardinals r, a and b ,  2 � , where � is an indexing
set, the partition relation

a! (b)r2�

is said to hold if, given any partition
S
2� I of the set A(r) of all subsets of

cardinality r of a set A with jAj = a, there is a  2 � and a subset B of A

with jB j = b such that B(r)
 � I . The same notation is used to express the

analogous assertion when some or all the symbols r, a and b denote order
types rather than cardinalities. If � is a small set then one tends to write out
all the bs.

Thus, in this notation, the in�nite Ramsey theorem is that

@0 ! (@0;@0)r

for every integer r, with r = 2 being the case of graphs.
In 1933, Sierpi�nski proved that there is a graph of cardinality 2@0 which

has neither an uncountable complete graph nor an uncountable independent
set:

2@0 6! (@1;@1)2;
so the \natural" extension of Ramsey's theorem is false. Sierpi�nski's result
says that one can partition the pairs of real numbers in such a way that every
uncountable subset of R contains a pair from both classes. This partition
somewhat resembles a Bernstein subset of R.

If we are happy with one of the classes being merely countably in�nite
then Ramsey's theorem extends to all cardinals. This was proved in 1941 by
Dushnik and Miller for regular cardinals, and extended by Erd}os to singular
cardinals. Thus,

�! (�;@0)2:
In the language of graphs, this means that if a graph on � vertices does
not contain a complete subgraph on � vertices then it contains an in�nite
independent set.
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The Erd}os-Rado collaboration on partition problems started in 1949. One
of their �rst results is an attractive assertion concerning Q, the set of ratio-
nals. If G is a graph on Q then either G or its complement �G contains a
complete graph whose vertex set is dense in an interval. Years later this was
considerably extended by Galvin and Laver.

After a good many somewhat ad hoc results, in 1956 Erd}os and Rado
gave the �rst systematic treatment of \arrow relations" for cardinals; in their
fundamental paper, \A partition calculus in set theory", they set out to es-
tablish a `calculus' of partitions. Among many other results, they proved that
if � � 2 and � � @0 are cardinals then

(��)+ ! ((��)+; (�+)�)2 ;

but
�� 6! ((� � �)+; �+)2 :

In the special case � = 2 and � = @0, the last relation is precisely Sierpi�nski's
theorem.

In proving their positive results, Erd}os and Rado used so called \tree argu-
ments", arguments resembling the usual proof of Ramsey's in�nite theorem,
but relying on sequences of trans�nite length. Another important ingredient
is a stepping-up lemma, enabling one to deduce arrow relations about larger
cardinals from similar relations about smaller ones. Thus the trivial relation
@1 ! (@1)1@0 implies that

(2@0)+ ! (@1)2@0 :

In 1965, in a monumental paper \Partition relations for cardinal num-
bers", running to over 100 pages, Erd}os, Hajnal and Rado presented an almost
complete theory of the partition relation above for cardinals, assuming the
generalized continuum hypothesis. For years after its publication, its authors
lovingly referred to their paper as GTP, the Giant Triple Paper .

In fact, Erd}os had taken an interest in extensions of Ramsey's theorem
for in�nite sets well before the Dushnik-Miller result appeared. In 1934, in
a letter to Rado, he asked whether if we split the countable subsets of a set
A of cardinality a into two classes then there is an in�nite subset B of A,
all of whose countable subsets are in the same class. In the arrow notation,
does a! (@0;@0)@0 hold for some cardinal a? Almost by return mail, Rado
sent Erd}os his counterexample (which is, by now, well known), constructed
with the aid of the axiom of choice. Later this question led to the study of
partitions restricted in some way, including the study of Borel and analytic
partitions, and to many beautiful results of Galvin, Mathias, Prikry, Silver,
and others.

The �rst results concerning partition relations for ordinals were also ob-
tained in 1954. In November 1954, on his way to Israel, Erd}os passed through
Z�urich. He told his good friend Specker that he was o�ering $20 for a proof
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or disproof of the conjecture of his with Rado that !2 ! (!2; n)2. Within
a few days, Specker sent Erd}os a proof which is, by now, well known. Erd}os
had high hopes of building on Specker's proof to deduce that !n ! (!n; 3)2

for every integer n � 3, but could prove only !2n ! (!n+1; 4)2. A little later
Specker produced an example showing that

!n 6! (!n; 3)2

for every integer n � 3.
Neither Specker's proof, nor his (counter)example worked for

!! ! (!! ; 3)2 :

Erd}os rated this problem so highly that eventually, in the late 1960s, he
o�ered $250 for a proof or counterexample. The prize was won by Chang
in 1969 with a very complicated proof , which was later simpli�ed by Milner
and Jean Larson.

The remaining problems are far from being easy, and Erd}os is now o�ering
$1000 for a complete characterization of the values of � and n for which

!!
� ! (!!

�

; n)2

holds.
The theory of partition relations for ordinals took o� after Cohen intro-

duced forcing methods and Jensen created his theory of the constructible
universe. Not surprisingly, in many questions \independence reared its ugly
head", as Erd}os likes to say. In addition to Erd}os, Hajnal and Rado, a host
of excellent people working on combinatorial set theory contributed to the
growth of the �eld, including Baumgartner, Galvin, Larson, Laver, M�at�e,
Milner, Prikry and Shelah. An account of most results up to the early 1980s
can be found in the excellent monograph \Combinatorial Set Theory: Parti-
tion Relations for Cardinals" by Erd}os, Hajnal, M�at�e and Rado, published
in 1984.

