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Summary. Ramsey's theorem was not discovered by P. Erd}os. But perhaps one
could say that Ramsey theory was created largely by him. This paper will attempt
to demonstrate this claim.

1. Introduction

Ramsey's theorem was not discovered by Paul Erd}os. This was barely technically
possible: Ramsey proved his theorem in 1928 (or 1930, depending on the quoted
source) and this is well before the earliest Erd}os publication in 1932. He was then
19. At such an early age four years makes a big di�erence. And also at this time
Erd}os was not even predominantly active in combinatorics. The absolute majority
of the earliest publications of Erd}os is devoted to number theory, as can be seen
from the following table:

1932 1933 1934 1935 1936 1937 1938 1939
all papers 2 0 5 10 11 10 13 13
number
theory

2 0 5 9 10 10 12 13

The three combinatorial exceptions among his �rst 82 papers published in 8
years are 2 papers on in�nite Eulerian graphs and the paper [1] by Erd}os and G.
Szekeres. Thus, the very young P. Erd}os was not a driving force of the development
of Ramsey theory or Ramsey-type theorems in the thirties. That position should
be reserved for Issac Schur who not only proved his sum theorem [2] in 1916 but,
as it appears now [3], also conjectured van der Waerden's theorem [4], proved an
important extension, and thus put it into a context which inspired his student R.
Rado to completely settle (in 1933) the question of monochromatic solutions of
linear equations [5]. This result stands apart even after 60 years.

Yet, in retrospect, it is fair to say that P. Erd}os was responsible for the continu-
ously growing popularity of the �eld. Ever since his pioneering work in the thirties
he proved, conjectured and asked seminal questions which together, some 40 to 50
years later, formed Ramsey theory. And for Erd}os, Ramsey theory was a constant
source of problems which motivated some of the key pieces of his combinatorial
research.

It is the purpose of this note to partially justify these claims, using a few exam-
ples of Erd}os' activity in Ramsey theory which we will discuss from a contemporary
point of view.

In the �rst section we cover paper [1] and later development in a great detail.
In Section 2, we consider the development based on Erd}os' work related to bounds
on various Ramsey functions. Finally, in Section 3 we consider his work related to
structural extensions of Ramsey's theorem.

No mention will be made of his work on in�nite extensions of Ramsey's theorem.
This is covered in these volumes by the comprehensive paper of A. Hajnal.
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2. The Erd}os-Szekeres Theorem

F. P. Ramsey discovered his theorem [6] in a sound mathematical context (of the
decision problem for a class of �rst-order formulas). But since the time of Dirichlet
the \Schubfach principle" and its extensions and variations played a distinguished
role in mathematics. The same holds for the other early contributions of Hilbert
[19], Schur [2] and van der Waerden [4].

Perhaps because of this context Ramsey's theorem was never regarded as a
puzzle and/or a combinatorial curiosity only. Thanks to Erd}os and Szekeres [1]
the theorem found an early application in a quite di�erent context, namely, plane
geometry:

Theorem 2.1 ([1]). Let n be a positive integer. Then there exists a least integer
N(n) with the following property: If X is a set of N(n) points in the plane in
general position (i.e. no three of which are collinear) then X contains an n-tuple
which forms the vertices of a convex n-gon.

One should note that (like in Ramsey's original application in logic) this state-
ment does not involve any coloring (or partition) and thus, by itself, fails to be of
\Ramsey type". Rather it �ts to a more philosophical description of Ramsey type
statements as formulated by Mirsky:

\There are numerous theorems in mathematics which assert, crudely
speaking, that every system of a certain class possesses a large subsys-
tem with a higher degree of organization than the original system."

It is perhaps noteworthy to list the main features of the paper. What a wealth
of ideas it contains!

I. It is proved that N(4) = 5 and this is attributed to Mrs. E. Klein. This is tied
to the social and intellectual climate in Budapest in the thirties which has been
described both by Paul Erd}os and Szekeres on several occasions (see e.g. [7]), and
with names like the Happy End Theorem.

II. The following two questions related to statement of Theorem 2.1 are explicitly
formulated:

(a) Does the number N(n) exist for every n?
(b) If so, estimate the value of N(n).

It is clear that the estimates were considered by Erd}os from the very beginning.
This is evident at several places in the article.

III. The �rst proof proves the existence of N(n) by applying Ramsey's theorem
for partitions of quadruples. It is proved that N(n) � r(2; 4; f5; ng). This is still
a textbook argument. Another proof based on Ramsey's theorem for partitions of
triples was found by A. Tarsi (see [8]). So far no proof has emerged which is based
on the graph Ramsey theorem only.

IV. The authors give \a new proof of Ramsey's theorem which di�ers entirely
from the previous ones and gives for mi(k; `) slightly smaller limits". Here mi(k; `)
denotes the minimal value of jXj such that every partition of i-element subsets of
X into two classes, say � and �, each k-element contains an i-element subset of
class � or each `-element subset contains an i-element subset of class �.

Thus,mi(k; `) is the Ramsey number for 2-partitions of i-element subsets. These
numbers are denoted today by r(2; i; fk; `g) or ri(k; `). The proof is close to the
standard textbook proofs of Ramsey's theorem. Several times P. Erd}os attributed
it to G. Szekeres.
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Erd}os and Szekeres explicitly state that (r2(k+1; `+1) =)m2(k+1; `+1) �
�
k+`
2

�
and this value remained for 50 years essentially the best available upper bound for
graph Ramsey numbers until the recent (independent) improvements by R�odl and
Thomason. The current best upper bound (for k = `) is [9] essentially

�
2k

k

�
=
p
k :

V. It is not as well known that [1] contains yet another proof of the graph theoretic
formulation of Ramsey's theorem (in the above notation, i = 2) which is stated for
its particular simplicity. We reproduce its formulation here.

Theorem. In an arbitrary graph let the maximum number of independent points
be k; if the number of points is N = m(k; `) then three exists in our graph a complete
graph of order `.

Proof. For ` = 1, the theorem is trivial for any k, since the maximum number of
independent points is k and if the number of points is (k + 1), there must be an
edge (complete graph of order 1).

Now suppose the theorem proved for (` � 1) with any k. Then at least N�k
k

edges start from one of the independent points. Hence if

N � k

k
= m(k; `� 1) ;

i.e.,
N = k �m(k; `� 1) + k ;

then, out of the end points of these edges we may select, in virtue of our induction
hypothesis, a complete graph whose order is at least (`� 1). As the points of this
graph are connected with the same point, they form together a complete graph of
order `.

