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Abstract. In this paper, we obtain an analogue in earthquake theory to the David theorem
on the solution to the Beltrami differential equation, that is, we introduce a sufficient condition
for a type of Thurston unbounded earthquake measures to be induced by earthquake maps.

1. Introduction

Let D be the unit open disk centered at the origin of the complex plane C. An
orientation-preserving homeomorphism F : D → F (D) ⊂ C is said to be quasicon-
formal if there exists a constant K > 0 such that for every point z ∈ D,

KF (z) = lim sup
r→0

max
0≤θ≤1

|f(z + rei2πθ)|
min

0≤θ≤1
|f(z + rei2πθ)| ≤ K.

The maximal complex dilatation K(F ) of a quasiconformal map F is defined to be
K(F ) = inf

supp(KF )
sup

z∈supp(KF )

KF (z).

See Section IV.4 of [12] for the equivalence of such a definition to others on quasi-
conformal mappings. A quasiconformal map F has the following two properties:

(i) F is absolutely continuous on almost all horizontal or vertical lines. This
implies that the partial derivatives and then the Beltrami coefficient

µF (z) =
∂F (z)

∂F (z)

of F exists for almost all z ∈ D with respect to the Lebesgue measure; and
(ii) µF is a Borel measurable function on D satisfying

‖µF‖∞ = inf
supp(µF )

sup
z∈supp(µF )

|µF (z)| ≤ k

for a constant 0 < k < 1.
In fact, the above two conditions are also sufficient for F to be quasiconformal

(see [12] for a proof). More remarkably, it is also true, due to Morrey, that for every
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Borel measurable function µ on D satisfying condition (ii), there exists a unique
quasiconformal mapping F (up to post-composition by a conformal map) such that
µF = µ almost everywhere with respect to the Lebesgue measure on D. Futhermore,
Ahlfors and Bers showed in [1] that F holomorphically depends on µ.

Theorem A. (Measurable Riemann Mapping Theorem) If µ is a Borel
measurable function defined on D with ‖µ‖∞ < 1, then there exists a unique qua-
siconformal mapping, up to post-composition by a conformal map, satisfying the
Beltrami differential equation

∂F = µ · ∂F

for almost all z with respect to the Lebesgue measure on D.

Later in [2], David extended the existence and uniqueness of the solution to the
Beltrami differential equation to the situation in which ‖µ‖∞ = 1 but the growth
of |µ| to 1 is under some asymptotic control.

Theorem B. (David Theorem) Let m denote the Lebesgue measure on D.
If a measurable function µ defined on D satisfies

m{z ∈ D : |µ(z)| > 1− ε} ≤ C exp
(
− α

ε

)

for all 0 < ε < ε0 and for some positive constants C, α, ε0, then the Beltrami
differential equation has a homeomorphism solution F ∈ W 1,1

loc (D), which is unique
up to post-composition by a conformal map.

In this paper, we obtain an analogue of the David Theorem to earthquake maps.
We will leave the long definition of an earthquake map to the next section. Roughly
speaking, an earthquake map E on the hyperbolic plane D is a piecewise Möbius
transformation defined on domains divided by nonintersecting geodesics on D such
that the comparisons of the Möbius transformations on different domains are hy-
perbolic Möbius transformations with axes separating their domains and translat-
ing in the same direction, where the collection L of the nonintersecting geodesics
forms a lamination on D (that is, it foliates a closed subset of D). For an earth-
quake map (E, L ), the amount of shearing or twisting along the geodesics in L
naturally induces a transversal measure σ supported on L , called an earthquake
measure induced by (E, L ). In general, by an earthquake measure (σ,L ) we mean
a transversal measure σ supported on a lamination L on D. TheThurston norm of
an earthquake measure (σ,L ) is defined to be

‖σ‖Th = sup
l(β)≤1

σ(β) = sup
l(β)=1

σ(β),

where β is a closed geodesic segment transversal to L and l(β) denotes the hyper-
bolic length of β. We say that an earthquake measure is Thurston bounded if it has
a finite Thurston norm, and an earthquake map is Thurston bounded if its induced
earthquake measure is Thurston bounded.

Thurston showed in [14] that if an earthquake map is a quasi-isometry with
respect to the hyperbolic metric on D, then its induced earthquake measure is
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Thurston bounded. In the same paper, he also pointed out that the converse is also
true (see [5] for a detailed proof).