In 1940 Tur�an proved a beautiful result concerning graphs, vaguely related
to Ramsey's theorem. For 3 � r � n, every graph of order n that has more
edges than an (r � 1)-partite graph of order n contains a complete graph of
order r. It was once again Erd}os who, with Tur�an, Gallai and others, showed
that Tur�an's theorem is just the starting point of a large and lively branch of
combinatorics, extremal graph theory . In order to formulate the quintessential
problem of extremal graph theory, let us recall some notation. As usual, we
write jGj for the order (i.e. number of vertices) and e(G) for the size (i.e.
number of edges) of a graph G. Given graphs G and H, the expression H � G
means that H is a subgraph of G. Let F be a �xed graph, usually called the
forbidden graph. Set

ex(n;F ) = maxfe(G) : jGj = n and F 6� Gg:
and
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EX(n;F ) = fG : jGj = n; e(G) = ex(n;F ); and F 6� Gg:
We call ex(n;F ) the extremal function, and EX(n;F ) the set of extremal
graphs for the forbidden graph F . Then the basic problem of extremal graph
theory is to determine, or at least estimate, ex(n;F ) for a given graph
F and, at best, to determine EX(n;F ). From here it is but a short step
to the problem of excluding several forbidden graphs, i.e. to the functions
ex(n;F1; : : : ; Fk) and EX(n;F1; : : : ; Fk) for a �nite family F1; : : : ; Fk of for-
bidden graphs.

Writing Kr for the complete graph of order r, and Tk(n) for the unique
k-partite graph of order n and maximal size (so that Tk(n) is the k-partite
Tur�an graph of order n), Tur�an proved, in fact, that EX(n;Kr) = fTr�1(n)g,
i.e. Tr�1(n) is the unique extremal graph, and so ex(n;Kr) = tr�1(n), where
tr�1(n) = e(Tr�1(n)) is the size of Tr�1(n).

As it happens, Erd}os came very close to founding extremal graph theory
before Tur�an proved his theorem: in 1938, in connection with sequences of
integers no one of which divided the product of two others, proved that for
a quadrilateral C4 we have ex(n;C4) = O(n3=2). However, at the time Erd}os
failed to see the signi�cance of problems of this type: one of the very few
occasions when Erd}os was \blind".

Before we mention some of the important results of Erd}os in extremal
graph theory, let us remark that in 1970 (!) Erd}os proved the following beau-
tiful extension of Tur�an's theorem (so the rest of the world had been blind).
Let G be a graph without a Kr , with degree sequence (di)

n
1 . Then there is

an (r � 1)-partite graph G� (which, a fortiori, contains no Kr either) with
degree sequence (d�i )

n
1 , such that di � d�i for every i. In this theorem, the

achievement is in the audicity of stating the result: once it is stated, the
proof follows easily.

Erd}os conjectured another extension of Tur�an's theorem which was proved
in 1981 by Bollob�as and Thomason. The conjecture was sharpened by Bondy.
Let jGj = n and e(G) > tr�1(n). Then every vertex x of maximal degree d in
G is such that the neighbours span a subgraph with more than tr�2(d) edges.
In this instance it is also true that once the full assertion has been made, the
proof is just about trivial; in fact, it is simply a minor variant of the proof of
the previous theorem of Erd}os.

It is �tting that the fundamental theorem of extremal graph theory is a
result of Erd}os, and his collaborator, Stone. Note that, by Tur�an's theorem,
the maximal size of a Kr-free graph of order n is about r�2

r�1
�
n
2

�
; in fact,

trivially,
r � 2

r � 1

�
n

2

�
� tr(n) � r � 2

r � 1

n2

2
:

Writing, as usual, Kr(t) for the complete r-partite graph with t vertices in
each class, Erd}os and Stone proved in 1946 that if r � 2, t � 1 and � > 0 are
�xed and n is su�ciently large then every graph of order n and size at least
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�
r�2
r�1 + �

� �
n
2

�
contains a Kr(t). In other words, even �n2 more edges than

can be found in a Tur�an graph guarantee not only a Kr but a \thick" Kr ,
one in which every vertex has been replaced by a group of t vertices.

Prophetically, Erd}os and Stone entitled their paper \On the structure of
linear
graphs"; this is indeed the signi�cance of the paper: it not only gives us
much information about the size of extremal graphs, but it is also the
starting point for the study of the structure of extremal graphs. If F is a
non-empty r-chromatic graph, i.e. �(F ) = r � 2, then, precisely by the
de�nition of the chromatic number, F is not a subgraph of Tr�1(n), so
ex(n;F ) � tr�1(n) � r�2

r�1
�
n
2

�
. On the other hand, F � Kr(t) if t is large

enough (say, t � jF j), so if � > 0 and n is large enough then

ex(n;F ) <

�
r � 2

r � 1
+ �

��
n

2

�
:

In particular, if �(F ) = r � 2 then

lim
n!1 ex(n;F )

��n
2

�
=
r � 2

r � 1
;

that is the asymptotic density of the extremal graphs with forbidden subgraph
F is
(r � 2)=(r � 1). Needless to say, the same argument can be applied to the
problem of forbidding any �nite family of graphs: given graphs F1; F2; : : : ; Fk,
with min�(Fi) = r � 2, we have

lim
n!1 ex(n;F1; : : : ; Fk)

��n
2

�
=
r � 2

r � 1
:

Starting in 1966, in a series of important papers Erd}os and Simonovits
went considerably further than noticing this instant consequence of the Erd}os-
Stone theorem. Among other results, Erd}os and Simonovits proved that if
G 2 EX(n;F ), with �(F ) = r � 2, then G can be obtained from Tr�1(n)
by the addition and deletion of o(n2) edges. Later this was re�ned to sev-
eral results concerning the structure of extremal graphs. Here is an exam-
ple, showing how very close to a Tur�an graph an extremal graph has to be.
Let F1; : : : ; Fk be �xed graphs, with r = min�(Fi), and suppose that F1 has
an r-colouring in which one of the colour classes contains t vertices. Let
Gn 2 EX(n;F1; : : : ; Fk). Then, as n!1,

