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Abstract. In [MW], Masur and Wolf proved that the Teichmüller space of genus g > 1
surfaces with the Teichmüller metric is not a Gromov hyperbolic space. In this paper, we provide
an alternative proof based upon a study of the visual sphere of Teichmüller space.

1. Introduction

As observed in [MW], the Teichmüller space of surfaces of genus g > 1 with
the Teichmüller metric shares many properties with spaces of negative curvature.
In his study of the geometry of Teichmüller space [Kr], Kravetz claimed that
Teichmüller space was negatively curved in the sense of Busemann [B]. It was
not until about ten years later, that Linch [L] discovered a mistake in Kravetz’s
arguments. This left open the question of whether or not Teichmüller space was
negatively curved in the sense of Busemann. This question was resolved in the
negative by Masur in [Ma].

A metric space X is negatively curved, in the sense of Busemann, if the
distance between the endpoints of two geodesic segments from a point in X is
at least twice the distance between the midpoints of these two segments. An
immediate consequence of this definition is that distinct geodesic rays from a
point in a Busemann negatively curved metric space must diverge. Masur proved
that Teichmüller space is not negatively curved, in the sense of Busemann, by
constructing distinct geodesic rays from a point in Teichmüller space which remain
a bounded distance away from each other.

In [G], Gromov introduced a notion of negative curvature for metric spaces
which, while less restrictive than that of Busemann, implies many of the proper-
ties which Teichmüller space shares with spaces of Riemannian negative sectional
curvature. This raised the question of whether Teichmüller space was negatively
curved in the sense of Gromov, (i.e. Gromov hyperbolic). According to one of
the definitions of Gromov hyperbolicity, an affirmative answer to this question
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would rule out so-called “fat” geodesic triangles in Teichmüller space. In [MW],
Masur and Wolf resolved the Gromov hyperbolicity question in the negative by
constructing such “fat” geodesic triangles.

As observed in [MW], the existence of distinct nondivergent rays from a point
in Teichmüller space does not preclude Teichmüller space from being Gromov hy-
perbolic. Apparently for this reason, rather than taking Masur’s construction
of such rays as the starting point for their proof, Masur and Wolf found their
motivation from another source. They observed that the isometry group of the
Teichmüller metric is the mapping class group [R], which is not a Gromov hyper-
bolic group, since it contains a free abelian group of rank 2. This fact, like Masur’s
result on the existence of distinct nondivergent rays from a point, is insufficient to
imply that Teichmüller space is not Gromov hyperbolic. Nevertheless, it served as
motivation for Masur and Wolf’s construction of “fat” geodesic triangles.

In this paper, we provide an alternative proof of the result of Masur and Wolf.
Our proof, unlike that of Masur and Wolf, builds upon Masur’s construction of
nondivergent rays from a point in Teichmüller space. On the other hand, unlike the
proof of Masur and Wolf, our proof depends upon one of the deeper consequences
of Gromov hyperbolicity. Namely, in order for Teichmüller space to be Gromov
hyperbolic, the visual sphere of Teichmüller space would have to be Hausdorff.
We show that, on the contrary, the visual sphere of Teichmüller space is not
Hausdorff. The proof of this fact relies heavily upon the specific nature of Masur’s
construction of nondivergent rays. In this way, we show that the result of Masur
and Wolf that Teichmüller space is not negatively curved in the sense of Gromov
is latent in Masur’s original proof that Teichmüller space is not negatively curved
in the sense of Busemann.

The outline of the paper is as follows. In Section 2, we review the prerequisites
for our proof. In Section 3, we prove our main result that the visual sphere of
Teichmüller space is not Hausdorff and conclude that Teichmüller space is not
Gromov hyperbolic.

2. Preliminaries

2.1. Teichmüller space. Let M denote a closed, connected, orientable
surface of genus g ≥ 2. The Teichmüller space Tg of M is the space of equivalence
classes of complex structures on M , where two complex structures S1 and S2 on
M are equivalent if there is a conformal isomorphism h: S1 → S2 which is isotopic
to the identity map of the underlying topological surface M .