Theorem C. (Thurston) If an earthquake measure (σ, L ) is Thurston bound-
ed, then there exists an earthquake map (E, L ) such that σ is the induced earth-
quake measure by E. Moreover, up to post-composition by a Möbius transformation,
σ determines the isometries of E on all gaps, and for any leaf l ∈ L , two possi-
bly different isometries on l only differ by a hyperbolic isometry with axis l and
translation length between 0 and the measure σ(l) of l.

Here we present the following analogue of the David Thereom to Thurston
unbounded earthquake measures. Given a lamination L , we use β to denote an
arbitrary geodesic arc transversal to L of hyperbolic length ≤ 1 and δ(β) to denote
the Euclidean distance from the arc β to the boundary of D.

Main Theorem. If an earthquake measure (σ,L ) satisfies

(1) σ(β) ≤ 2

3
ln ln

1

δ(β)
+ C

for a constant C > 0 and any geodesic arc β transversal to L of hyperbolic length
≤ 1 and sufficiently close to the boundary in the Euclidean metric, then there exists
an earthquake map (E, L ) such that σ is the earthquake measure induced by E.
Moreover, up to post-composition by a Möbius transformation σ determines the
isometries of E on all gaps, and for any leaf l ∈ L , two possibly different isometries
on l only differ by a hyperbolic isometry with axis l and translation length between
0 and the measure σ(l) of l.

In the next section, we first give the precise definitions of earthquake maps and
earthquake measures, then we provide some details to see how an earthquake map
induces an earthquake measure, and finally we summarize what is known about
constructing an earthquake map given the measure. In the third section, we prove
our main theorem.

Acknowledgement. The authors wish to thank Profs. Frederick P. Gardiner and
Linda Keen for their interests on this paper. They are grateful to the referee for
providing them many useful suggestions to improve the presentation of the paper.

2. Earthquake maps and earthquake measures

Consider D as a hyperbolic plane. A geodesic lamination L in D is a collection
of geodesics which foliate a closed subset L of D. The set L is called the locus of
L , the geodesics are called the leaves of L , the connected components of D \ L
are called the gaps, and the gaps and the leaves of L are called the strata of the
lamination.

Let L be a geodesic lamination in D. By an L -left earthquake map E we mean
that E is an injective and surjective (and often discontinuous) map from D to D
satisfying:



128 Jun Hu and Meiyu Su

(i) for any stratum A, the restriction of E on A is the restriction of a Möbius
transformation, which maps D onto D, on A; and

(ii) for any two strata A and B, the comparison map

cmp(A,B) = (E|A)−1 ◦ E|B : D → D

is a hyperbolic transformation whose axis weakly separates A and B and
which translates to the left as viewed from A. Here E|A and E|B denote the
Möbius transformations representing E on A and B, and we say that a line
l weakly separates two sets A and B if any path connecting a point a ∈ A to
a point b ∈ B intersects l.

Similarly one can define a right earthquake map, and by an earthquake map we
mean it is either a left or right earthquake. In general, there are parallel results
between left and right earthquakes. In this paper, we assume earthquakes are left
earthquakes.

As showed by Thurston in [14], it is not hard to see that each left earthquake map
(E, L ) extends to an orientation-preserving homeomorphism h on the boundary
circle S1. The greatness of the invention of earthquake maps is that each orientation-
preserving circle homeomorphism h can be realized in such a way. Furthermore,
the quasi-symmetry of h on S1 corresponds to the quasi-isometry of E on D in
the hyperbolic metric. For details and some new developments, see [14], [3], [6],
[5], [13], [7], [8], [9], [10], [4] and [11]. In this paper, we focus on the connection
between earthquake maps and their infinitesimal expressions, namely, earthquake
measures. As a parallel to the connection between quasiconformal mappings and
Beltrami differential coefficients, we find an analogue of the David Theorem between
earthqake maps and earthquake measures.