(i) the minimal degree of Gn is ((r � 2)=(r � 1) + o(1))n,
(ii) the vertices of Gn can be partitioned into r� 1 classes such that each

vertex is joined to at most as many vertices in its own class as in any other
class,

(iii) for every � > 0 there are at most c� = c(�;F1; : : : ; Fk) vertices joined
to at least �n vertices in their own class,
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(iv) there are 0(n2�1=t) edges joining vertices in the same class,
(v) each class has n=(r � 1) +O(n1�1=2t) vertices.
Returning to the Erd}os-Stone theorem itself, let us remark that Erd}os

and Stone also gave a bound for the speed of growth of t for which Kr(t)
is guaranteed to be a subgraph of every graph with n vertices and at least
((r � 2)=(r� 1) + �)

�
n
2

�
edges.

Let us write t(n; r; �) for the maximal value of t that will do. Erd}os and
Stone proved that t(n; r; �) � (logr�1(n))1�� for �xed r � 2, � > 0 and
� > 0, and large enough n, where logk(n) is the k times iterated logarithm
of n. They also thought it plausible though unproved that logr�1(n) would
be about the \best" value.

This assertion was conjectured in several subsequent papers by Erd}os, so
it was rather surprising when, in 1973, Erd}os and Bollob�as proved that, for
�xed r � 2 and 0 < � < 1=(r � 1) the correct order of t(n; r; �) is, in fact,
logn.

A little later, in 1976, Erd}os, Bollob�as and Simonovits sharpened this
result, and the dependence of the implicit constant on r and � was �nally
settled by Chv�atal and Szemer�edi, who proved that there are positive absolute
constants c1 and c2 such that

c1
logn

log(1=�)
� t(n; r; �) � c2

logn

log(1=�)

whenever r � 2 and 0 < � < 1=(r� 1).
For a bipartite graph F , the general Erd}os-Stone theorem is not sensitive

enough to provide non-trivial information about ex(n;F ), since all it tells us
is that ex(n;F ) = o(n2). It was, once again, Erd}os, who proved several of
the fundamental results about ex(n;F ) when F is bipartite. In particular, he
proved with Gallai in 1959 that for a path Pl of length l we have

ex(n;Pl) � l � 1

2
n :

By taking vertex-disjoint unions of complete graphs of order l, we see that
this inequality is, in fact, an equality whenever ljn. The determination of
ex(n;Pl) was completed by Faudree and Schelp in 1973.

Another ground-breaking result of Erd}os concerns supersaturated graphs,
i.e. graphs with slightly more edges than the extremal graph. An unpublished
result of Rademacher from 1941 claims that a graph of order n with more
than bn2=4c = t2(n) edges contains not only one triangle but at least bn=2c
triangles. In 1962 Erd}os extended this result considerably; he showed that for
some constant c > 0 every graph with n vertices and bn2=4c + k edges has
at least kbn=2c triangles, provided 0 � k � cn. Later, this led to a spate of
related results by Erd}os himself, Moon and Moser, Lov�asz and Simonovits,
Bollob�as and others.
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Erd}os, the problem-poser par excellence, could not fail to notice how
much potential there is in combining Ramsey-type problems with Tur�an-type
problems.

The extremal graph for Kr , namely the Tur�an graph Tr�1(n), is stable in
the sense that if a Kr-free graph G on n vertices has almost as many edges
as Tr�1(n), then G is rather similar to Tr�1(n); in particular, it has a large
independent set. Putting it another way, if G is Kr-free and does not have a
large independent set then e(G) is much smaller than tr�1(n).

This observation led Erd}os and S�os to the prototype of Ramsey-Tur�an
problems. Given a graph H and a natural number l, let f(n;H; l) be the
smallest integer m for which every graph of order n and size more than m
either contains H as a subgraph, or has at least l independent vertices.

Erd}os and S�os were especially interested in the case H = Kr and l = o(n),
and so in the function

l(r) = lim
�!0

lim
n!1 f(n;Kr ; b�nc)=

�
n

2

�
:

It is easily seen that l(3) = 0, and in 1969 Erd}os and S�os proved that l(r) =
(r � 3)=(r � 1) whenever r � 3 is odd.

The stumbling block in determining l(r) for even values of r was the
case r = 4. Szemer�edi proved in 1972 that f(4) � 1=4, but it seemed likely
that f(4) is, in fact, 0. Thus it was somewhat of a surprise when in 1976
Erd}os and Bollob�as constructed a graph on a k-dimensional sphere that shows
f(4) = 1=4. In fact, this graph is rather useful in a number of other questions
as well; it would be desirable to construct an in�nite family of graphs in this
vein.

Erd}os, Hajnal, S�os and Szemer�edi completed the determination of l(r)
in 1983 when they showed that l(r) = (3r � 10)=(3r � 4) whenever r � 4 is
even. Note that the condition that our graph does not have more than o(n)
independent vertices, does force the graph to have considerably fewer edges:
Tur�an's theorem tells us that without the condition on the independence
number the limit would be (r � 2)=(r � 1).

Erd}os was still a young undergraduate, when he became interested in
extremal problems concerning set systems. It all started with his fascination
with Sperner's theorem on the maximal number of subsets of a �nite set with
no subset contained in another. Sperner proved in 1928 that if the ground
set has n elements then the maximum is attained by the system of all bn=2c-
subsets. Erd}os was quick to appreciate the beauty and importance of this
result, and throughout his career frequently returned to problems in this
vein.

