
Introduction

Erd}os' work in graph theory started early and arose in connection with D.
K�onig, his teacher in prewar Budapest. The classic paper of Erd}os' and Szek-
eres from 1935 also contains a proof in \graphotheoretic terms." The investi-
gation of the Ramsey function led Erd}os to probabilistic methods and seminal
papers in 1947, 1958 and 1960. It is perhaps interesting to note that three
other very early contributions of Erd}os' to graph theory (before 1947) were
related to in�nite graphs: in�nite Eulerian graphs (with Gallai and V�aszoni)
and a paper with Kakutani On nondenumerable graphs (1943). Although
the contributions of Erd}os to graph theory are manifold, and he proved (and
always liked) beautiful structural results such as the Friendship Theorem
(jointly with V. T. S�os and K�ov�ari), and compactness results (jointly with N.
G. de Bruijn), his main contributions were in asymptotic analysis, probabilis-
tic methods, bounds and estimates. Erd}os was the �rst who brought to graph
theory the experience and rigor of number theory (perhaps being preceded by
two papers by V. Jarnik, one of his early coauthors). Thus he contributed in
an essential way to lifting graph theory up from the \slums of topology." This
chapter contains a \special" problem paper not by Erd}os but by his frequent
coauthors from Memphis: R. Faudree, C. C. Rousseau and R. Schelp (well,
there is actually an Erd}os supplement there as well). We encouraged the au-
thors to write this paper and we are happy to include it in this volume. This
chapter also includes two papers coauthored by B�ela Bollob�as, who is one
of Erd}os' principal disciples. Bollob�as contributed to much of Erd}os' combi-
natorial activities and wrote important books about them. (Extremal Graph

Theory, Introduction to Graph Theory,Random Graphs). His contributions to
this chapter (coauthored with his two former students G. Brightwell and A.
Thomason) deal with graphs (and thus are in this chapter) but they by and
large employ random graph methods (and thus they could be contained in
Chapter 3). The main questions there may be considered as extremal graph
theory questions (and thus they could �t in Chapter 5). Other contributions
to this chapter, which are related to some aspect to Erd}os' work or simply
pay tribute to him are by N. Alon, Z. F�uredi, M. Aigner and E. Triesch, S.
Bezrukov and K. Engel, A. Gy�arf�as, S. Brandt, N. Sauer and H. Wang, H.
Fleischner and M. Stiebitz, and D. Beaver, S. Haber and P. Winkler.
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Perhaps the main love of Erd}os in graph theory is the chromatic number.
Let us close this introduction with a few of Erd}os' recent problems related
mostly to this area in his own words:

Many years ago I proved by the probability method that for every k and r
there is a graph of girth � r and chromatic number � k. Lov�asz when he was
still in high school found a fairly di�cult constructive proof. My proof still
had the advantage that not only was the chromatic number of G(n) large but
the largest independent set was of size < �n for every � > 0 if n > n0(�; r; k).
Ne�set�ril and V. R�odl later found a simpler constructive proof.

There is a very great di�erence between a graph of chromatic number @0
and a graph of chromatic number � @1. Hajnal and I in fact proved that if
G has chromatic number @1 then G must contain a C4 and more generally
G contains the complete bipartite graph K(n;@1) for every n < @0. Hajnal,
Shelah and I proved that every graph G of chromatic number @1 must contain
for some k0 every odd cycle of size � k0 (for even cycles this was of course
contained in our result with Hajnal), but we observed that for every k and
every m there is a graph of chromatic number m which contains no odd cycle
of length < k. Walter Taylor has the following very beautiful problem: Let
G be any graph of chromatic number @1. Is it true that for every m > @1
there is a graph Gm of chromatic number m all �nite subgraphs of which
are contained in G? Hajnal and Komj�ath have some results in this direction
but the general conjecture is still open. If it would have been my problem, I
certainly would o�er 1000 dollars for a proof or a disproof. (To avoid �nancial
ruin I have to restrict my o�ers to my problems.)

Let k be �xed and n!1. Is it true that there is an f(k) so that if G(n)
has the property that for every m every subgraph of m vertices contains an
independent set of size m=2� k then G(n) is the union of a bipartite graph
and a graph of � f(k) vertices, i.e., the vertex set of G(n) is the union of three
disjoint sets S1, S2 and S3 where S1 and S2 are independent and jS3j � f(k).
Gy�arf�as pointed out that even the following special case is perhaps di�cult.
Let m be even and assume that every m vertices of our G(n) induces an
independent set of size at least m=2. Is it true then that G(n) is the union of
a bipartite graph and a bounded set? Perhaps this will be cleared up before
this paper appears, or am I too optimistic?