Now let us see how an earthquake map induces an earthquake measure. Roughly
speaking, the earthquake measure induced by an earthquake map E quantifies the
amount of shearing along the geodesics in the lamination of E. More precisely, it
can be introduced as follows. Given an earthquake map (E, L ) and two geodesic
lines l∗ and l∗ in L , let β be a closed geodesic segment which is transversal to
both l∗ and l∗ and intersects them at its endpoints. The amount ν(β) of relative
transversal shearing of the earthquake map (E, L ) along β is defined as follows.
Let P = {Ii}n

i=1 be a partition of β into small geodesic segments, and let Ti be
the comparison map between the strata containing the endpoints of the segment Ii.
The translation length, denoted by τ(Ti), of each hyperbolic Möbius transformation
Ti : D → D can be defined as the logarithm of the derivative of Ti at its expanding
fixed point. Let ν(P ) =

∑n
i=1 τ(Ti). Now we define

(2) ν(β) = inf
P

ν(P ).

The earthquake measure σ(β) of β, induced by the earthquake map (E, L ), is
defined to be

(3) σ(β) = inf
β′

ν(β′),
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where β′ is a closed geodesic segment containing β in its interior. Let X denote the
space S1 × S1 \ {the diagonal} factorized by the equivalence relation (a, b) ∼ (b, a).
Then σ naturally extends to a Borel measure on X with its support consisting of
all pairs of the endpoints of leaves in L . That is, a Borel measure on X supported
on L . (See [7] for the details to show σ is indeed a Borel measure on X.) More
generally, by an earthquake measure we mean any Borel measure on X supported
on a lamination L .

Each earthquake map induces an earthquake measure, but the converse is not
always true. (See [5] for examples of earthquake measures which can not be induced
by earthquake maps, and one example will be briefly reviewed later in this section.)
On the other hand, if an earthquake measure is Thurston bounded, then the converse
is true. That is the Theorem C in the introduction.

In order to briefly summarize the known results on the construction of an earth-
quake map given an earthquake measure, we define a generalized earthquake map
as a map that satisfies all the conditions of an earthquake map E except that E is
not required to be onto. In the same way as for an earthquake map, a generalized
earthquake map induces an earthquake measure. There are examples of earthquake
measures that can be only induced by generalized earthquake maps but not earth-
quake maps. Thurston introduced the following example in [14]. For simplicity, we
work with the upper half plane H. Let ln be the geodesic line connecting −n to
∞, where n = 0, 1, 2, · · · , and let L be the collection of all ln’s. Suppose that the
weight on each geodesic ln is 1. Define a generalized earthquake map E to be the
identity map on the right half hyperbolic plane, and E|−1

ln−1
◦ E|ln is defined to be

the hyperbolic map with ln as its axis, −n as its attracting fixed point and 1 as its
translation length. Take E|l0(z) = 1

e
z, and then E|−1

ln−1
◦ E|ln(z) = 1

e
(z + n)− n for

each n > 0. Since

E|ln = E|l0 ◦ (E|−1
l0
◦ E|l1) ◦ · · · ◦ (E|−1

ln−2
◦ E|ln−1) ◦ (E|−1

ln−1
◦ E|ln),

E maps the geodesic ln to the geodesic connecting E(−n) = −(1
e

+ 1
e2 + · · · + 1

en )

to ∞. Clearly, E(−n) converges to − 1
e−1

as n goes to ∞, and hence E maps the
full hyperbolic plane H into the hyperbolic half plane to the right of the geodesic
connecting − 1

e−1
to ∞. Therefore E is not onto and hence it is not an earthquake

map.
A more interesting example was constructed in [5]. In that example, an earth-

quake measure (σ, L ) was inductively constructed such that the generalized earth-
quake map Eσ corresponding to σ is not an earthquake map but the generalized
earthquake map E2σ corresponding to (2σ, L ) is acturally an earthquake map.

In [5], the work in sections 2.1 and 2.2 was devoted to the construction of an
earthquake map for a given earthquake measure with finite Thurston norm. It was
also pointed out there that the procedure applies to the construction of a map
similar to an earthquake map, but not satisfying the “onto” condition, for any Borel
measure supported on a lamination. In our terminology, the work of sections 2.1,
2.2 and 2.3 in [5] shows the following theorem.
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Theorem D. Given any earthquake measure (σ,L ), there exists a general-
ized earthquake map (E, L ) such that σ is the earthquake measure induced by E.
Moreover, up to post-composition by a Möbius transformation, σ determines the
isometries of E on all gaps, and for any leaf l ∈ L , two possibly different isometries
on l only differ by a hyperbolic isometry with axis l and translation length between
0 and the measure σ(l) of l.