The Teichmüller distance d([S1], [S2]) between the equivalence classes [S1]
and [S2] of two complex structures S1 and S2 on M is defined as 1

2 log infhK(h),
where the infimum is taken over all quasiconformal homeomorphisms h: S1 → S2

which are isotopic to the identity map of M and K(h) is the maximal dilatation
of h .
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As shown by Kravetz [Kr], (Tg, d) is a straight G-space in the sense of Buse-
mann ([B], [A]). Hence, any two distinct points, x and y , in Tg are joined by a
unique geodesic segment (i.e. an isometric image of a Euclidean interval), [x, y] ,
and lie on a unique geodesic line (i.e. an isometric image of R), γ(x, y).

Now, fix a conformal structure S on M and let QD(S) be the space of holo-
morphic quadratic differentials on S . The geodesic rays (i.e. isometric images of
[0,∞)) which emanate from the point [S] in Tg are described in terms of QD(S).
If q is a holomorphic quadratic differential on S , p is a point on S and z is a local
parameter on S defined on a neighborhood U of p , then q may be written in the
form φ(z)dz2 for some holomorphic function φ on U . If φ(p) �= 0 and z0 = z(p),
then on a sufficiently small neighborhood V of p contained in U , we may define
a branch φ(z)1/2 of the square root of φ . The integral w = Φ(z) =

∫ z

z0
φ(z)1/2 dz

is a conformal function of z and determines a local parameter for S on a suffi-
ciently small neighborhood W of p in V . This parameter w is called a natural
rectangular parameter for q at the regular point p . In terms of this parameter
w , q may be written in the form dw2 . For each nonzero quadratic differential q
on S , there is a one-parameter family {SK} of conformal structures on M and
quadratic differentials {qK} on SK obtained by replacing the natural parameters
w for q on S by natural parameters wK for qK on SK . The relationship between
wK and w is given by the rule:

RewK = K1/2 Rew, ImwK = K−1/2 Imw.

The Teichmüller distance from [SK ] to [S] is equal to log(K)/2. The map t �→
[Se2t] is a Teichmüller geodesic ray emanating from [S] and every geodesic ray
emanating from [S] is of this form. Two nonzero quadratic differentials on S
determine the same Teichmüller geodesic ray in Tg emanating from [S] if and
only if they are positive multiples of one another.

It is well known that (Tg, d) is homeomorphic to R6g−6 and closed balls in
(Tg , d) are homeomorphic to closed balls in R6g−6 . In fact, using the previous
description of geodesic rays, a homeomorphism can be constructed from the open
unit ball of QD(S) onto Tg . Suppose q is a point in the open unit ball of QD(S).
Then q = kq1 where 0 ≤ k < 1 and q1 is a quadratic differential in the unit
sphere of QD(S). Map q to the point [SK ] on the geodesic ray through [S] in the
direction of q1 where K = (1 + k)/(1− k). By the work of Teichmüller, this map
is a homeomorphism from the open unit ball of QD(S) onto Tg . Since QD(S) is
a complex vector space of dimension 3g− 3, this proves that Tg is homeomorphic
to R6g−6 . Note also that this homeomorphism maps the closed ball of radius k
centered at the origin of QD(S) onto the closed ball of radius log(K)/2 centered at
the point [S] in (Tg , d). This proves that closed balls in (Tg , d) are homeomorphic
to closed balls in R6g−6 .

We shall be particularly interested in the Jenkins–Strebel differentials. These
are the quadratic differentials all of whose noncritical horizontal trajectories are
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closed. Let θ be a Jenkins–Strebel differential and F be the horizontal foliation
of θ . The complement in M of the critical trajectories of F consists of p disjoint
open annuli A1, . . . , Ap , where 1 ≤ p ≤ 3g − 3. Let σi be a core curve of the an-
nulus Ai . The core curves σ1, . . . , σp are distinct, nontrivial, pairwise nonisotopic
circles on M . Each annulus Ai is foliated by closed leaves of F isotopic to σi .
Let Mi be the modulus of the annulus Ai . The basic existence and uniqueness
theorem of Jenkins–Strebel ([J], [S]) states that there exists a unique quadratic
differential θ in Q(S) with prescribed isotopy classes γi = [σi] of core curves
and moduli Mi of the corresponding annuli Ai . Note that two Jenkins–Strebel
differentials on S determine the same Teichmüller geodesic in Tg emanating from
[S] if and only if the horizontal foliations of these Jenkins–Strebel differentials are
projectively equivalent.