In 1939, Littlewood and O�ord gave estimates of the number of real roots
of a random polynomial of degree n for various probability spaces of polyno-
mials. In the course of their work, they proved that for some constant c > 0,
if z1; z2; : : : ; zn are complex numbers with jzij � 1 for each i, then of the 2n

sums of the form �z1 � z2 � : : :� zn, no more than
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cr2n(logn)n�1=2 (7)

fall into a circle of radius r.
On seeing the result, Erd}os noticed immediately the connection with

Sperner's theorem, especially in the real case. In fact, Sperner's theorem
implies the following best possible assertion. If x1; : : : ; xn are real numbers of
modulus at least 1, then no more than

�
n

bn=2c
�
of the sums �x1�x2� : : :�xn

fall in an open interval of length 2. From here it was but a short step to show
that the maximal number of sums that can fall in an open interval of length
2r is precisely the sum of the r largest binomial coe�cients

�
n
k

�
.

Concerning the complex case, Erd}os improved the Littlewood-O�ord
bound (7), to an essentially best possible bound, by removing the factor logn.
More importantly, Erd}os conjectured that the Sperner-type bound holds not
only for real numbers, as he noticed, by for vectors of norm at least 1 in a
Hilbert space. This beautiful conjecture was proved 20 years later by Kleit-
man and, independently, by Katona. In 1970, Kleitman gave a strikingly
elegant proof of the even stronger assertion that if x1; x2; : : : ; xn are vectors
of norm at least 1 in a normal space, then there are at most

�
n

bn=2c
�
sums of

the form �x1�x2� : : :�xn such that any two of them are at a distance less
than 2.

With O�ord, in 1956 Erd}os tackled the original Littlewood-O�ord prob-
lem concerning random polynomials. They concentrated on the class of 2n

polynomials of the form fn(x) = �xn � xn�1 � : : : � 1. Re�ning the re-
sult of Littlewood and O�ord, they proved that, with the exception of
o((log logn)�1=3)2n polynomials, the equations fn(x) = 0 have

2

�
logn + o((logn)2=3 log logn)

real roots.
Let us turn to some results concerning hypergraphs, the objects most

frequently studied in the extremal theory of set systems. For a positive integer
r, an r-uniform hypergraph, also called an r-graph or r-uniform set system,
is a pair (X;A), where X is a set and A is a subset of X(r), the set of all
r-subsets of X. The vertex set of this hypergraph is X, and A is the set of
(hyper)edges. The vertex set is frequently taken to be [n] = f1; : : : ; ng, and
our hypergraph is often referred to as a \collection of r-subsets of [n]". For
r = 2 an r-graph is just a graph. Although r-graphs seem to be innocuous
generalizations of graphs, they are much more mysterious than graphs.

The most inuential paper of Erd}os on hypergraphs, \Intersection theo-
rems for systems of �nite sets", written jointly with Chao Ko and Richard
Rado, has a rather curious history. The research that the paper reports on
was done in 1938 in England. However, at the time there was rather little
interest in pure combinatorics, and the authors went their di�erent ways:
Erd}os went to Princeton, Chao Ko returned to China, and Rado stayed in
England. As a result of this, the paper was published only in 1961.
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In its simplest form, the celebrated Erd}os-Ko-Rado theorem states the
following. Let A � [n](r), that is let A be a collection of r-subsets of the set
[n] = f1; 2; : : : ; ng. If n � 2r and A is intersecting, that is if A \ B 6= ;
whenever A;B 2 A, then jAj � �n�1r�1

�
. Taking A = fA 2 [n](r) : 1 2 Ag, we

see that the bound is best possible. This result has been the starting point
of much research in combinatorics. By now there are a good many proofs
of it, including a particularly ingenious and elegant proof found by Katona
in 1972.

The more general Erd}os-Ko-Rado theorem states that if 1 � t � r, A �
[n](r) and A is t-intersecting, that is if jA\Bj � t whenever A;B 2 A, then
jAj � �n�t

r�t
�
, provided n is large enough, depending on r and t.

In the original paper it was proved that n � t+ (r� t)
�
r
t

�3
will do. Once

again, the bound on jAj is best possible, as shown by a collection of r-subsets
containing a �xed t-set. But the bound on n given by Erd}os, Ko and Rado
is far from being best possible. For i = 0; 1; : : : ; r� t, let

Ai = fA 2 [n](r) : jA \ [t+ 2i]j � t+ ig :
It is clear that each Ai is a t-intersecting system, and it so happens that
jA1j > jA0j if n < (t + 1)(r � t + 1). Thus the best we can hope for is that
the Erd}os-Ko-Rado bound

�
n�t
r�t
�

holds whenever n � (t+ 1)(r � t+ 1).
It took many years to prove that this is indeed the case. In 1976 Frankl

came very close to proving it: he showed it for all t except the �rst few values,
namely for all t � 15. Finally, by ingenious arguments involving vector spaces,
Richard Wilson gave a complete (and self-contained) proof of it in 1984.

The Erd}os-Ko-Rado theorem inspired so much research that in 1983 Deza
and Frankl considered it appropriate to write a paper entitled \The Erd}os-
Ko-Rado theorem { 22 years later".

The �rst Erd}os-Rado paper that appeared in print, in 1950, contained
their canonical Ramsey theorem for r-graphs, to be precise, for N(r), the
collection of r-subsets of N. This is yet another Erd}os paper which had much
inuence on the development of Ramsey theory, especially through the work
of Graham, Leeb, Rothschild, Spencer, Ne�set�ril, R�odl, Deuber, Voigt and
Pr�omel. To formulate this result, let X � N or, for that matter, let X be any
ordered set, and let r be an integer. A partition of X(r) into some classes
(�nitely or in�nitely many) is said to be canonical if there is a set I � [r]
such that two r-sets A = (a1; : : : ; ar), B = (b1; : : : ; br) 2 X(r) belong to the
same class if, and only if, ai = bi for every i 2 I. Here we assumed that
a1 < : : : < ar and b1 < : : : < br. Thus in a canonical partition, A and B
belong to the same class if, and only, for each i 2 I, the ith element of A is
identical with the ith element of B.