3. Proof of Main Theorem

Given an earthquake measure σ, by Theorem D, there exists a generalized earth-
quake map Eσ that induces the measure σ. The proof of the Main Theorem of this
paper therefore reduces to showing the following:

Theorem 1. If σ satisfies condition (1) in our Main Theorem then any gener-
alized earthquake Eσ inducing σ is actually an earthquake map.

In order to prove a generalized earthquake to be an earthquake, we only need
to show that for any infinite sequence {ln}∞n=0 of geodesics in the lamination L
that shrink to a point on S1 as n → ∞, the images E(ln) also shrink to a point
on S1. Note that because the geodesics in L cannot intersect, there are only two
different ways for {ln}∞n=0 to shrink to a point. One way is that ln’s eventually share
one endpoint and the other is that there exists an infinite subsequence {lnk

}∞k=0 of
{ln}∞n=0 such that any two of them have different endpoints on both sides of the limit
point. Under condition (1), we will show first that in the first case E(ln) converges
to a point; then we will show that in a special situation of the second case they
converge to a point; and finally we will show that they converge to a pont in the
general situation of the second case.

Let us first develop some background. Given a quadruple Q = {a, b, c, d} con-
sisting of four points a, b, c, d on the unit circle S1 arranged in the counterclockwise
order, we denote one cross ratio of Q by

(4) cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
.

It is easy to prove the following two lemmas (see [7] and [9]).

Lemma 1. A quadruple Q has cr(Q) = 1 if and only if the geodesic ac from a
to c is perpendicular to the geodesic bd from b to d, and if and only if the hyperbolic
distance from ab to cd (or bc to da) is equal to ln(3 + 2

√
2).

Lemma 2. Let Q be a quadruple of four points a, b, c, d on S1 arranged in the
counterclockwise order. Suppose y denotes the cross ratio cr(Q) and x denotes the
hyperbolic distance between the geodesics connecting a to d and b to c respectively.

Then y =
(

ex/2−e−x/2

2

)2

. Furthermore, there exists a universal constant δ > 0 such
that if y ≤ δ, then x ≥ √

y, and indeed lim
y→0+

x√
y

= 2.
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Proposition 1. Let (σ,L ) be an earthquake measure satisfying condition (1)
and let E be a generalized earthquake map that induces the measure σ. Suppose
that at a point a ∈ S1, there are infinitely many geodesics in L emanating from a
and shrinking to a (in the Euclidean metric). Let l0 be one of those. Then E maps
the hyperbolic half plane bounded by l0 onto a hyperbolic half plane bounded by
E(l0).

Proof. For simplicity, let us work with the upper half plane H. Without loss
of generality, we assume that a = 0, l0 connects 0 to 1 and E|l0 is the identity
map. For each n ≥ 1, let Ln be the collection of geodesics in L connecting 0 to
points on (1/2n, 1], let σn = σ(Ln), and let βn be the segment on the geodesic γn

connecting −1/2n+1 to 1/2n+1 and between the geodesics connecting 0 to 1/2n and
1 respectively (see Figure 1). Clearly,

δ(βn) =

√
3

2

1

2n+1
>

1

2n+2
.

Now we show that the hyperbolic length of βn is less than 1. Let α1 be the geodesic
passing through 0 and perpendicular to γn, that is the goedesic connecting 0 to
∞. Let P be the intersection point between γn and the geodesic connecting 0 to
1/2n and α2 be the geodesic passing through P and perpendicular to γn. Through
elementary calculation, one can work out that α2 is a semicircle centered at 1/2n

and with radius
√

3/2n+1. Hence α2 connects 1
2n −

√
3

2n+1 to 1
2n +

√
3

2n+1 . Clearly, the
hyperbolic length of βn is less than the length of the segment β′n on γn between α1

and α2. Let x denote the hyperbolic length of β′n and let y denote the cross ratio of
the quadruple {0, 1

2n −
√

3
2n+1 ,

1
2n +

√
3

2n+1 ,∞}. By Lemma 2,

ex/2 − e−x/2 = 2
√

y.

Clearly,

y =
1
2n −

√
3

2n+1

2
√

3
2n+1

=
2−√3

2
√

3
=

1

2
√

3(2 +
√

3)
<

( 1

2
√

3

)2

<
( 1

3.4

)2

.
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Let φ(t) = et/2 − e−t/2. Since φ(t) is a strictly increasing function of t and

φ(1) = e1/2 − e−1/2 =
e− 1

e1/2
> 1 >

2

3.4
> 2

√
y = φ(x),

1 > x, that is, the hyperbolic length l(β′n) of β′n is less than 1. Therefore,

l(βn) < l(β′n) < 1.