This indicates that Erd}os and Szekeres were well aware of the novelty of the
approach to Ramsey's theorem. Also this is the formulation of Ramsey's problem
which motivated some of the key pieces of Erd}os' research. First an early use of
the averaging argument and then the formulation of Ramsey's theorem in a \high
o�-diagonal" form: If a graph G has a bounded clique number (for example, if it
is triangle-free) then its independence number has to be large. The study of this
phenomenon led Erd}os so key papers [10], [11], [12] which will be discussed in the
next section in greater detail.

VI. The paper [1] contains a second proof of Theorem 2.1. This is a more geomet-
rical proof which yields a better bound

N(n) �
�
2n� 4

n� 2

�
+ 1

and it is conjectured (based on the exact values of N(n) for n = 3; 4; 5) that
N(n) = 2n�2 + 1. This is still an unsolved problem. The second proof (which 50
years later very nicely �ts to a computational geometry context) is based on yet
another Ramsey-type result.

Theorem 2.2 (the ordered pigeon hole principle). Let m;n be positive inte-
gers. Then every set of (m�1)(n�1)+1 distinct integers contains either a monotone
increasing n-set or monotone decreasing m-set.
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The authors of [1] note that the same problem was considered by R. Rado. The
stage has been set.

The ordered pigeon-hole principle has been generalized in many di�erent direc-
tions (see e.g., [13], [14]).

All this is contained in this truly seminal paper. Viewed from a contemporary
perspective, the Erd}os-Szekeres paper did not solve any well-known problem at the
time and did not contribute to Erd}os' instant mathematical fame (as a number
theorist). But the importance of the paper [1] for the later development of com-
binatorial mathematics cannot be overestimated. To illustrate this development is
one of the aims of this paper.

Apart from the problem of a good estimation of the value ofN there is a peculiar
structural problem related to [1]:

Call a set Y � X an n-hole in X if Y is the set of vertices of a convex n-gon
which does not contain other points in X.

Problem. Does there always exist N�(n) such that if X is any set of at least
N�(n) points in the plane in general position then X contains an n-hole.

It is easy to prove that N�(n) exists for n � 5 (see Harborth (1978) where these
numbers are determined). Horton (1983) showed that N�(7) does not exist. Thus
only the existence of N�(6) is an open problem (see [15], [16] for recent related
problems).

3. Estimating Ramsey numbers

Today it seems that the �rst question in this area which one might be tempted to
consider is the problem of determining the actual sizes of the sets which are guar-
anteed by Ramsey's theorem (and other Ramsey-type theorems). But one should
try to resist this temptation since it is \well-known" that Ramsey numbers (of all
sorts) are di�cult to determine and even good asymptotic estimates are di�cult to
�nd.

It seems that these di�culties were known to both Erd}os and Ramsey. But
Erd}os considered them very challenging and addressed this question in several of
his key articles. In many cases his estimations obtained decades ago are still the
best available. Not only that, his innovative techniques became standard and whole
theories evolved from his key papers.

Here is a side comment which may partly explain this success: Erd}os was cer-
tainly one of the �rst number theorists who took an interest in combinatorics in
the contemporary sense (being preceded by isolated events, for example, V. Jarnik's
work on the minimum spanning tree problem and the Steiner problem see e.g. [17],
[18]. Incidentally Jarnik was one of the �rst coauthors of Erd}os). Together with
Tur�an, Erd}os brought to the \slums of topology" not only his brilliance but also
his expertise and \good taste". It is our opinion that these facts profoundly in-
uenced further development of the whole �eld. Thus it is not perhaps surprising
that if one would isolate a single feature of Erd}os' contribution to Ramsey theory
then it is perhaps his continuing emphasis on estimates of various Ramsey-related
questions. From the large number of results and papers we decided to cover several
key articles and comment on them from a contemporary point of view.

I. 1947 paper [10]. In a classically clear way, Erd}os proved

2k=2 � r(k) < 4k (3.1)

for every k � 3.
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His proof became one of the standard textbook examples of the power of the
probabilistic method. (Another example perhaps being the strikingly simple proof
of Shannon of the existence of exponentially complex Boolean functions.)

The paper [10] proceeds by stating (3.1) in an inverse form: De�ne A(n) as
the greatest integer such that given any graph G of n vertices, either it or its
complementary graph contains a complete subgraph of order A(n). Then for A(n) �
3,

log n

2 log 2
< A(n) <

2 log n

log 2
:

Despite considerable e�orts over many years, these bounds have been improved only
slightly (see [9], [20]). We commented on the upper bound improvements above. The
best current lower bound is

r(n) � (1 +O(1))

p
2e

n
2n=2

which is twice the Erd}os bound (when computed from his proof).
The paper [10] was one of 23 papers which Erd}os published within 3 years in the

Bull. Amer. Math. Soc. and already here it is mentioned that although the upper
bound for r(3; n) is quadratic, the present proof does not yield a nonlinear lower
bound. That had to wait for another 10 years.

II. The 1958 paper [11] | Graph theory and probability. The main result
of this paper deals with graphs, circuits, and chromatic number and as such does
not seem to have much to do with Ramsey theory.

Yet the paper starts with the review of bounds for r(k; k) and r(3; k) (all due to
Erd}os and Szekeres). Ramsey numbers are denoted as in most older Erd}os papers
by symbols of f(k), f(3; k), g(k). He then de�nes analogously the function h(k; `)
as \the least integer so that every graph of h(k; `) vertices contains either a closed
circuit of k or fewer lines or the graph contains a set of ` independent points. Clearly
h(3; `) = f(3; `)".

The main result of [11] is that h(k; `) > `1+1=2k for any �xed k � 3 and `
su�ciently large. The proof is one of the most striking early use of the probabilistic
method. Erd}os was probably aware of it and this may explain (and justify) the title

of the paper. It is also proved that h(2k + 1; `) < c`1+1=k and this is proved by a
variant of the greedy algorithm by induction on `. Now after this is claimed, it is
remarked that the above estimation (3.1) leads to the fact that there exists a graph
G with n vertices which contain no closed circuit of fewer than k edges and such
that its chromatic number is > n�.

This side remark is in fact perhaps the most well known formulation of the main
result of [11]:

Theorem 3.1. For every choice of positive integers k; t and ` there exists a k-graph
G with the following properties:

(1) The chromatic number of G > t.
(2) The graph of G > `.

This is one of the few true combinatorial classics. It started in the 40's with Tutte
[21] and Zykov [26] for the case k = 2 and ` = 2 (i.e., for triangle-free graphs).
Later, this particular case was rediscovered and also conjectured several times [22],
[23]. Kelly and Kelly [23] proved the case k = 2, ` 5 5, and conjectured the general
statement for graphs. This was settled by Erd}os in [11] and the same probabilistic
method has been applied by Erd}os and Hajnal [27] to yield the general result.