Note that if all we care about is whether two r-sets belong to the same
class or not, then for every ordered set X with more than r elements, X(r)

has precisely 2r distinct canonical partitions, one for each subset I of [r]. If
X is in�nite then there is only one canonical partition with �nitely many
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classes: this is the canonical partition belonging to I = ;, in which all r-sets
belong to the same class.

The Erd}os-Rado canonical Ramsey theorem claims that if we partition
N(r) into any number of classes then there is always an in�nite sequence
of integers x1 < x2 < : : : on which the partition is canonical. If N(r) is
partitioned into only �nitely many classes then, as it was just remarked, on
X = fx1; x2; : : :g the canonical distribution belongs to I = ;, that is all r-sets
of X belong to the same class. Thus Ramsey's theorem for in�nite sets is an
instant consequence of the Erd}os-Rado result.

The canonical Ramsey theorem has attracted much attention: it has been
extended to other settings many times over, notably by Erd}os, Rado, Galvin,
Taylor, Deuber, Graham, Voigt, Ne�set�ril and R�odl.

In 1952 Erd}os and Rado gave a rather good upper bound for the Ramsey
number R(r)(n; : : : ; n)k = R(r)(n; k) concerning (r)-graphs: R(r)(n; k) is the
minimal integer m such that if [m](r) is partitioned into k classes then there
is always a subset N 2 [m](n) all of whose r-sets are in the same class.
Putting it slightly di�erently, R(r)(n; k) is the minimal integer m such that
every k-colouring of the edges of a complete r-graph of order m contains a
monochromatic complete r-graph of order n. Writing exps k for the s times

iterated exponential so that exp1 k = k, exp2 k = kk, and exp3 k = kk
k

, Erd}os
and Rado proved that

R(r)(n; k)1=n < expr�1 k :

Although this seems a rather generous bound, in their GTP, Erd}os, Hajnal
and Rado proved that for r � 3 we have

R(r)(n; k)1=n > expr�2 k :

Erd}os believes that the right order is given by the upper bound.
An important question concerning hypergraphs is to what extent the

Erd}os-Stone theorem can be carried over to them. The density d(G) of an
r-graph G = (X;A) of order n is

d(G) = jAj��n
r

�
;

so that 0 � d(G) � 1 for every hypergraph. Call 0 � � < 1 a jump-value for
r-graphs if there is a � = �r(�) > � such that for every �0 > � and positive
integer m there is an integer n such that every r-graph of order at least n
and density at least �0 contains a subgraph of order at least m and density at
least �. An immediate consequence of the Erd}os-Stone theorem is that every
� in the range 0 � � < 1 is a jump-value.

In 1965 Erd}os proved that, for every r � 1, 0 is a jump-value for r-graphs
and, in fact, �r(0) = r!=rr will do. This is because if �0 > 0, m � 1 and n is
su�ciently large then every r-graph of order at least n and density at least
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�0 contains a K(r)
r (m), a complete r-partite r-graph with m vertices in each

class. Clearly,

d(K(r)
r (m)) = mr=

�
rm

r

�
� r!

rr
:

This seems to indicate that every �, 0 � � < 1, is a jump-value for r-
graphs for every r � 3 as well. Nevertheless, for years no progress was made
with the problem so that, eventually, Erd}os was tempted to o�er $1000 for a
proof or disproof of this assertion. In 1984, Frankl and R�odl won the coveted
prize when they showed that 1� l�(r�1) is not a jump-value for r-graphs if
r � 3 and l > 2r. In spite of this beautiful result, we are very far from a
complete characterization of jump-values.

The important topic of �-systems was also initiated by Erd}os. A family
of sets fAg2� is called a �-system if any two sets have precisely the same
intersection, that is if the intersection of any two of them is

T
2� A . Given

cardinals n and p, let f(n; p) be the maximal cardinal m for which every
collection of m sets, each of size (at most) n, contains a �-system of size p.
In 1960, Erd}os and Rado determined f(n; p) for in�nite cardinals but found
that surprising di�culties arise when n and p are �nite. Even the case p = 3
seems very di�cult, so that they could not resolve their conjecture that

f(n; 3) � cn (8)

for some constant c.
As Erd}os and Rado pointed out, it is rather trivial that f(n; 3) > 2n.

Indeed, let A be the collection of n-subsets of a 2n-set fx1; : : : ; xn; y1; : : : ; yng
containing precisely one of xi and yi for each i. Then jAj = 2n and A does
not contain a �-system on three sets.

Abbott and Hanson have improved this bound to f(n; 3) > 10n=2, but due
to the very slow progress with the upper bound, for years now Erd}os has of-
fered $1000 for a proof or disproof of (8). Recently, Kostochka has made some

progress with the problem when he proved that f(n; 3) < n!
�

c log logn
log log logn

��n
.

Let us turn to a ourishing area of mathematics that was practically
created by Erd}os. This is the theory of random graphs, started by Erd}os and
then, a little later, founded by Erd}os and R�enyi.

Throughout his career, Erd}os had a keen eye for problems likely to yield to
either combinatorial or probabilistic attacks. Thus it is not surprising that he
had such a tremendous success in combining combinatorics and probability .

At �rst, Erd}os used random methods to tackle problems in main-stream
graph theory. We have already mentioned the delightful probabilistic argu-
ment Erd}os used in 1947 to give a lower bound for the Ramsey number
R(k; k). A little later, in 1959, a more di�cult result was proved by Erd}os
by random methods: for every k � 3 and g � 3 there is a graph of chro-
matic number k and girth g. Earlier results in this vein had been proved by
Tutte, Zykov, Kelly and Mycielski, but before this beautiful result of Erd}os,
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it had not even been known that such graphs exist for any k � 6. Later
ingenious constructions were given by Lov�asz, Ne�set�ril and R�odl, but these
constructions lead to considerably larger graphs than obtained by Erd}os.