By condition (1),

σn = σ(Ln) ≤ 2

3
ln ln

1

δ(βn)
+ C <

2

3
ln ln 2n+2 + C.

Hence
eσn = O((ln 2n+2)2/3) = O((n + 2)2/3).

Let B be the Möbius transformation from H onto itself that maps 1 to −1, 0 to
∞ and 1/2n to −2n for each n ≥ 1. Then Ẽ = B ◦ E ◦ B−1 is also a generalized
earthquake map with its induced earthquake measure equal to the pushforward
(σ̃, L̃ ) of (σ,L ) by B. In order to show that E maps the half hyperbolic plane
bounded by l0 onto the half plane bounded by E(l0), it is equivalent to show that
Ẽ maps the left half plane bounded by the geodesic connecting −1 to∞ onto itself.
It is sufficient to prove

lim
n→∞

Ẽ(−2n) = −∞.

Clearly, Ẽ moves each point −2n to the right on the real line.
Let L̃n be the collection of the geodesics in L̃ connecting points on (−2n,−1]

to ∞ and σ̃n = σ̃(L̃n), where n ≥ 1. Clearly, for each n ≥ 1,

σ̃n = σn.

By moving all the measure on L̃n to the geodesic connecting −1 to∞, the resulting
new earthquake map Ẽn (assumed to be the identity map on the geodesic connecting
−1 to ∞) will possibly move −2n further to the right than the map Ẽ, that is,

Ẽ(−2n) ≤ Ẽn(−2n) = − 2n

eσ̃n
= − 2n

O((n + 2)2/3)
.

Hence
lim

n→∞
Ẽ(−2n) = −∞,

and then the proof is complete. ¤
Remark. In the proof of the previous proposition, one can compute l(β′n)

directly through an integration. That is

l(β′n) =

∫ π/2

π/6

dθ

sin θ
= − ln(cot θ + csc θ)|π/2

π/6 = ln
√

3 < 1.

The method used in our proof focuses on the close relationship between the cross
ratio of a quadruple and the hyperbolic distance between the corresponding two
geodesics as indicated in Lemma 2. It doesn’t require to work out explicitly the
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measures of the angles used in the above integration, and therefore it makes easier
to estimate l(β′n) when the measures of the angles are quite arbitrary. We will apply
this method two more times in the proof of Proposition 2, which is the main step
for the proof of our main theorem.

The following two lemmas are useful in estimating the cross ratio of an image
quadruple under an earthquake map. They have been applied to prove several
results in [5] and [7]. See Corollaries 1 and 2 in [5] for their proofs.

Lemma 3. ([5]) Let Q = {a, b, c, d} be a quadruple on the real line with −∞ ≤
a < b < c < d, s ∈ [c, d] and t ∈ [d,∞]. Suppose that A(s,t) is the hyperbolic
Möbius transformation with repelling fixed point at s and attracting fixed point at
t and derivative at the repelling fixed point equal to λ > 1. Suppose f(s,t) : R → R
is defined to be equal to A(s,t) on the interval [s, t] and equal to the identity on the
complement of [s, t]. Then the cross-ratio of the image quadruple f(s,t)(Q) considered
as a function of two variables s ∈ [y, z] and t ∈ (z, +∞) decreases in s for each fixed
t and increases in t for each fixed s.

Lemma 4. ([5]) With the same notation as in the previous lemma, suppose
s ∈ [b, c] and t ∈ [d,∞]. Then the cross-ratio of the image quadruple f(s,t)(Q) is
increasing in s for each fixed t and also increasing in t for each fixed s.

Corollary 1. With the same notation as in the previous two lemmas, suppose
s ∈ [a, b] and t ∈ [c, d]. Then the cross-ratio of the image quadruple f(s,t)(Q) is
decreasing in s for each fixed t and also decreasing in t for each fixed s.

Proof. Let Q′ denote the quadruple {d, a, b, c}. Then

cr(f(s,t)(Q)) =
1

cr(f(s,t)(Q′))
.