Following Masur [Ma], we define a Strebel ray in Tg emanating from [S] to
be a Teichmüller geodesic ray determined by a Jenkins–Strebel differential on S .
Suppose that θ1 and θ2 are Jenkins–Strebel differentials corresponding to the
same isotopy classes of core curves, but not necessarily the same moduli, of corre-
sponding annuli. Then, following Masur, we say that the Strebel rays determined
by θ1 and θ2 are similar. Masur proved that similar Strebel rays emanating from
the same point in Tg are nondivergent.

Theorem (Masur [Ma]). Let r and s be similar Strebel rays in Tg emanating
from a point x in Tg . There exists N < ∞ such that if y and z are any two
points on r and s which are equidistant from x , then d(y, z) ≤ N .

Since g ≥ 2, there exist distinct similar Strebel rays r and s in Tg emanating
from the same point x = [S] in Tg . We may construct all such pairs of rays as
follows. Choose a collection of disjoint, nontrivial, pairwise nonisotopic circles
σ1, . . . , σp on M , where 2 ≤ p ≤ 3g − 3. Let a = (a1 , a2, . . . , ap) and b =
(b1, . . . , bp) be p-tuples of positive real numbers ai and bi such that a and b lie
on distinct rays emanating from the origin in Rp . Let θ be the Jenkins–Strebel
differential on S corresponding to the isotopy classes γi = [σi] of core curves
and moduli ai of corresponding annuli. Likewise, let ψ be the Jenkins–Strebel
differential on S corresponding to the isotopy classes γi = [σi] of core curves
and moduli bi of corresponding annuli. Finally, let r and s be the Strebel rays
determined by θ and ψ .

Combining the observation of the previous paragraph with his theorem on
nondivergence of similar Strebel rays, Masur constructed distinct, nondivergent
Teichmüller geodesic rays emanating from the same point in Tg . Indeed, any pair
of distinct similar Strebel rays emanating from the same point in Tg is such a pair
of nondivergent rays. In this way, Masur proved that Tg is not negatively curved
in the sense of Busemann [Ma]. The particular nature of Masur’s construction of
nondivergent rays will be crucial to our proof that Tg is not negatively curved in
the sense of Gromov.
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The modulus of a flat cylinder C of circumference l and height h is Mod(C) =
h/l . Let S be a conformal structure on M . Every cylinder C embedded in M has
a conformal structure induced from S . C is conformally equivalent to a unique
flat cylinder up to change of scale. The modulus of C is the modulus of any such
flat cylinder. Let γ be an isotopy class of nontrivial simple closed curves on M .
The modulus modS(γ) of γ is defined to be the supremum of the moduli of all
cylinders embedded in M with core curve σ ∈ γ .

For each conformal metric ) on S , let l
(γ) denote the infimum of the lengths,
with respect to ) , of simple closed curves σ ∈ γ . Let A
 denote the area, with
respect to ) , of M . The extremal length extS(γ) of γ (with respect to the
conformal structure S on M ) is equal to sup


(
l
(γ)

)2
/A
 . The extremal length

is related to the modulus by the equation extS(γ) = 1/modS(γ).
According to Kerckhoff [K], the Teichmüller metric d may be expressed in

terms of extremal length.

Theorem (Kerckhoff [K]). The Teichmüller distance between two points [S1]
and [S2] in Tg is given by the rule:

d([S1], [S2]) =
1
2
log sup

γ

extS1(γ)
extS2(γ)

where the supremum ranges over all isotopy classes γ of nontrivial simple closed
curves on M .