Erd}os and Rado [29] proved the extension of k = 2, ` = 2 to trans�nite chro-
matic numbers while Erd}os and Hajnal [28] gave a particularly simple construction
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of triangle-free graphs, so called shift graphs G = (V; E): V = f(i; j); 1 � i < j �
ng and E = f(i; j); (i0; j0); i < j = i0 < j0g. Gn is triangle-free and �(Gn) = dlog ne.

For many reasons it is desirable to have a constructive proof of Theorem 3.1.
This has been stressed by Erd}os on many occasions. This appeared to be di�cult
(see [25]) and a construction in full generality was �nally given by Lov�asz [30]. A
simpli�ed construction has been found in the context of Ramsey theory by Ne�set�ril
and R�odl [31]. The graphs and hypergraphs with the above properties (i), (ii) are
called highly chromatic (locally) sparse graphs, for short.

Their existence could be regarded as one of the true paradoxes of �nite set
theory and it has always been felt that this result is one of the central results in
combinatorics.

Recently it has been realized that sparse and complex graphs may be used in
theoretical computer science for the design of fast algorithms. However, what is
needed there is not only a construction of these \paradoxical" structures but also
their reasonable size. In one of the most striking recent developments, a program for
constructing complex sparse graphs has been successfully carried out. Using several
highly ingenious constructions which combine algebraic and topological methods it
has been shown that there are complex sparse graphs, the size of which in several
instances improves the size of random objects. See Margulis [32], Alon [34] and
Lubotzky et al. [33].

Particularly, it follows from Lubotzky et al. [33] that there are examples of
graphs with girth `, chromatic number t and the size at most t3`. A bit surprisingly,
the following is still open:

Problem. Find a primitive recursive construction of highly chromatic locally
sparse k-uniform hypergraphs. Indeed, even triple systems (i.e., k = 3) present
a problem.

III. r(3; n) [12]. The paper [12] provides the lower bound estimate on the Ramsey
number r(3; n).

Using probabilistic methods Erd}os proved

r(3; n) � n2

log2 n
(3.2)

(while the upper bound r(3; n) �
�
n+1
2

�
follows from [1]).

The estimation of Ramsey numbers r(3; n) was Erd}os' favorite problem for
many years. We �nd it already in his 1947 paper [10] where he mentioned that he
cannot prove the nonlinearity of r(3; n). Later he stressed this problem (of estimat-
ing r(3; n)) on many occasions and conjectured various forms of it. He certainly
felt the importance of this special case. How right he was is clear from the later
developments, which read as a saga of modern combinatorics. And as isolated as
this may seems, the problem of estimating r(3; n) became a cradle of many methods
and results, perhaps far exceeding the original motivation.

In 1981 Ajtai, Koml�os and Szemer�edi in their important paper [35] proved by
a novel method

r(3; n) � c
n2

log n
: (3.3)

This bound and their method of proof has found many applications. The Ajtai,
Koml�os and Szemer�edi proof was motivated by yet another Erd}os problem from
combinatorial number theory.

In 1941 Erd}os and Tur�an [37] considered problem of dense Sidon sequences (or
B2-sequences). An in�nite sequence S = a1 < a2 < � � � of natural numbers is called
Sidon sequence if all pairwise sums ai + aj are distinct. De�ne
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fS(n) = maxfx : ax � ng
and for a given n, let f(n) denote the maximal possible value of fS(n). In [37], Erd}os

and Tur�an prove that for �nite Sidon sequences f(n) � n1=2 (improving Sidon's

bound of n1=4; Sidon's motivation came from Fourier analysis [38]). However for
every in�nite Sidon sequence S growth of fS(n) is a more di�cult problem and as
noted by Erd}os and Tur�an,

limfS(n)=n
1=2 = 0 :

By using a greedy argument it was shown by Erd}os [36] that fS(n) > n1=3. (Indeed,
given k numbers x1 < � � � < xk up to n, each triple xi < xj < xk kills at most 3
other numbers x, xi+xj = xk+ x, xi+ xk = xj +x and xj + xk = xi+ x and thus

if k + 3
�
k
3

�
< ck2 < n we can always �nd a number x < n which can be added to

S.) Ajtai, Koml�os and Szemer�edi proved using a novel \random construction" the
existence of an in�nite Sidon sequence S such that

fS(n) > c � (n log n)1=3 :
An analysis of independent sets in triangle-free graphs is the basis of their ap-

proach and this yields as a corollary the above mentioned upper bound on r(3; n).

(The best upper bound for fS(n) is of order c � (n log n)1=2.) It should be noted that
the above Erd}os-Tur�an paper [37] contains the following still unsolved problem: Let
a1 < a2 < � � � be an arbitrary sequence. Denote by f(n) the number of represen-
tations of n as ai + aj. Erd}os and Tur�an prove that f(n) cannot be a constant for
all su�ciently large n and conjectured that if f(n) > 0 for all su�ciently large n
then lim sup f(n) =1. This is still open. Erd}os provided a multiplicative analogue
of this conjecture (i.e., for the function g(n), the number of representation of n as
aiaj); this is noted already in [37]). One can ask what this has to do with Ramsey
theory. Well, not only was this the motivation for [35] but a simple proof of the fact
that lim sup g(n) = 1 was given by Ne�set�ril and R�odl in [39] just using Ramsey's
theorem.

We started this paper by listing the predominance of Erd}os's �rst works in num-
ber theory. But in a way this is misleading since the early papers of Erd}os stressed
elementary methods and often used combinatorial or graph-theoretical methods.
The Erd}os-Tur�an paper is such an example and the paper [40] even more so.

The innovative Ajtai-Koml�os-Szemer�edi paper was the basis for a further devel-
opment (see, e.g., [41]) and this in turn led somewhat surprisingly to the recent re-
markable solution of Kim [42], who proved that the Ajtai-Koml�os-Szemer�edi bound
is up to a constant factor, the best possible, i.e.,

r(n; 3) > c
n2

log n
:

Thus r(n; 3) is the only nontrivial in�nite family of (classical) Ramsey numbers
with known asymptotics.

IV. Constructions. It was realized early by Erd}os the importance of �nding
explicit constructions of various combinatorial objects whose existence he justi�ed
by probabilistic methods (e.g., by counting). In most case such constructions have
not yet found but yet even constructions producing weaker results (or bounds)
formed an important line of research. For example, the search for an explicit graph
of size (say) 2n=2 which would demonstrate this Ramsey lower bound has been so
far unsuccessful. This is not an entirely satisfactory situation since it is believed
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that such graphs share many properties with random graphs and thus they could
be good candidates for various lower bounds, for example, in theoretical computer
science for lower bounds for various measures of complexity. (See the papers [43]
and [44] which discuss properties of pseudo- and quasi-random graphs.)

