
Introduction

It is di�cult to estimate the relative impact of Erd}os' research in di�erent
areas of mathematics. But it is a fact that Erd}os started with number the-
ory (e.g., out of his �rst 60 papers only 2 are not related to number theory)
and that among his publications, the number theory papers have highest
frequency. His achievements are well known and are amply mirrored by con-
tributions to this chapter (which is the largest of all the chapters of these
volumes).

The papers by Ahlswede and Khachatrian, Konyagin and Pomerance,
Nathanson, Nicolas, Schinzel, Shorey and Tijdeman, S�ark�ozy and S�os, and
Tenenbaum survey and relate to various parts of Erd}os' research, and they
complement in various respects his own recollections in Chapter 1.

Some of these papers are research articles, such as the papers by Ahlswede
and Cai, S�ark�ozy, Tenenbaum and Bergelson et al. (which includes Erd}os
himself as a coauthor).

Although we believe this is a representative sample of Erd}os' activities in
this area, many problems and particular research directions are not covered.
The reader should bear in mind that Erd}os himself considered the probabilis-
tic methods in number theory together with his work on prime numbers as
his main contributions to number theory. Probabilistic methods are covered
by the next section as well. But we cannot resist to close this introduction
with a few more recent Erd}os problems in his own words:

Here is a purely computational problem (this problem cannot be attacked
by other means at present). Call a prime p good if every even number 2r �
p � 3 can be written in the form q1 � q2 where q1 � p, q2 � p are primes.
Are there in�nitely many good primes? The �rst bad prime is 97 I think.
Selfridge and Blecksmith have tables of the good primes up to 1037 at least,
and they are surprisingly numerous.

I proved long ago that every m < n! is the distinct sum of n � 1 or
fewer divisors of n!. Let h(m) be the smallest integer, if it exists, for which
every integer less than m is the distinct sum of h(m) or fewer divisors of m.
Srinivasan called the numbers for which h(m) exists practical. It is well known
and easy to see that almost all numbers m are not practical. I conjectured
that there is a constant c � 1 for which for in�nitely manym we have h(m) <
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(log logm)c. M. Vose proved that h(n!) < cn1=2. Perhaps h(n!) < c(logn)c2 .
I would be very glad to see a proof of h(n!) < n�.

A practical number n is called a champion if for every m > n, we have
h(m) > h(n). For instance, 6 and 24 are champions, as h(6) = 2, the next
practical number is 24, h(24) = 3, and for every m > 24, we have h(m) > 3.
It would be of some interest to prove some results about champions. A table
of the champions < 106 would be of some interest. I conjecture that n! is not
a champion for n > n0.

The study of champions of various kinds was started by Ramanujan
(Highly composite numbers, Collected Papers of Ramanujan). See further
my paper with Alaoglu on highly composite and similar numbers and many
papers of J. L. Nicolas and my joint papers with Nicolas.

The following related problem is perhaps of some mild interest, in particu-
lar, for those who are interested in numerical computations. Denote by gr(n)
the smallest integer which is not the distinct sum of r or fewer divisors of n.
A number n is an r-champion if for every t < n we have gr(n) > gr(t). For
r = 1 the least common multipleMm of the integers � m is a champions for
any m, and these are all the 1-champions. Perhaps the Mm are r-champions
too, but there are other r-champions; e.g., 18 is a 2-champion.

Let fk(n) be the largest integer for which you can give fk(n) integers
ai � n for which you cannot �nd k + 1 of them which are relatively prime.
I conjectured that you get fk(n) by taking the multiple � n of the �rst
k primes. This has been proved for small k by Ahlswede, and Khachatrian
disproved it for k � 212. Perhaps if n � (1+ �)p2k, where pk is the kth prime,
the conjecture remains true.

Let n1 < n2 < : : : be an arbitrary sequence of integers. Besicovitch proved
more than 60 years ago that the set of the multiples of the ni does not have to
have a density. In those prehistoric days this was a great surprise. Davenport
and I proved that the set of multiples of the fnig have a logarithmic density
and the logarithmic density equals the lower density of the set of multiples
of the fnig. Now the following question is perhaps of interest: Exclude one
or several residues mod ni (where only the integers � ni are excluded). Is
it true that the logarithmic density of the integers which are not excluded
always exists? This question seems di�cult even if we only exclude one residue
mod ni for every ni.

For a more detailed explanation of these problems see the excellent books
by Halberstam and Roth, Sequences, Springer-Verlag, and by Hall and Tenen-
baum, Divisors, Cambridge University Press.

Tenenbaum and I recently asked the following question: let n1 < n2 < : : :

be an in�nite sequence of positive integers. Is it then true that there always
is a positive integer k for which almost all integers have a divisor of the
form ni + k? In other words, the set of multiples of the ni + k (1 � i < 1)
has density 1. Very recently Ruzsa found a very ingenious counterexample.
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Tenenbaum thought that perhaps for every � > 0 there is a k for which the
density of the multiples of the ni + k has density > 1� �.

In a paper (Proc. London Math. Soc. (1970) dedicated to the memory of
Littlewood) S�ark�ozy and I state the following problem: Let 1 � ai < a2 <

� � � < an+2 � 3n be n+2 integers. Prove that there always are three of them
ai < aj < ak for which aj+ak � 0 (mod ai). The integers 2n � t � 3n show
that n+ 1 integers do not su�ce.

Perhaps a proof or disproof will be easy. As far as I know, the problem
has been rather forgotten.

Many more problems are contained in the book P. Erd}os and R. L. Gra-
ham, Old and New Problems and Results in Combinatorial Number Theory,
the second edition of which should appear soon.


