ON V. I. SMIRNOV DOMAINS

Peter W. Jones and Stanislav K. Smirnov

Yale University, Department of Mathematics New Haven, CT06520, U.S.A.; stas@math.yale.edu

Abstract. We show that complement of a non-V. I. Smirnov domain, coming from the Duren–Shapiro–Shields or Kahane construction must be a V. I. Smirnov domain. There is therefore a negative answer to the old question: need a complement of a non-V. I. Smirnov domain be a non-V. I. Smirnov domain itself?

The purpose of this note is to prove a general, elementary theorem that provides an answer to an old problem on V. I. Smirnov domains. Recall that if Γ is a rectifiable closed Jordan curve and Ω_+ is the bounded component complementary to Γ , Ω_+ is a V. I. Smirnov domain if F'_+ is an outer function. Here F_+ is any choice of conformal map of **D** onto Ω_+ . The class of such domains was introduced by V. I. Smirnov in [S] in connection with some questions of approximation theory. Consult the expository paper [D] of P. Duren for their properties and further references.

Several authors (starting with P. Duren, H. S. Shapiro, and A. L. Shields, see [DSS]) in the 1960's found examples of Γ and Ω_+ , with F'_+ a singular inner function,

(1)
$$F'_{+} = \exp\{-(\mu + i\tilde{\mu})\}$$

where μ is a positive measure on the circle that is singular with respect to Lebesgue measure, $d\mu \perp d\theta$. When Condition (1) holds, Ω_+ is not of V. I. Smirnov type (existence of non-Smirnov domains was established earlier by M. V. Keldysh and M. A. Lavrentiev in [KM]). If we let Ω_- denote the unbounded domain complementary to Γ , we have a similar definition of V. I. Smirnov (and non-V. I. Smirnov) domains.

Theorem. Let Γ , Ω_+ , Ω_- , be as above. Then if F_+ satisfies Condition (1), F_- (the conformal map of $\{|z| > 1\}$ to Ω_-) satisfies

(2)
$$|F'_{-}(z)| \ge c > 0, \quad |z| > 1.$$

Corollary. If Ω_+ is a non-V. I. Smirnov domain satisfying Condition (1), Ω_- is a V. I. Smirnov domain.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C20; Secondary 30C45, 30C85, 31A15. The first author is supported by N.S.F. Grant No. DMS-9423746.

There is therefore a negative answer to the old question (see [T1], [T2] for discussion and references): Does Ω_+ V. I. Smirnov imply Ω_- V. I. Smirnov?

Proof of Theorem. Let $c_1 := |F'_+(0)|$ and let ω_+ denote harmonic measure for Ω_+ (on $\partial\Omega_+$) with respect to $F_+(0)$. Then by Condition (1),

$$d\omega_+ = \frac{1}{2\pi c_1} \, ds,$$

where $ds = d\mathscr{H}^1$ is one dimensional Hausdorff measure on Γ . An immediate consequence of this is the inequality

(3)
$$\omega_+(D(x,r)) \ge \frac{r}{\pi c_1}, \qquad x \in \Gamma,$$

where D(x,r) is the disk centered at x with radius $r < \operatorname{diam}(\Gamma)$ (we use the notation $\omega_+(E) := \omega_+(E \cap \Gamma)$).

Now we invoke the result of C. Bishop, L. Carleson, J. Garnett, P. Jones (see [BCGJ])

(4)
$$\omega_+(D(x,r))\omega_-(D(x,r)) \le c_2 r^2,$$

where ω_{-} is harmonic measure for Ω_{-} with respect (say) to ∞ . Here the constant c_2 depends on $F_{+}(0)$, but not on $x \in \Gamma$, $r < \operatorname{diam}(\Gamma)$. This result is valid for harmonic measures on any two disjoint, simply connected domains Ω_{+} , Ω_{-} , and its proof is quite elementary. Now from (3) and (4) we obtain

(5)
$$\omega_{-}(D(x,r)) \leq c_3 r, \qquad x \in \Gamma, \ r < \operatorname{diam}(\Gamma).$$

It is an easy exercise that Condition (5) implies Condition (2) (one can look at the harmonic measure of $D(x, 2\text{dist}(x, \Gamma))$), and that F'_{-} is an outer function. \Box

Remark. In certain cases, one can draw a stronger conclusion, than (2). For example, let μ come from Kahane's construction in [K]. Let $K_+ \subset S^1$ be the closed support of μ . Then $K_- := F_-^{-1}(F_+(K_+)) \subset S^1$ satisfies

(6) Box Dimension
$$(K_{-}) < 1$$
.