The best constructive lower bound for Ramsey numbers r(n) is due to Frankl
and Wilson. This improves on an earlier construction of Frankl [46] who found a
�rst constructive superpolynomial lower bound.

The construction of Frankl-Wilson graphs is simple:
Let p be a prime number, put q = p3. De�ne the graph Gp = (V; E) as follows:

V =

�
[q]

p2 � 1

�
= fF � f1; : : : ; p3g : jF j = p2 � 1g ;

fF;F 0g 2 E i� jF \ F 0j � �1(mod q) :

The graph Gp has
�

p3

p2�1

�
vertices. However, the Ramsey properties of the graph

Gp are not trivial to prove: It follows only from deep extremal set theory results
due to Frankl and Wilson [45] that neither Gp nor its complement contain Kn for

n � � p3

p�1

�
. This construction itself was motivated by several extremal problems of

Erd}os and in a way (again!) the Frankl-Wilson construction was a byproduct of
these e�orts.

We already mentioned earlier the developments related to Erd}os paper [11].
The constructive version of bounds for r(3; n) led Erd}os to geometrically de�ned
graphs. An early example is Erd}os-Rogers paper [47] where they prove that there
exists a graph G with `1+ck vertices, which contains no complete k-gon, but such
that each subgraph with ` vertices contains a complete (k� 1)-gon.

If we denote by h(k; `) the minimum integer such that every graph of h(k; `)
vertices contains either a complete graph of k vertices or a set of ` points not
containing a complete graph with k� 1 vertices, then

h(k; `) � r(k; `) :

However, for every k � 3 we still have h(k; `) > `1+ck .
This variant of the Ramsey problem is due to A. Hajnal. The construction of

the graph G is geometrical: the vertices of G are points on an n-dimensional sphere
with unit radius, and two points are joined if their Euclidean distance exceedsp
2k=(k � 1).
Graphs de�ned by distances have been studied by many people (e.g., see [48]).

The best constructive lower bound on r(3; n) is due to Alon [49] and gives r(3; n) �
cn3=2. See also a remarkable elementary construction [50] giving a weaker result.

4. Ramsey Theory

It seems that the building of a theory per se was never Erd}os's preference. He is
a life long problem solver, problem poser, admirer of mathematical miniatures and
beauties. THE BOOK is an ideal. Instead of developing the whole �eld he seemed
always to prefer consideration of particular cases. However, many of these cases
turned out to be key cases and somehow theories emerged.

Nevertheless, one can say that Erd}os and Rado systematically investigated prob-
lems related to Ramsey's theorem with a clear vision that here was a new basis for
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a theory. In their early papers [51], [52] they investigated possibilities of various ex-
tensions of Ramsey's theorem. It is clear that these papers are a result of a longer
research and understanding of Ramsey's theorem.

As if these two papers summarized what was known, before Erd}os and Rado
went on with their partition calculus projects reected by the grand papers [53]
and [54]. But this is beyond the scope of this paper. [51] contains an extension
of Ramsey's theorem for colorings by an in�nite number of colors. This is the
celebrated Erd}os-Rado canonization lemma:

Theorem 4.1 ([51]). For every choice of positive integers p and n there exists

N = N(p; n) such that for every setX, jXj � N , and for every coloring c :
�
X
p

�
! N

(i.e., a coloring by arbitrarily many colors) there exists an n-element subset Y of

X such that the coloring c restricted to the set
�
Y
p

�
is \canonical".

Here a coloring of
�
Y
p

�
is said to be canonical if there exists an ordering Y =

y1 < � � � < yn and a subset w � f1; : : : ; pg such that two n-sets fz1 < � � � < zpg and
fz01 < � � � < z0pg get the same color if and only if zi = z0i for exactly i 2 w. Thus
there are exactly 2p canonical colorings of p-tuples. The case w = � corresponds
to a monochromatic set while w = f1; : : : ; pg to a coloring where each p-tuple
gets a di�erent color (such a coloring is sometimes called a \rainbow" or totally
multicoloring).

Erd}os and Rado deduced Theorem 4.1 from Ramsey's theorem. For example,
the bound N(p; n) � r(2p; 22p; n) gives a hint as to how to prove it. One of the
most elegant forms of this argument was published by Rado [55] in one of his last
papers.

The problem of estimating N(p; n) was recently attacked by Lefman and R�odl
[56] and Shelah [57]. One can see easily that Theorem 4.1 implies Ramsey's theorem
(e.g., N(p; n) � r(p; n � 2; n)) and the natural question arises as to how many
exponentiations one needs. In [56] this was solved for graphs (p = 2) and Shelah
[57] solved recently this problem in full generality: N(p; n) is the lower function of
the same height r(p; 4; n) i.e., (p� 1) exponentiations.

The Canonization Lemma found many interesting applications (see, e.g., [58])
and it was extended to other structures. For example, the canonical van der Waer-
den theorem was proved by Erd}os and Graham [59].

Theorem 4.2 ([59]). For every coloring of positive integers one can �nd either
a monochromatic or a rainbow arithmetic progression of every length. (Recall: a
rainbow set is a set with all its elements colored di�erently.)

This result was extended by Lefman [60] to all regular systems of linear equations
(see also [78]).

One of the essential parts of the development of the \new Ramsey theory" age
was the stress on various structural extensions and structure analogies of the original
results. A key role was played by Hales-Jewett theorem (viewed as a combinatorial
axiomatization of van der Waerden's theorem), Rota's conjecture (the vector-space
analogue of Ramsey's theorem), Graham-Rothschild parameter sets, all dealing
with new structures. These questions and results displayed the richness of the �eld
and attracted so much attention to it.

It seems that one of the signi�cant turns appeared in the late 60's when
Erd}os, Hajnal and Galvin started to ask questions such as \which graphs con-
tain a monochromatic triangle in any 2-coloring of its edges". Perhaps the essential
parts of this development can be illustrated with this particular example.

We say that a graph G = (V; E) is t-Ramsey for the triangle (i.e., K3) if for
every coloring of E by t-colors, one of the colors contains a triangle. Symbolically
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we denote this by G! (K3)
2
t . This is a variant of the Erd}os-Rado partition arrow.