Hajnal, Szemer�edi and I proved that for every � > 0 there is a graph of
in�nite chromatic number for which every subgraph of m vertices contains
an independent set of size (1� �)m=2 and in fact perhaps (1� �)m=2 can be
replaced by m=2 � f(m) where f(m) tends to in�nity arbitrarily slowly. A
result of Folkman implies that if G is such that every subgraph of m vertices
contains an independent set of size m=2� k then the chromatic number of G
is at most 2k + 2.

Many years ago Hajnal and I conjectured that if G is an in�nite graph
whose chromatic number is in�nite, then if a1 < a2 < : : : are the lengths of
the odd cycles of G we have
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and perhaps a1 < a2 < : : : has positive upper density. (The lower density can
be 0 since there are graphs of arbitrarily large chromatic number and girth.)

We never could get anywhere with this conjecture. About 10 years ago
Mih�ok and I conjectured that G must contain for in�nitely many n cycles of
length 2n. More generally it would be of interest to characterize the in�nite
sequences A = fa1 < a2 < : : :g for which every graph of in�nite chromatic
number must contain in�nitely many cycles whose length is in A. In partic-
ular, assume that the ai are all odd.

All these problems we unattackable (at least for us). About three years
ago Gy�arf�as and I thought that perhaps every graph whose minimumdegree
is � 3 must contain a cycle of length 2k for some k � 2. We became con-
vinced that the answer almost surely will be negative but we could not �nd
a counterexample. We in fact thought that for every r there must be a Gr

every vertex of which has degree � r and which contains no cycle of length
2k for any k � 2. The problem is wide open.

Gy�arf�as, Koml�os and Szemer�edi proved that if k is large and a1 < a2 < : : :
are the lengths of the cycles of a G(n; kn), that is, an n-vertex graph with
kn edges, then X 1

ai
> c logn :

The sum is probably minimal for the complete bipartite graphs.
(Erd}os-Hajnal) If G has large chromatic number does it contain two (or k

if the chromatic number is large) edge-disjoint cycles having the same vertex
set? It surely holds if G(n) has chromatic number > n� but nothing seems to
be known.

Fajtlowicz, Staton and I considered the following problem (the main idea
was due to Fajtlowicz). Let F (n) be the largest integer for which every graph
of n vertices contains a regular induced subgraph of � F (n) vertices. Ram-
sey's theorem states that G(n) contains a trivial subgraph, i.e., a complete or
empty subgraph of c logn vertices. (The exact value of c is not known but we
know 1=2 � c � 2.) We conjectured F (n)= logn!1. This is still open. We
observed F (5) = 3 (since if G(5) contains no trivial subgraph of 3 vertices
then it must be a pentagon). Kohayakawa and I worked out the F (7) = 4
but the proof is by an uninteresting case analysis. (We found that this was
done earlier by Fajtlowicz, McColgan, Reid and Staton, see Ars Combona-
toria vol 39.) It would be very interesting to �nd the smallest integer n for
which F (n) = 5, i.e., the smallest n for which every G(n) contains a regular
induced subgraph of � 5 vertices. Probably this will be much more di�cult
than the proof of F (7) = 4 since in the latter we could use properties of
perfect graphs. Bollob�as observed that F (n) < c

p
n for some c > 0.

Let G(10n) be a graph on 10n vertices. Is it true that if every index sub-
graph of 5n vertices of our G(10n) has � 2n2 + 1 edges then our G(10n)
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contains a triangle? It is easy to see that 2n2 edges do not su�ce. A weaker
result has been proved by Faudree, Schelp and myself at the Hakone confer-
ence (1992, I believe) see also a paper by Fan Chung and Ron Graham (one
of the papers in a volume published by Bollob�as dedicated to me).

A related forgotten conjecture of mine states that if our G(10n) has more
than 20n2 edges and every subgraph of 5n vertices has = 2n2 edges then
our graph must have a triangle. Simonovits noticed that if you replace each
vertex of the Petersen graph by n vertices you get a graph of 10n vertices,
15 n2 edges, no triangle and every subgraph of 5n vertices contains � 2n2

edges.