In a companion paper, published in 1961, Erd}os turned to lower bounds
for the Ramsey numbers R(3; l), and proved by similar probabilistic argu-
ments that R(3; l) > c0l

2=(log l)2 for some positive constant c0. In 1968,
Graver and Yackel gave a good upper bound for R(3; l), which was improved,
in 1972, by Yackel. As expected, further improvements were harder to come
by. In 1980, Ajtai, Koml�os and Szemer�edi proved that R(3; l) < c1l

2= log l; the
di�cult proof was simpli�ed a little later by Shearer. Very recently, J.H. Kim
improved greatly the lower bound due to Erd}os, and so now we know that
the order of R(3; l) is l2= log l.

Almost simultaneously with his beautiful applications of random graphs
to extremal problems, Erd}os, with R�enyi, embarked on a systematic study of
random graphs. The �rst Erd}os-R�enyi paper on random graphs, in 1959,
is about the connectedness of Gn;M , the random graph with vertex set
[n] = f1; 2; : : :; ng, with M randomly chosen edges. Extending an unpub-
lished result of Erd}os and Whitney, they proved, among others, that if c 2 R
and M = M (n) = b12n(logn + c)c then

lim
n!1P(Gn;M is connected) = e�e

�c
:

This implies, in particular, that if M = M (n) = b12n(logn+ !(n))c then

lim
n!1P(Gn;M is connected) =

8>>><
>>>:

0 if !(n) !�!,

e�e
�c

if !(n) ! c 2 R,

1 if !(n) !1.

The result is easy to remember if one notes that the \obstruction" to
the connectedness of an random graph is the existence of isolated vertices: if
j!(n)j is not too large, say at most log logn, then Gn;M is very likely to be
connected if it has no isolated vertices (and if it does have isolated vertices
then, a fortiori, it is disconnected).

By now, quite rightly, this is viewed as a rather simple result, but when
it was proved, it was very surprising. To appreciate it, note that a graph of
order n with as few as n� 1 edges need not be disconnected , and a graph of
order n with as many as (n� 1)(n � 2)=2 edges need not be connected .

A little later, in 1960, in a monumental paper, entitled \On the evolution
of random graphs", Erd}os and R�enyi laid the foundation of the theory of
random graphs. As earlier, they studied the random graphs Gn;M with n
labelled vertices and M random edges for large values of n, as M increased
from 0 to

�
n
2

�
. They introduced basic concepts like \threshold function",

\sharp threshold function", \typical graph", \almost every graph", and so
on. An important message of the paper was that most monotone properties
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of graphs appear rather suddenly. A property Qn of graphs of order n is said
to be monotone increasing if Qn is closed under the addition of edges. Thus
being connected, containing a triangle or having diameter at most �ve are
all monotone increasing properties. Erd}os and R�enyi showed that for many a
fundamental structural monotone increasing property Qn there is a threshold
function, that is a function M�(n) such that

lim
n!1P(Gn;M has Qn) =

8<
:

0 if M (n)=M�(n) ! 0,

1 if M (n)=M�(n) !1.

Later it was noticed by Bollob�as and Thomason that in this weak sense
every monotone increasing property of set systems has a threshold function;
recently a considerably deeper result has been proved by Friedgut and Kalai,
which takes into account the automorphism group of the property, and so is
much more relevant to properties of graphs.

The more technical part of the \Evolution" paper concerns cycles, trees,
the number of components and, most importantly, the emergence of the giant
component . Erd}os and R�enyi showed that if M (n) = bcnc for some constant
c > 0 then, with probability tending to 1, the largest component of Gn;M is
of order logn if c < 1

2 , it jumps to order n2=3 if c = 1
2 , and it jumps again,

this time right up to order n if c > 1
2 . Quite understandably, Erd}os and

R�enyi considered this \double jump" to be one of the most striking features
of random graphs.

By now, all this is well known, but in 1960 this was a striking discovery
indeed. In fact, for over two decades not much was added to our knowledge of
this phase transition or, as called by many a combinatorialist, the emergence
of the giant component . The investigations were reopened in 1984 by the
author of these lines with the main aim of deciding what happens around
M = bn=2c; in particular, what scaling , what magni�cation we should use to
see the giant component growing continuously. It was shown, among others,
that if M = n=2 + s and s = o(n) but slightly larger than n2=3 then, with
probability tending to 1, there is a unique largest component, with about 4s
vertices, and the second largest component has no more than (logn)n2=s2

vertices. Thus, in a rather large range, on average every new edge adds four
new vertices to the giant component!

With this renewed attack on the phase transition the oodgates opened,
and quite a few more precise studies of the behaviour of the components near
the point of phase transition were published, notably by Stepanov (1988),
Flajolet, Knuth and Pittel (1989),  Luczak (1990, 1991) and others. To cap it
all, in 1993 Knuth, Pittel, Janson and  Luczak published a truly prodigious
(over 120 pages) study, \The birth of the giant component", giving very de-
tailed information about the random graph Gn;M near to its phase transition.