Ramsey's theorem gives us K6 ! (K3)
2
2 (and Kr(2;t;3) ! (K3)

2
t ). But there are

other essentially di�erent examples. For example, a 2-Ramsey graph forK3 need not
contain K6. Graham [62] constructed the unique minimal graph with this property:
The graph K3+C5 (triangle and pentagon completely joined) is the smallest graph
G with G ! (K3)

2
2 which does not contain a K6. Yet K3 + C5 contains K5 and

subsequently van Lint, Graham and Spencer constructed a graph G not containing
even a K5, with G ! (K3)

2
2. Until recently, the smallest example was due to

Irving [63] and had 18 vertices. Very recently, two more constructions appeared by
Erickson [64] and Bukor [65] who found examples with 17 and 16 vertices (both of
them use properties of Graham's graph).

Of course, the next question which was asked is whether there exists a K4-free
graph G with G! (K3)

2
2. This question proved to be considerably harder and it is

possible to say that it has not yet been solved completely satisfactorily.
The existence of a K4-free graph G which is t-Ramsey for K3 was settled by

Folkman [66] (t = 2) and Ne�set�ril and R�odl [67]. The proofs are complicated and
the graphs constructed are very large. Perhaps just to be explicit Erd}os [68] asked
whether there exists a K4-free graph G which arrows triangle with < 1010 vertices.
This question proved to be very accurate and it was �nally shown by Spencer [69]
that there exists such a graph with 3� 108 vertices. Of course, it is possible that
such a graph exists with only 100 vertices!

The proof of this statement is probabilistic. The probabilistic methods were
not only applied to get various bounds for Ramsey numbers. Recently, the Ramsey
properties of the Random Graph K(n;p) were analyzed by R�odl and Ruci�nski
and the threshold probability for p needed to guarantee K(n;p) ! (K3)

2
t with

probability tending to 1 as n!1, was determined (see [70]).
Many of these questions were answered in a much greater generality and this

seems to be a typical feature for the whole area. On the other side these more gen-
eral statements explain the unique role of original Erd}os problem. Let us be more
speci�c. We need a few de�nitions: An ordered graph is a graph with a linearly or-
dered set of vertices. Isomorphism of ordered graphs means isomorphism preserving
orderings. If A;B are ordered graphs (for now we will �nd it convenient to denote

graphs by A;B;C; : : :) then
�
B
A

�
will denote the set of all induced subgraphs of B

which are isomorphic to A. We say that a class K of graphs is Ramsey if for every
choice of ordered graphs A;B from K there exists C 2 K such that C ! (B)A2 .

Here, the notation C ! (B)A2 means: for every coloring c :
�
C
A

�
! f1; 2g there

exists B0 2 �C
B

�
such that the set

�
B0

A

�
is monochromatic (see, e.g., [71].) Similarly

we say that a class K of graphs is canonical if for every choice of ordered graphs
A;B from K there exists C 2 K with the following property: For every coloring

c :
�
C
A

�
! N there exists B0 2

�
C
B

�
such that the set

�
B0

A

�
has a canonical coloring.

Denote by Forb(Kk) the class of all Kk-free graphs. Now we have the following

Theorem 4.3. For a hereditary class K of graphs the following statements are
equivalent:

1. K is Ramsey
2. K is canonical
3. K is a union of the following 4 types of classes: the class Forb(Kk), the class of

complements of graphs from Forb(Kk), the class of Tur�an graphs (i.e., complete
multipartite graphs) and the class of equivalences (i.e., complements of Tur�an
graphs).
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(1. , 3. is proved in [71], 2. ) 1. is easy, and one can prove 1. ) 2. directly
along the lines of Erd}os-Rado proof of canonization lemma.) Thus, as often in Erd}os'
case, the triangle-free graphs were not just any case but rather the typical case.

From today's perspective it seems to be just a natural step to consider. Ramsey
properties of geometrical graphs. This was initiated in a series of papers by Erd}os,
Graham, Montgomery, Rothschild, Spencer and Straus, [72], [73], [74]. Let us call
a �nite con�guration C of points in En Ramsey if for every r there is an N = N(r)
is that in every r-coloring of the points of EN , a monochromatic congruent copy of
C is always formed. For example, the vertices of a unit simplex in En is Ramsey
(with N(r) = n(r� 1) + n), and it is not hard to show that the Cartesian product
of two Ramsey con�gurations is also Ramsey. More recently, Frankl and R�odl [75]
showed that any simplex in En is Ramsey (a simplex is a set of n+1 points having
a positive n-volume).

In the other direction, it is known [72] that any Ramsey con�guration must lie
on the surface of a sphere (i.e., be \spherical"). Hence, 3-collinear points do not
form a Ramsey con�guration, and in fact, for any such set C3, E

N can always be
16-colored so as to avoid a monochromatic congruent copy of C3. It is not known
if the value 16 can be reduced (almost certainly it can). The major open question
is to characterize the Ramsey con�gurations. It is natural to conjecture that they
are exactly the class of spherical sets. Additional evidence of this was found by
K�r���z [76] who showed for example, that the set of vertices of any regular polygon
is Ramsey. A fuller discussion of this interesting topic can be found in [77].

5. Adventures in Arithmetic Progressions

Besides Ramsey's theorem itself the following result provided constant motivation
for Ramsey Theory:

Theorem 5.1 (van der Waerden [79]). For every choice of positive integers k
and n, there exists a least N(k; n) = N such that for every partition of the set
f1; 2; : : : ;Ng into k classes, one of the classes always contains an arithmetic pro-
gression with n terms.

The original proof of van der Waerden (which developed through discussions
with Artin and Schreier | see [80] for an account of the discovery) and which is
included in an enchanting and moving book of Khinchine [81] was until recently es-
sentially the only known proof. However, interesting modi�cations of the proof were
also found, the most important of which is perhaps the combinatorial formulation
of van der Waerden's result by Hales and Jewett [82].

The distinctive feature of van der Waerden's proof (and also of Hales-Jewett's
proof) is that one proves a more general statement and then uses double induction.
Consequently, this procedure does not provide a primitive recursive upper bound
for the size of N (in van der Waerden's theorem). On the other hand, the best
bound (for n prime) is (only!) W (n + 1) � n2n, n prime (due to Berlekamp [83]).
Thus, the question of whether such a huge upper bound was also necessary, was
and remains to be one of the main research problems in the area. In 1988, Shelah
[84] gave a new proof of both van der Waerden's and the Hales-Jewett's theorem
which provided a primitive recursive upper bound for N(k; n). However the bound
is still very large being of the order of �fth function in the Ackermann hierarchy |
\tower of tower functions". Schematically,
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Even for the solution of the modest looking conjecture N(2; n) � 2�
�
�
2
�
n, the �rst

author of this paper is presently o�ering $1000.
The discrepancy between the general upper bound for van der Waerden numbers

and the known values is the best illustrated for the �rst nontrivial value: while
N(2; 3) = 9 the Shelah proof gives the stack of 2's of height 216.