Apply the previous lemma to cr(f(s,t)(Q
′)), we complete the proof. ¤

Now we start to deal with the second case: Suppose that a point a on S1 is not
the endpoint of any geodesic in L but it is an accumulation point of the geodesics
in L . Let {ln}∞n=0 be an infinite sequence of the geodesics in L shrinking to a. We
want to show under condition (1), E(ln) shrinks to a point on S1 as n →∞. Again
we work with the upper half plane H and assume a = 0.

Let us first illustrate how condition (1) works in a special situation in which
we assume further that for any n ≥ 0, the geodesic ln connecting −1/en to 1/en

is either a geodesic in L or contained in a gap of L . For each n > 1, let Qn

be the quadruple {−1/en−1,−1/en, 1/en, 1/en−1} and let E(Qn) be the quadruple
consisting of the four endpoints of E(ln−1) and E(ln). Let yn denote the cross ratio
of E(Qn) and let xn denote the hyperbolic distance between E(ln−1) and E(ln).
Finally, let βn be the common perpendicular geodesic segment between ln−1 and ln
and let σn = σ(βn). By condition (1),

eσn ≤ e
2
3

ln ln 1
δ(βn)

+C = e
2
3

ln ln en+C = O(n2/3).
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Let En be an earthquake map which induces the measure σ|βn . Then

cr(E(Qn)) = cr(En(Qn)).

Let E ′
n be an earthquake map which has only one leaf at the geodesic connecting

−1/en to 1/en−1 and has the weight on this leaf equal to σn. By Corollary 1,

cr(En(Qn)) ≥ cr(E ′
n(Qn)).

One can easily work out cr(E ′
n(Qn)) by mapping −1/en to 0 and 1/en−1 to ∞

through conjugation by a Möbius transformation, that is,

cr(E ′
n(Qn)) =

cr(Qn)

eσn
=

C0

eσn
,

where C0 = cr(Qn) = (e−1)2

4e
. Therefore,

cr(En(Qn)) ≥ cr(E ′
n(Qn)) =

C0

eσn
≥ C0

O(n2/3)
.

Let φ(x) = ( ex/2−e−x/2

2
)2. It is an increasing function of x. By Lemma 2,

xn = φ−1(yn) = φ−1(cr(En(Qn))) ≥ φ−1(
C0

O(n2/3)
) ≥ 1

M

1

n1/3

for a constant M > 0 and all sufficiently large n’s. Hence
∑∞

n=1 xn diverges. This
implies that the distance between E(l0) and E(ln) goes to ∞ and thus that E(ln)
shrinks to a point as n →∞.

Proposition 2. Let (σ,L ) be an earthquake measure satisfying condition (1)
and let E be a generalized earthquake map inducing the measure σ. Suppose that
a point a on S1 is not an endpoint of any geodesic in L but it is an accumulation
point of the geodesics in L . If l0 is a leaf in L , then E maps the hyperbolic half
plane bounded by l0, containing a as a boundary point, onto a half plane bounded
by E(l0).

Proof. We work with the upper half plane H again. Without loss of generality,
we may assume that a = 0 and l0 is a geodesic connecting −1 to 1. Let L0 be
the collection of the leaves in L connecting points on [−1, 0) to points on (0, 1].
The main part of the proof is to arrange the leaves in L0 into groups such that the
measures of the leaves in the groups are commensurable with the Euclidean lengths
of the shortest geodesics in the groups and they are also quantitatively related in a
useful manner.

Let I−1 = [−1,−1/2] and I+
1 = [1/2, 1]. Denote by L −

1 the collection of the
leaves in L0 connecting points on I−1 to points on (0, 1] and L +

1 the collection of
the leaves in L0 connecting points on I+

1 to points on [−1, 0). Let L1 = L −
1 ∪L +

1 .
Then each leaf in L0 \L1 connects a point on (−1/2, 0) to a point on (0, 1/2). Let
l1 be the leaf in L1 such that all leaves in L1 are between l0 and l1. Assume that
l1 connects u1 to v1 with −1 ≤ u1 < 0 and 0 < v1 ≤ 1. We may assume that either
u1 = −1/2 and v1 < 1/2 or u1 > −1/2 and v1 = 1/2 by adding a leaf with 0 weight
to L1 if necessary.
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Now we construct Ln inductively for n ≥ 2. Let wn−1 = min{|un−1|, vn−1},
I−n = [un−1,−wn−1/2] and I+