We recall that there is a unique hyperbolic conformal metric ) on S . There
exists a unique hyperbolic geodesic in the isotopy class γ . The hyperbolic length
l
(γ) is the length of this hyperbolic geodesic. Maskit established the follow-
ing comparisons between the hyperbolic length l
(γ) and the extremal length
extS(γ) [M].

Theorem (Maskit ([M]). Let γ be an isotopy class of nontrivial simple closed
curves on M , S be a conformal structure on M and ) be the unique hyperbolic
conformal metric on S . Let l be the hyperbolic length l
(γ) and m be the
extremal length extS(γ) . Then l ≤ mπ and m ≤ 1

2
lel/2 .

2.2. Visual spheres and Gromov hyperbolicity. Let X be a space
equipped with a metric d . X is said to be proper if closed balls in X are compact.
Since closed balls in (Tg, d) are homeomorphic to closed balls in R6g−6 , (Tg , d) is
proper. X is said to be geodesic if every pair of points x, y ∈ X can be connected
by a geodesic segment (i.e. an isometric embedding of an interval). By Kravetz’
result that (Tg , d) is a straight G-space in the sense of Busemann discussed in
(2.1), (Tg , d) is geodesic.

Let x be a point in X . A geodesic ray emanating from x is an isometric
embedding r: [0,∞) → X mapping 0 to x . If r1 and r2 are two geodesic rays in
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X emanating from x and the function t �→ d
(
r1(t), r2(t)

)
is bounded, then we say

that r1 and r2 are asymptotic and write r1 ∼ r2 . In this way, we define an equiv-
alence relation ∼ on the set Rx of geodesic rays in X emanating from x . Equip
Rx with the topology of uniform convergence on compact sets. The visual sphere
of X at x is the quotient space ∂vis,xX of Rx with respect to the equivalence
relation ∼ .

Gromov ([G], see also [CDP], [GH]) introduced a notion of hyperbolicity for
metric spaces which is now called Gromov hyperbolicity. Gromov hyperbolic met-
ric spaces share many of the qualitative properties of hyperbolic space. We shall
not need the precise definition of Gromov hyperbolicity. We shall, however, require
the following result.

Theorem (Gromov [CDP]). Let X be a proper, geodesic, Gromov hyperbolic
space and x be a point in X . Then the visual sphere ∂vis,xX of X at x is
Hausdorff.

Remark 2.3. In fact, the visual sphere of a proper, geodesic, Gromov hy-
perbolic space is metrizable. The visual sphere of such a space does not depend
upon the base point x in X and is naturally isomorphic to the Gromov boundary
∂X of X [CDP]. Note that the visual sphere is defined for any metric space. The
Gromov boundary, however, is only defined for a restricted class of metric spaces
including Gromov hyperbolic spaces.

3. The visual sphere of Teichmüller space

In this section, we prove that the visual sphere of Teichmüller space is not
Hausdorff and conclude that Teichmüller space is not Gromov hyperbolic.

Theorem 3.1. Let S be a conformal structure on M representing a point x
in Tg . Then the visual sphere ∂vis,xTg of Tg at x , with respect to the Teichmüller
metric d , is not Hausdorff.

Proof. Let σ0 and σ1 be a pair of disjoint simultaneously nonseparating
circles on M . For each real number t with 0 < t < 1, let θt denote the unique
Jenkins–Strebel differential on S with core curves σ0 and σ1 and moduli M0 =
1 − t and M1 = t . Let θ0 denote the unique Jenkins–Strebel differential on S
with core curve σ0 and modulus M0 = 1. Let θ1 denote the unique Jenkins–
Strebel differential on S with core curve σ1 and modulus M1 = 1. Let rt be
the geodesic ray in Tg emanating from x corresponding to the nonzero quadratic
differential θt . The family {rt | 0 ≤ t ≤ 1} is a continuous one-parameter family
of geodesic rays in Tg emanating from x . Let [rt] denote the point in ∂vis,xTg

represented by rt .
Note that rt is similar to r1/2 for all t such that 0 < t < 1. By Masur’s result

on nondivergence of similar rays discussed in (2.1), it follows that rt is asymptotic
to r1/2 for all t such that 0 < t < 1. Let x = [r1/2] . Then x = [rt] for all t
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such that 0 < t < 1. By continuity of the quotient map from Rx to the visual
sphere (recalling that the visual sphere is equipped with the quotient topology),
and the convergence of the rays in Rx , [r0] and [r1] are contained in the closure
of x in ∂vis,xTg .