These observations are not new and were considered already in the Erd}os
and Tur�an 1936 paper [85]. For the purpose of improving the estimates for the
van der Waerden numbers, they had the idea of proving a stronger | now called a
density| statement. They considered (how typical!) the particular case of 3-term
arithmetic progressions and for a given positive integer N , de�ned r(N) (their no-
tation) to denote the maximum number elements of a sequence of numbers � N
which does not contain a 3-term arithmetic progression. They observed the subad-
ditivity of function r(N) (which implies the existence of a limiting value of r(N)=N)

and proved r(N) � � 3
8 + �

�
N for all N � N(�).

After that they remarked that probably r(N) = o(N). And in the last few lines
of their short paper they de�ne numbers r`(N) to denote the maximum number
of integers less than or equal to N such that no ` of them form an arithmetic
progression. Although they do not ask explicitly whether r`(N) = o(N) (as Erd}os
did many times since), this is clearly in their mind as they list consequences of a
good upper bound for r`(N): long arithmetic progressions formed by primes and a
better bound for the van der Waerden numbers.

As with the Erd}os-Szekeres paper [1], the impact of the modest Erd}os-Tur�an
note [85] is hard to overestimate. Thanks to its originality, both in combinatorial
and number theoretic contexts, and to Paul Erd}os' persistence, this led eventually
to beautiful and di�cult research, and probably beyond Erd}os' expectations, to a
rich general theory. We wish to briey mention some key points of this development.

Good lower estimates for r(N) were obtained soon after by Salem and Spencer
[86] and Behrend [87] which still gives the best bound. These bounds recently found
a surprising application in a least expected area, namely in the fast multiplication
of matrices (Coppersmith, Winograd [88]).

The upper bounds and r(N) = o(N) appeared to be much harder. In 1953
K. Roth [89] proved r3(N) = o(N) and after several years of partial results, E.
Szemer�edi in 1975 [91] proved the general case

r`(N) = o(N) for every ` :

This is generally recognized as the single most important Erd}os solved problem,
the problem for which he has paid the largest amount. By now there are more
expensive problems (see Erd}os' article in these volumes) but they have not yet
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been solved. And taking ination into account, possibly none of them will ever
have as an expensive solution. Szemer�edi's proof changed Ramsey theory in at
least two aspects. First, several of its pieces, most notably so called Regularity
Lemma, proved to be useful in many other combinatorial situations (see e.g., [90],
[91], [92]). Secondly, perhaps due to the complexity of Szemer�edi's combinatorial
argument, and the beauty of the result itself, an alternative approach was called
for. Such an approach was found by Hillel Furstenberg [93], [94] and developed
further in many aspects in his joint work with B. Weiss, Y. Katznelson and others.
Let us just mention two results which in our opinion best characterize the power
of this approach: In [95] Furstenberg and Katznelson proved the density version
of Hales-Jewett theorem. More recently, Bergelson and Leibman [96] proved the
following striking result (conjectured by Furstenberg):

Theorem 5.2 ([96]). Let p1; : : : ; pk be polynomials with rational coe�cients tak-
ing integer values on integers and satisfying pi(0) = 0 for i = 1; : : : ; k. Then every
set X of integers of positive density contains for every choice of numbers �1; : : : ; �k,
a subset

� + p1(d)�1; �+ p2(d)�2; : : : ; � + pk(d)�k

for some � and d > 0.

Choosing pi(x) = x and �i = i we get the van der Waerden theorem. Already,
the case pi(x) = x2 and �i = i was open for several years (this gives long arithmetic
progressions in sets of positive density with their di�erences being some square).

For none of these results are there known combinatorial proofs. Instead, they
are all proved by a blend of topological dynamics and ergodic theory methods,
proving countable extensions of these results. For this part of Ramsey theory this
setting seems to be most appropriate. However, it is a long way from the original
Erd}os-Tur�an paper.

Let us close this section with a more recent example. In 1983 G. Pisier for-
mulated (in a harmonic analysis context) the following problem: A set of integers
x1 < x2 < � � � is said to be independent if all �nite subsums of distinct elements
are distinct. Now let X be an in�nite set and suppose for some � > 0 that every
�nite subset Y � X contains a subsubset Z of size � �jZj which is independent. Is
it then true that X is a �nite union of independent sets?

Despite many e�orts and partial solutions the problem is still open. It was again
Paul Erd}os who quickly realized the importance of the Pisier problem and Erd}os,
Ne�set�ril and R�odl recently [97], [98] studied \Pisier type problems". For various
notions of an independence relation, the following question was considered: Assume
that an in�nite set X satis�es for some � > 0, some hereditary density condition
(i.e., we assume that every �nite set Y contains an independent subsubset of size
� �jY j). Is it then true that X can be partitioned into �nitely many independent
sets?

Positive instances (such as collinearity, and linear independence) as well as neg-
ative instances (such as Sidon sets) were given in [97], [98]. Also various \�nitization
versions" and analogues of the Pisier problem were answered in the negative. But
at present the original Pisier problem is still open. In a way one can consider Pisier
type problems as dual to the density results in Ramsey theory: One attempts to
prove a positive Ramsey type statement under a strong (hereditary) density condi-
tion. This is exempli�ed in [98] by the following problem which is perhaps a �tting
conclusion to this paper surveying 60 years of Paul Erd}os' service to Ramsey theory.
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The Anti-Szemer�edi Problem [98]

Does there exist a set X of positive integers such that for some � > 0 the following
two conditions hold simultaneously:

(1) For every �nite Y � X there exists a subset Z � X, jZj � �jY j, which does
not contain a 3-term arithmetic progression;

(2) Every �nite partition of X contains a 3-term arithmetic progression in one of
its classes.

References

1. P. Erd}os and G. Szekeres, A combinatorial problem in geometry, Composito
Math. 2 (1935), 464{470.

2. I. Schur, �Uber die Kongruens xm + ym = zm(mod p), Jber. Deutch. Math.
Verein 25 (1916), 114{117.

3. I. Schur, Gesammelte Abhandlungen (eds. A. Brauer, H. Rohrbach), 1973,
Springer.

4. B. L. van der Waerden, Berver's einer Baudetschen Vermutung, Nieuw. Arch.
Wisk. 15 (1927), 212{216.

5. R. Rado, Studien zur Kombinatorik, Math. Zeitschrift 36 (1933), 242{280.
6. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 48 (1930),

264{286.
7. P. Erd}os, Art of Counting, MIT Press.
8. R. L. Graham, B. L. Rothschild, and J. Spencer, Ramsey theory, Wiley, 1980,

2nd edition, 1990.
9. A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory 12

(1988), 509{517.
10. P. Erd}os, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53

(1947), 292{294.
11. P. Erd}os, Graph theory and probabilities, Canad. J. Math. 11 (1959), 34{38.
12. P. Erd}os, Graph theory and probability II, Canad. J. Math. 13 (1961), 346{352.
13. V. Chv�atal and J. Komlos, Some combinatorial theorems on monotonicity,

Canad. Math. Bull. 14, 2 (1971).
14. J. Ne�set�ril and V. R�odl, A probabilistic graph theoretical method, Proc. Amer.