Erd}os and R�enyi also stated several problems concerning random graphs,
thereby inuencing the development of the subject. In 1966, they themselves



Paul Erd}os | Life and Work 37

solved the problem of 1-factors: if n is even and M = M (n) = bn2 (logn+ c)c
then the probability that Gn;M has a 1-factor tends to e�e

�c
as n!1; the

\obstruction" is, once again, the existence of isolated vertices.
The Hamilton cycle problem was a much harder nut to crack. As a Hamil-

tonian graph is connected (and has minimal degree 2), it is rather trivial that
if, with probability tending to 1, Gn;M has a Hamilton cycle and ifM = M (n)
is written as

M = M (n) =
n

2
(logn+ log logn+ !(n));

then we must have !(n) !1. On the other hand, it is far from obvious that a
\typical"Gn;M is Hamiltonian, even ifM = bcn lognc for some large constant
c. This beautiful assertion was proved in 1976 by P�osa, making use of his
celebrated lemma. Several more years passed, before Koml�os and Szemer�edi
proved in 1983 that !(n) !1 also su�ces to ensure that a \typical"Gn;M is
Hamiltonian. A little later Bollob�as proved a sharper, hitting time type result
that had been conjectured by Erd}os and Spencer, connecting Hamiltonicity
with having minimal degree at least 2.

The chromatic number problem from the 1960 \Evolution" paper of Erd}os
and R�enyi was the last to fall. In 1988 the author of this note proved that

picking one of the 2(n
2
) graphs on [n] at random, with probability tending to

1, the chromatic number of the random graph is asymptotic to log 2
2 n= logn.

Earlier results had been obtained by Grimmett and McDiarmid, Bollob�as and
Erd}os, Matula, Shamir and Spencer, and others, and subsequent re�nements
were proved by Frieze,  Luczak, McDiarmid and others.

The tremendous success of the theory of random graphs in shedding light
on a variety of combinatorial, structural problems concerning graphs fore-
shadows the use of ransom methods in other branches of mathematics.Graphs
carry only a minimal structure so they are bound to yield to detailed statis-
tical analysis. However, as we acquire more expertise in applying results of
probability theory, we should be able to subject more complicated structures
to statistical analysis. In keeping with this philosophy, having founded, with
R�enyi, the theory of random graphs, Erd}os turned to \the theory of random
groups" with another great collaborator, Paul Tur�an. In a series of seven
substantial papers, published between 1965 and 1972, Erd}os and Tur�an laid
the foundations of statistical group theory .

For simplicity, let us consider the symmetric group Sn, and let �n be a
random element of Sn, with each of the n! possibilities equally likely. Thus
�n is a random permutation of [n] = f1; 2; : : :; ng, and every function of �n
is a random variable. One of the simplest of these random variables is the
order O(�n) of a permutation �n.

Concerning g(n) = max�2Sn O(�), the maximal order of a permutation,
it was already shown by Landau in 1909 that

lim
n!1

log g(n)p
n logn

= 1 :
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Thus O(�n) is always small compared to the order of the group Sn, although
it can be rather large!

In contrast, for a single cycle of length n has order n, although such cycles
constitute a non-negligible fraction, namely a fraction 1=n, of all possible
permutations. What is then the order of most elements of Sn?

As the starting point of their investigations, Erd}os and Tur�an proved
that for a \typical" permutation �n, the order O(�) is much smaller than
the maximum g(n) = expf(n logn)1=2(1+o(1))g, and much larger than n. In
fact, if !(n) !1 (arbitrarily slowly, as always) then

lim
n!1P(j logO(�n) � 1

2
log2 nj � !(n) log3=2 n) = 0 :

Thus the \typical" order is about 1
2 log2 n.

Erd}os and Tur�an went on to prove that, asymptotically, O(�n) has a
log-normal distribution: as n!1,

p
3(logO(�n) � 1

2
log2 n)= log3=2 n

tends, in distribution, to the standard normal distribution, i.e. if x 2 R then

lim
n!1P

 p
3(logO(�n)� 1

2
log2 n)

log3=2 n
< x

!
= �(x):

Having established this central limit theorem, which by now is known
as the Erd}os-Tur�an law , they went on to study the number W (n) of dif-
ferent values of O(�n). (Thus W (n) is the number of non-isomorphic cyclic
subgroups of Sn.) Erd}os and Tur�an proved that

W (n) = exp

�
�

r
2n

3 logn
+ O

�p
n log logn

logn

��
;

and, with the exception of o(W (n)) values, all are of the form

exp

(
(1 + o(1))

p
6 log 2

�

p
n logn

)
:

In Sn there are p(n) conjugacy classes, where p(n) is the partition function
mentioned earlier, and studied in detail by Hardy and Ramanujan. As the
order of a permutation � 2 Sn depends only on its conjugacy class K, it is
natural to ask what the distribution of O(K) is if the p(n) conjugacy classes
are considered equiprobable. Here we have written O(K) for the order of any
permutation in K. Erd}os and Tur�an proved that, with probability tending to
1,

O(K) = exp((A0 + o(1))
p
n);

where
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A0 =
2
p

6

�

X
j 6=0

(�1)j+1

3j2 + j
� 1:81:

All these results are proved by hard analysis, using Tauberian theorems
and contour integration, somewhat resembling the Hardy-Ramanujan analy-
sis; there is no reference to soft analysis or general theorems in probability
theory or group theory that would get round the hard work. Thus it is not
surprising that, over the years, many of the results of Erd}os and Tur�an have
been given shorter, more probabilistic proofs, that lead to sharper results. In
particular, the Erd}os-Tur�an law was studied by Best in 1970, Bovey in 1980,
Nicolas in 1985 and Arratia and Tavar�e in 1992. To date, the last word on
the topic is due to Barbour and Tavar�e, who used the Ewens sampling for-
mula, derived by Ewens in 1972 in the context of population genetics, to give
a beautiful proof of the Erd}os-Tur�an law with a sharp error estimate. It is
fascinating that, in order to get a small error term, Barbour and Tavar�e had
to adjust slightly the approximating normal distribution:

supx jP[f13 log3 ng�1=2(logO(�n) � 1
2 log2 n+ logn log logn) � x]

��(x)j = O((logn)�1=2):

Numerous other problems of statistical group theory have been studied,
including the problem of random generation. Dixon proved in 1969 that al-
most all pairs of elements of Sn generate Sn or the alternating group An, and
recently Kantor and Lubotzky proved analogues of this result for �nite clas-
sical groups. Because of problems arising in computational Galois theory, one
is also interested in a considerably stronger condition than mere generation.
The elements x1; : : : ; xm of a group G are said to generate G invariably if G
is generated by y1; : : : ; ym whenever yi is conjugate to xi for i = 1; 2; : : : ;m.
Dixon showed in 1992 that for some constant c > 0, with probability tend-
ing to 1, c(logn)1=2 randomly chosen permutations generate Sn invariably.
In 1993  Luczak and Pyber, con�rming a conjecture of McKay, proved that
for every � > 0 there is a constant C = C(�) such that C random elements
generate Sn with probability at least 1� �.