On the other hand, general results (the sharp version is due to N. Makarov, [M]) show that if a set $K \subset S^1$ has zero measure for the Hausdorff gauge function $t\sqrt{\log(1/t)}\log\log\log(1/t)$, then there is no Riemann mapping defined on **D** with the properties $F' \in H^1$ (the Hardy space),

$$F' = G \exp\{-(\mu + i\tilde{\mu})\},\$$

where G is outer, $d\mu \perp d\theta$, and μ is supported on K.

To verify (6) one can argue as in the following sketch. One first proves that for all $e^{i\theta} \in K_+$ and $\frac{1}{2} \leq r < 1$, there is $R \in (r, \frac{1}{2} + \frac{1}{2}r)$ such that

$$|SF_+(z)| \ge \varepsilon (1-|z|)^{-2}, \qquad z := \operatorname{Re}^{i\theta},$$

where S denotes the Schwarzian derivative. Here $\varepsilon > 0$ is independent of Γ and θ . An easy normal families argument then yields

(7)
$$\beta_{\Gamma}(x,r) \ge \delta, \qquad x \in F_+(K_+), \ r < \operatorname{diam}(\Gamma).$$

Here β is the usual measure of "deviation from flatness" for the set $\Gamma \cap D(x, r)$ (see e.g. [J]). Then estimates on harmonic measure (similar to those proving Condition (4), but we get a stronger result because of the "twisting", provided by Condition (7)) yield

$$\omega_+(D(x,r))\omega_-(D(x,r)) \le cr^{2+\alpha}, \qquad x \in F_+(K_+).$$

Fortunately the argument for this inequality is given in the paper [R] of S. Rohde. S. Rohde proves his result for $K_+ = S^1$, but one sees easily, that his argument will work in our case.

Combining the last inequality with (3) one obtains

(8)
$$\omega_{-}(D(x,r)) \leq cr^{1+\alpha}, \qquad x \in F_{+}(K_{+}).$$

Now cover $F_+(K_+)$ by disks of harmonic measure comparable to 2^{-n} . Applying the Besikovitch covering lemma and pulling back by F_- yields

Box Dimension
$$\left(F_{-}^{-1}\left(F_{+}(K_{+})\right)\right) < \frac{1}{1+\alpha}$$

Here one must use that Γ has finite length. We remark that applications of estimates like (8) are the main point of S. Rohde's paper.

References

- [BCGJ] BISHOP, C., L. CARLESON, J. GARNETT, and P. JONES: Harmonic measures supported on curves. - Pacific J. Math. 138, 1989, 233–236.
- [D] DUREN, P.L.: Smirnov domains. Zap. Nauchn. Sem. LOMI 170, 1989, 95–101; Issled. Linein. Oper. Teorii Funktsii. 17; see also J. Soviet Math. 67, 1993, 167–170.
- [DSS] DUREN, P., H.S. SHAPIRO, and A.L. SHIELDS: Singular measures and domains not of Smirnov type. - Duke Math. J. 33, 1966, 247–254.
- [J] JONES, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102, 1990, 1–15.
- [K] KAHANE, J.P.: Trois notes sur les ensembles parfait linéares. Enseign. Math. 15, 1969, 185–192.

Peter W. Jones and Stanislav K. Smirnov

- [KL] KELDYSH, M.V., and M.A. LAVRENTIEV: Sur la représentation conforme des domaines limités par des courbes rectifiables. - Ann. Sci. École Norm. Sup. 54, 1937, 1–38.
- [M] MAKAROV, N.G.: Size of the set of singular points on the boundary of a non-Smirnov domain. - Zap. Nauchn. Sem. LOMI 170, 1989, 176–183 (Russian); Issled. Linein. Oper. Teorii Funktsii. 17; English transl.: J. Soviet Math. 67, 1993, 212–216.
- [R] ROHDE, S.: On conformal welding and quasicircles. Michigan Math. J. 38, 1991, 111–116.
- [S] SMIRNOV, V.I.: Sur la théorie des polynômes orthogonaux à la variable complexe. Zh. Leningr. Fiz.-Mat. Ob-va 2, 1928, 155–179.
- [T1] TUMARKIN, G.TS.: Boundary conditions for conformal mappings of certain classes of domains. - In: Some Problems in Modern Function Theory, Proc. Conf. Modern Problems of Geometric Theory of Functions, Inst. Mat., Akad. Sci. USSR, Novosibirsk, 1976, 149–160 (Russian); Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1976.
- [T2] TUMARKIN, G.Ts.: Some problems concerning classes of domains determined by properties of Cauchy type integrals. - In: Linear and Complex Analysis Problem Book 3, Lecture Notes in Math. 1573, Springer-Verlag, Berlin, 1994, 411–413.

Received 29 April 1997

108