n = [wn−1/2, vn−1]. Denote by L −
n the collection of the

leaves in L0 \ ∪n−1
k=1Lk connecting points on I−n to points on (0, vn−1] and by L +

n

the collection of the leaves in L0 \ ∪n−1
k=1Lk connecting points on I+

n to points on
[un−1, 0). Let Ln = L −

n ∪L +
n . Then the leaves in L0 \ ∪n

k=1Lk connect points on
(−wn−1/2, 0) to point on (0, wn−1/2). Suppose ln is the leaf in Ln such that the
leaves in Ln are between ln−1 and ln and ln connects un to vn with un−1 ≤ un < 0
and 0 < vn ≤ vn−1. We may assume that either un = −wn−1/2 and vn < wn−1/2 or
un > −wn−1/2 and vn = wn−1/2 by adding a leaf with 0 weight to Ln if necessary.

Let sn = 1
2
max{|un|, vn}. In the following, we first show that condition (1)

implies

(5) σ(Ln) ≤ 2 ln ln

√
36

35

1

sn

+ C ′

for a constant C ′ > 0 and all n ≥ 1.
In order to prove this inequality, we need to treat four different situations accord-

ing to whether |un−1| ≤ vn−1 or |un−1| > vn−1 and whether |un| ≤ vn or |un| > vn.
We will show details to handle the two cases in which |un−1| ≤ vn−1. The proofs for
the other two cases are very similar and will be skipped.

Case 1: |un−1| ≤ vn−1 and |un| ≤ vn.

As arranged in the inductive construction of ln, in this case vn = |un−1|/2. Let
αn be the semicircle centered at un−1 and connecting vn/2 to 2un−1 − vn/2, βn be
the segment on αn between ln−1 and ln, and δ(βn) be the Euclidean distance from
βn to the real line. Let yn be the y-coordinate of the intersection point between αn

and the geodesic γn connecting 0 to vn. Then

δ(βn) ≥ yn.

Let l̃n−1 be the geodesic passing through un−1 and perpendicular to αn, l̃n be the
geodesic passing through vn and perpendicular to αn, and β̃n be the segment on αn

between l̃n−1 and l̃n. Then the hyperbolic length l(βn) is less than l(β̃n).
Since un−1 = −2vn, through a rescaling by z 7→ z/vn, we may assume that αn

connects −9/2 to 1/2 and γn connects 0 to 1. Then we can easily work out the
y-coordinate of their intersection point, that is, 1

2

√
99
100

. Therefore,

δ(βn) ≥ yn =
vn

2

√
99

100
= sn

√
99

100
.

In the rescaled coordinate system, l̃n−1 connects −2 to ∞. Through Lemma 1, we
can work out that l̃n connects 1/12 to 1. Hence

cr({−2,
1

12
, 1,∞}) =

25

11
.
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Set x = l(β̃n). By Lemma 2,
(ex − 1)2

4ex
=

25

11
.

Let φ(x) = (ex−1)2

4ex = (ex/2 − e−x/2)2/4. Since φ is an increasing function of x and
φ(2) < 25/11 < φ(3), 2 < x < 3. Hence

l(βn) < l(β̃n) = x < 3.

Therefore, condition (1) implies

(6) σ(βn) ≤ 3
(2

3
ln ln

1

yn

+ C
)
≤ 2 ln ln

√
100

99

1

sn

+ 3C.

This implies inequality (5).

Case 2: |un−1| ≤ vn−1 and |un| > vn.

In this case, un = un−1/2. Let αn be the semicircle centered at un−1 and
connecting un/2 to 2un−1−un/2 and let βn be the segment on αn between ln−1 and
ln. Let yn be the y-coordinate of the intersection point between αn and the geodesic
γn connecting un to 0. Using a similar argument, rescaling as in Case 1, we can
work out that

δ(βn) ≥ yn =
|un|
2

√
35

36
= sn

√
35

36
.

Let l̃n−1 be the geodesic passing through un−1 and perpendicular to αn, l̃n be
the geodesic passing through 0 and perpendicular to αn, and β̃n be the segment on
αn between l̃n−1 and l̃n. Then

l(βn) < l(β̃n).

Again, rescaling as in Case 1, we can find that l̃n connects to 7
8
un to 0. Let Q̃n be the

quadruple consisting of the endpoints of l̃n−1 and l̃n, that is Q̃n = {un−1,
7
8
un, 0,∞}.