 Luczak and Pyber also proved a conjecture of Cameron; they showed that
the fraction of elements of Sn that belong to transitive subgroups other than
Sn or An tends to 0 as n!1.

Needless to say, in spite of these powerful results, many important ques-
tions remain unanswered, indicating that statistical group theory is still in
its infancy.

When writing about the contributions of Erd}os to mathematics, it would
be unforgivable not to emphasize the enormous inuence he exerts through
his uncountably many problems. At the International Congress of Mathe-
maticians in Paris in 1900, David Hilbert emphasized with great eloquence
the importance of problems for mathematics. \The clearness and ease of com-
prehension insisted on for a mathematical theory I should still more demand
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for a mathematical problem, if it is to be perfect. For what is clear and easily
comprehended attracts; the complicated repels us."

For lack of space, we shall con�ne ourselves to one more of the problems
of Erd}os that have been solved, and to three particularly beautiful unsolved
questions.

There is no doubt that the most di�cult Erd}os problem solved to date
is the problem on arithmetic progressions. In 1927 van der Waerden proved
the following conjecture of Baudet: if the natural numbers are partitioned into
two classes then at least one of the classes contains arbitrarily long arithmetic
progressions. Over the years, this beautiful Ramsey-type result has been the
starting point of much research. Quite early on, in 1936, Erd}os and Tur�an
suspected that partitioning the integers is an overkill: it su�ces to take a
\large" set of integers. Thus they formulated the following conjecture: if A
is a set of natural numbers with positive upper density, that is, if

lim sup
n!1

jA \ [n]j
n

> 0;

then A contains arbitrarily long arithmetic progressions.
Roth was the �rst to put a dent in this Erd}os-Tur�an conjecture when,

in 1952, he proved that A must contain arithmetic progressions of length 3.
Length 4 was much harder: Szemer�edi proved it only in 1969. Having warmed
up on length 4, in 1974 Szemer�edi proved the full conjecture; the long and
di�cult proof is a real tour de force of combinatorics. The story did not end
there: in 1977 F�urstenberg gave another proof of Szemer�edi's theorem, using
tools of ergodic theory; the methods of this proof and the new problems it
naturally led to revolutionized ergodic theory.

Let us turn then to the three unsolved Erd}os problems we promised. The
�rst asks for a substantial extension of Szemer�edi's theorem. Let a1 < a2 < : : :
be a sequence of natural numbers such that

P
1=an = 1. Is it true then that

the sequence contains arbitrarily long arithmetic progressions? It is not even
known that Roth's theorem holds in this case, i.e. that the sequence contains
an arithmetic progression with three terms. If this is not enough to indicate
that this problem is rather hard, it is worth noting that Erd}os o�ers $5000 for
a solution. A rather special case of the conjecture would be that the primes
contain arbitrarily long arithmetic progressions.

The last two are also rather old conjectures, but each carries \only" a $500
price-tag. Let f(n) be the minimal number of distinct distances determined
by n distinct points in the plane. Erd}os conjectured in 1946 that

f(n) >
cnp
logn

for some absolute constant c > 0. The lattice points show that, if true, this
is best possible. Chung, Szemer�edi and Trotter have proved that f(n) is at
least about n4=5.
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The third problem is from the 1961 paper of Erd}os, Ko and Rado; it is,
in fact, the last unsolved problem of that paper. (However, Ahlswede and
Khachatrian have just announced a proof of the conjecture.)

Let A be a 2-intersecting family of 2n-subsets of [4n] = f1; 2; : : :; 4ng.
Thus if A;B 2 A then A;B � [4n], jAj = jBj = 2n, and jA \ Bj � 2. Then
the Erd}os-Ko-Rado conjecture states that

jAj � 1

2

�
4n

2n

�
� 1

2

�
2n

n

�2

:

It is easily seen that, if true, this inequality is best possible. Indeed, let A
be the collection of 2n-subsets of [4n], containing at least n+1 of the �rst 2n
natural numbers. Then A is clearly 2-intersecting, and for every 2n-subset A
on [4n], the system contains precisely one of A and its complement �A, unless
A (and so �A as well) contains precisely n of the �rst 2n natural numbers.

It is widely known that vast amounts of thought and ingenuity are re-
quired in order to earn $500 on an Erd}os problem; even so, this problem may
be far harder than its price-tag suggests.

Although this brief review does not come close to doing justice to the
mathematics of Paul Erd}os, it does indicate that he has enriched the mathe-
matics of this century as very few others have. He has clearly earned a math-
ematical Oscar for lifetime achievement, several times over. May he continue
to prove and conjecture for many years to come.

Added in proof.

Sadly, this was not to be. On 20 September 1996, while attending a mini-
semester at the Banach Center in Warsaw, Professor Paul Erd}os was killed
by a massive heart attack. Although in the last year he started to show signs
of aging, his death was premature and entirely unexpected.

We combinatorialists have just become orphans.

B.B.