Math. Soc. 72 (1978), 417{421.
15. P. Valtr, Convex independent sets and 7-holes in restricted planar point sets,

Discrete Comput. Geom. 7 (1992), 135{152.
16. J. Ne�set�ril and P. Valtr, A Ramsey-type result in the plane, Combinatorics,

Probability and Computing 3 (1994), 127{135.
17. V. Jarnik and M. K�ossler, Sur les graphes minima, contenant n points donn�es,

�Cas. P�est. Mat. 63 (1934), 223{235.
18. P. Hell and R. L. Graham, On the history of the minimum spanning tree prob-

lem, Annals of Hist. Comp. 7 (1985), 43{57.

19. D. Hilbert, �Uber die irreduribilit�at ganzer rationaler funktionen mit ganssahli-
gen koe�eienten, J. Reine und Angew. Math. 110 (1892), 104{129.

20. J. H. Spencer, Ramsey's theorem | a new lower bound, J. Comb. Th. A, 18
(1975), 108{115.

21. Blanche Descartes, A three colour problem, Eureka 9 (1947), 21, Eureka 10
(1948), 24. (See also the solution to Advanced problem 1526, Amer. Math.
Monthly 61 (1954), 352.)



Ramsey Theory in the Work of Paul Erd}os 207

22. G. A. Dirac, The structure of k-chromatic graphs, Fund. Math. 40 (1953), 42{
55.

23. J. B. Kelly and L. M. Kelly, Paths and Circuits in critical graphs, Amer. J.
Math. 76 (1954), 786{792.

24. J. Mycielski, Sur le coloriage des graphes, Collog. Math. 3 (1955), 161{162.
25. J. Ne�set�ril, Chromatic graphs without cycles of length � 7, Comment. Math.,

Univ. Carolina (1966).
26. A. A. Zykov, On some properties of linear complexes, Math. Sbornik 66, 24

(1949), 163{188.
27. P. Erd}os and A. Hajnal, On chromatic number of set systems, Acta Math.

Acad. Sci. Hungar. 17 (1966), 61{99.
28. P. Erd}os and A. Hajnal, Some remarks on set theory IX, Mich. Math. J. 11

(1964), 107{112.
29. P. Erd}os and R. Rado, A construction of graphs without triangles having preas-

signed order and chromatic number, J. London Math. Soc. 35 (1960), 445{448.
30. L. Lov�asz, On the chromatic number of �nite set-systems, Acta Math. Acad.

Sci. Hungar. 19 (1968), 59{67.
31. J. Ne�set�ril and V. R�odl, A short proof of the existence of highly chromatic

graphs without short cycles, J. Combin. Th. B, 27 (1979), 525{52?.
32. G. A. Margulis, Explicit constructions of concentrators, Problemy Peredachi

Informatsii 9, 4 (1975), 71{80.
33. A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan Graphs, Combinatorica

8(3) (1988), 261{277.
34. N. Alon, Eigenvalues, geometric expanders, sorting in sounds and Ramsey the-

ory, Combinatorica 3 (1986), 207{219.
35. M. Ajtai, J. Koml�os and E. Szemer�edi, A dense in�nite Sidon sequence, Euro-

pean J. Comb. 2 (1981), 1{11.
36. P. Erd}os, Problems and results in additive number theory, Colloque sur la

Theorie des Numbres, Bruxelles (1955), 127{137.
37. P. Erd}os and P. Tur�an, On a problem of Sidon in additive number theory and

on some related problems, J. London Math. Soc. 16 (1941), 212{215.
38. S. Sidon, Ein Satz �uber trigonometrische Polynome und seine Anwendungen in

der Theorie der Fourier-Reihen, Math. Ann. 106 (1932), 539.
39. J. Ne�set�ril and V. R�odl, Two proofs in combinatorial number theory, Proc.

Amer. Math. Soc. 93, 1 (1985), 185{188.
40. P. Erd}os, On sequences of integers no one of which divides the product of two

others and on some related problems, Izv. Nanc. Ise. Inset. Mat. Mech. Tomsrk
2 (1938), 74{82.

41. N. Alon and J. Spencer, Probabilistic methods, Wiley, New York, 1992.
42. J. H. Kim, The Ramsey number R(3; t) has order of magnitude t2= log t, Ran-

dom Structures and Algorithms (to appear).
43. F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasirandom graphs, Com-

binatorica 9 (1989), 345{362.
44. A. Thomason, Random graphs, strongly regular graphs and pseudorandom

graphs, In: Survey in Combinatorics, Cambridge Univ. Press (1987), 173{196.
45. P. Frankl and R. M. Wilson, Intersection theorems with geometric conse-

quences, Combinatorica 1 (1981), 357{368.
46. P. Frankl, A constructive lower bound fo Ramsey numbers, Ars Combinatorica

2 (1977), 297{302.
47. P. Erd}os and C. A. Rogers, The construction of certain graphs, Canad. J. Math.

(1962), 702{707.
48. D. Preiss and V. R�odl, Note on decomposition of spheres with Hilbert spaces,

J. Comb. Th. A 43 (1) (1986), 38{44.



208 R. L. Graham and J. Ne�set�ril

49. N. Alon, Explicit Ramsey graphs and orthonormal labellings, Electron. J. Com-
bin. 1, R12 (1994), (8pp).

50. F. R. K. Chung, R. Cleve, and P. Dagum, A note on constructive lower bound
for the Ramsey numbers R(3; t), J. Comb. Theory 57 (1993), 150{155.

51. P. Erd}os and R. Rado, A combinatorial theorem, J. London Math. Soc. 25
(1950), 249{255.

52. P. Erd}os and R. Rado, Combinatorial theorems on classi�cations of subsets of
a given set, Proc. London Math. Soc. 3 (1951), 417{439.