We shall now show, using Maskit’s comparison of extremal and hyperbolic
lengths discussed in (2.1), that [r0] is not equal to [r1] . Since σ0 and σ1 are
simultaneously nonseparating circles on M , we may choose a nonseparating circle
σ on M such that σ is disjoint from σ1 , transverse to σ0 , and meets σ0 in
exactly one point. Let γi denote the isotopy class of σi and γ denote the isotopy
class of σ . Let {Si

K} denote the family of conformal structures on M determined
by θi .

We recall Masur’s description of the surfaces {Si
K} ([Ma]). The complement

of the critical points of θi and the horizontal leaves of θi joining critical points of
θi is a single annulus Ri foliated by closed horizontal leaves of θi homotopic to σi .
We may assume that σi is the central curve of Ri . The surface Si

K is formed from
S by “fattening” Ri , by cutting M along σi and inserting a standard annulus of
appropriate modulus. As K tends to infinity, the modulus of the inserted annulus
tends to infinity. Hence, the modulus of γi on Si

K tends to infinity. In other
words, extSi

K
(γi) tends to zero.

In particular, extS0
K
(γ0) tends to zero as K tends to infinity. Let )0K denote

the unique hyperbolic conformal metric on S0
K . By Maskit’s comparison theorem

discussed in (2.1), l
0
K
(γ0) tends to zero as K tends to infinity. Since σ0 meets σ

transversely and in a single point, the unique hyperbolic geodesics for the hyper-
bolic metric )0K in the isotopy classes of σ0 and σ also meet transversely and in
a single point. l
0

K
(γ0) and l
0

K
(γ) are the respective lengths of these hyperbolic

geodesics. Hence, by Lemma 1 of Chapter 11, Section 3.3 of [A], l
0
K
(γ) tends to

infinity as K tends to infinity. Again, by Maskit’s comparison theorem, extS0
K
(γ)

tends to infinity as K tends to infinity.
On the other hand, note that σ is disjoint from σ1 . Let R be any annulus on

S disjoint from σ1 with core curve isotopic to σ . By the description of S1
k in terms

of fattening R1 along σ1 , the annulus R embeds conformally in S1
k . Hence, the

modulus of γ on S1
k is bounded below by the constant C = modS(R). In other

words, the extremal length of γ on S1
k is bounded above by the constant 1/C .

We have shown that extS0
K
(γ) tends to infinity and extS1

K
(γ) remains bound-

ed above as K tends to infinity. Hence, extS0
K
(γ)/ extS1

K
(γ) tends to infinity as

K tends to infinity. By Kerckhoff’s description of the Teichmüller metric in terms
of extremal length discussed in (2.1), d(S0

K , S
1
K) tends to infinity as K tends to

infinity. We conclude that r0 is not asymptotic to r1 . In other words, [r0] �= [r1] .
Hence, we have a pair of distinct points [r0] and [r1] in the closure of a single
point [r1/2] in the visual sphere ∂vis,xTg of Tg at x . It follows that the visual
sphere ∂vis,xTg of Tg at x is not Hausdorff.
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We are now ready to deduce the result of Masur and Wolf.

Corollary 3.2 (Masur–Wolf [MW]). Teichmüller space with the Teichmüller
metric is not Gromov hyperbolic.

Proof. Suppose that (Tg , d) is Gromov hyperbolic. Closed balls in (Tg, d)
are compact and (Tg , d) is geodesic. By Gromov’s theorem on the visual sphere
of a proper, geodesic, Gromov hyperbolic space discussed in (2.2), it follows that
the visual sphere of Teichmüller space is Hausdorff. This contradicts Theorem 3.1.
Hence, (Tg , d) is not Gromov hyperbolic.
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