53. P. Erd}os and R. Rado, A partition calculus in set theory, Bull. Amer. Math.
Soc. 62 (1956), 427{489.

54. P. Erd}os, A. Hajnal and R. Rado, Partition relations for cardinal numbers,
Acta Math. Hungar. 16 (1965), 93{196.

55. R. Rado, Note on canonical partitions, Bull. London Math. Soc. 18 (1986),
123{126. Reprinted: Mathematics of Ramsey Theory (ed. J. Ne�set�ril and V.
R�odl), Springer 1990, pp. 29{32.

56. H. Lefman and V. R�odl, On Erd}os-Rado numbers, Combinatorica (1995).
57. S. Shelah, Finite canonization, 1994 (preprint) (to appear in Comm. Math.

Univ. Carolinae).
58. J. Pelans and V. R�odl, On coverings of in�nite dimensional metric spaces. In

Topics in Discrete Math., vol. 8 (ed. J. Ne�set�ril), North Holland (1992), 75{81.
59. P. Erd}os and R. L. Graham, Old and New Problems and Results in Combina-

torial Number Theory, L' Enseignement Math. 28 (1980), 128 pp.
60. H. Lefman, A canonical version for partition regular systems of linear equations,

J. Comb. Th. A 41 (1986), 95{104.
61. P. Erd}os, J. Ne�set�ril and V. R�odl, Selectivity of hypergraphs, Colloq. Math.

Soc. J�anos Bolyai 37 (1984), 265{284.
62. R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles

and containing no complete hexagon, J. Comb. Th. 4 (1968), 300.
63. R. Irving, On a bound of Graham and Spencer for a graph-coloring constant,

J. Comb. Th. B, 15 (1973), 200{203.
64. M. Erickson, An upper bound for the Folkman number F (3; 3; 5), J. Graph Th.

17 (6), (1993), 679{68.
65. J. Bukor, A note on Folkman number F (3; 3; 5), Math. Slovaka 44 (4), (1994),

479{480.
66. J. Folkman, Graphs with monochromatic complete subgraphs in every edge

coloring, SIAM J. Appl. Math. 18 (1970), 19{24.
67. J. Ne�set�ril and V. R�odl, Type theory of partition properties of graphs, In:

Recent Advances in Graph Theory (ed. M. Fiedler), Academia, Prague (1975),
405-412.

68. P. Erd}os, Problems and result on �nite and in�nite graphs, In: Recent Advances
in Graph Theory (ed. M. Fiedler), Academia, Prague (1975), 183{192.

69. J. Spencer, Three hundred million points su�ce, J. Comb. Th. A 49 (1988),
210{217.

70. V. R�odl and A. Ruci�nski, Threshold functions for Ramsey properties, J. Amer.
Math. Soc. (1995), to appear.

71. J. Ne�set�ril, Ramsey Theory, In: Handbook of Combinatorics, North Holland
(1995), to appear.

72. P. Erd}os, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer,
and E. G. Straus, Euclidean Ramsey Theorem, J. Combin. Th. (A) 14 (1973),
341{363.

73. P. Erd}os, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and
E. G. Straus, Euclidean Ramsey Theorems II, In A. Hajnal, R. Rado and V.S�os,
eds., In�nite and Finite Sets I, North Holland, Amsterdam, 1975, pp. 529{557.



Ramsey Theory in the Work of Paul Erd}os 209

74. P. Erd}os, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer, and E.
G. Straus, Euclidean Ramsey Theorems III, In A. Hajnal, R. Rado and V. S�os,
eds., In�nite and Finite Sets II, North Holland, Amsterdam, 1975, pp. 559{583.

75. P. Frankl and V. R�odl, A partition property of simplices in Euclidean space, J.
Amer. Math. Soc. 3 (1990), 1{7.

76. I. K�r���z Permutation groups in Euclidean Ramsey theory, Proc. Amer. Math.
Soc. 112 (1991), 899{907.

77. R. L. Graham, Recent trends in Euclidean Ramsey theory, Disc. Math. 136
(1994), 119{127.

78. W. Deuber, R. L. Graham, H. J. Pr�omel and B. Voigt, A canonical partition
theorem for equivalence relations on Zt, J. Comb. Th. (A) 34 (1983), 331{339.

79. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch.
Wisk. 15 (1927), 212{216.

80. B. L. van der Waerden, How the Proof of Baudet's Conjecture was found, in
Studies in Pure Mathematics (ed. L. Mirsky), Academic Press, New York, 1971,
pp. 251{260.

81. A. J. Khinchine, Drei Perlen der Zahlen Theorie, Akademie Verlag, Berlin 1951
(reprinted Verlag Harri Deutsch, Frankfurt 1984).

82. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer.
Math. Soc. 106 (1963), 222-229.

83. E. R. Berlekamp, A construction for partitions which avoid long arithmetic
progressions, Canad. Math. Bull 11 (1968), 409{414.

84. S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer.
Math. Soc. 1 (1988), 683{697.

85. P. Erd}os and P. Tur�an, On some sequences of integers, J. London Math. Soc.
11 (1936), 261{264.

86. R. Salem and D. C. Spencer, On sets of integers which contain no three terms
in arithmetic progression, Proc. Nat. Acad. Sci. 28 (1942), 561{563.

87. F. A. Behrend, On sets of integers which contain no three in arithmetic pro-
gression, Proc. Nat. Acad. Sci. 23 (1946), 331{332.

88. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic pro-
gressions, J. Symb. Comput. 9 (1987), 251{280.

89. K. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104{109.
90. V. Chv�atal, V. R�odl, E. Szemer�edi, and W. Trotter, The Ramsey number of

graph with bounded maximum degree, J. Comb. Th. B, 34 (1983), 239{243.
91. J. Ne�set�ril and V. R�odl, Partition theory and its applications, in Surveys in

Combinatorics, Cambridge Univ. Press, 1979, pp. 96{156.
92. V. R�odl and A. Ruci�nski, Threshold functions for Ramsey properties, J. Amer.

Math. Soc. (1995), to appear.
93. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Sze-

mer�edi on arithmetic progressions, J. Anal. Math. 31 (1977), 204{256.
94. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number The-

ory, Princeton Univ. Press, Princeton, 1981.
95. H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett the-

orem, J. Analyze Math. 57 (1991), 61{85.
96. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and

Szemer�edi's theorems, J. Amer. Math. Soc. (1995), to appear.
97. P. Erd}os, J. Ne�set�ril, and V. R�odl, On Pisier Type Problems and Results (Com-

binatorial Applications to Number Theory). In: Mathematics of Ramsey Theory
(ed. J. Ne�set�ril and V. R�odl), Springer Verlag (1990), 214{231.

98. P. Erd}os, J. Ne�set�ril, and V. R�odl, On Colorings and Independent Sets (Pisier
Type Theorems) (preprint).