Then cr(Q̃n) = 9/7. Again let x = l(β̃n). Then

(ex − 1)2

4ex
= cr(Q̃n) =

9

7
.

Since φ(x) = (ex−1)2

4ex is an increasing function of x and φ(1) < 9/7 < φ(2), 1 < x < 2.
It follows that

l(βn) < l(β̃n) = x < 2.

Therefore, condition (1) implies

(7) σ(βn) ≤ 2
(2

3
ln ln

1

yn

+ C
)
≤ 4

3
ln ln

√
36

35

1

sn

+ 2C.

The other two cases are the mirror images of the above two cases with respect
to the imaginary axis. Therefore with similar arguments, we can also obtain in-
equalities (6) and (7) respectively. All these together imply inequality (5).
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Let sn = e−tn for each n > 0. The arguments of the proofs of Proposition 1 and
the special situation of Proposition 2 lead to the idea of proving Proposition 2 by
dividing the sequence {tn}∞n=1 into the following two situations.

Situation 1: tn = O(n ln n).

The proof for this case follows from the same idea to handle the special situation
of Proposition 2. Let Qn be the quadruple consisting of the endpoints of ln−1

and ln, that is, Qn = {un−1, un, vn, vn−1}. Using the arrangement in the inductive
construction of l′ns, it is easy to check that cr(Qn) ≥ 1/8. Arguing as in dealing
with the special situation of Proposition 2, we obtain

cr(E(Qn)) ≥ cr(Qn)

eσ(Ln)
≥ 1

8eσ(Ln)
.

By inequality (5),

cr(E(Qn)) ≥ 1

8eC′(ln
√

36
35

1
sn

)2
=

1

8eC′(ε + tn)2
,

where ε = ln
√

36
35
. Let xn denote the hyperbolic distance between E(ln−1) and

E(ln). By Lemma 2, if tn is sufficiently large then

xn = φ−1(cr(E(Qn))) ≥ φ−1(
1

8eC′(ε + tn)2
) ≥ 1

2
√

2eC′/2(ε + tn)
.

Hence
∑∞

n=1 xn diverges. This implies that the hyperbolic distance between E(l0)
and E(ln) goes to ∞ and thus that E(ln) shrinks to a point as n →∞.

Situation 2: { tn
n ln n

}∞n=1 is unbounded.

The proof for this case is motivated by the proof of Proposition 1. The above
sequence has a subsequence converging to ∞. Without loss of generality, we may
assume that it converges to∞ as n →∞. Now we let Qn be the quadruple consisting
of the endpoints of l0 and ln, that is, Qn = {−1, un, vn, 1}. Clearly, for each n > 0,

cr(Qn) =
(un + 1)(1− vn)

2(vn − un)
≥ 1

8(vn − un)
.

Since sn = 1
2
max{|un|, vn} and sn = e−tn , vn − un ≤ 4sn and then

cr(Qn) ≥ 1

32sn

=
1

32
etn .

By inequality (5),

σ
( n⋃

k=1

Lk

)
≤ nτn,
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where τn = 2 ln ln
√

36
35

1
sn

+ C ′ = 2 ln(ε + tn) + C ′ and ε =
√

36
35
. Then

cr(E(Qn)) ≥ cr(Qn)

eσ(∪n
k=1Lk)

≥ cr(Qn)

enτn
≥ etn

32enτn
.

Now let xn denote the hyperbolic distance between E(l0) and E(ln). In order to
know xn → ∞ as n → ∞, we only need to show cr(E(Qn)) → ∞ as n → ∞. It
is sufficient to show that etn/enτn → ∞ as n → ∞. Furthermore, it is sufficient to
show (etn/enτn)1/n > 1 when n is large enough. Clearly,

( etn

enτn

)1/n

=
etn/n

eτn
=

etn/n

eC′(ε + tn)2
=

1

eC′

( etn/2n

ε + tn

)2

.

Let tn = knn ln n. Then
etn/2n

ε + tn
=

nkn/2

ε + knn ln n
.

Now it is clear that etn/2n

ε+tn
goes to ∞ as both kn and n go to ∞. It follows that

cr(E(Qn)) and then xn go to ∞ as n goes to ∞. This implies that E(ln) shrinks to
a point as n →∞.

Situations 1 and 2 complete the proof. ¤
Propositions 1 and 2 imply our Theorem 1, and then Theorem D and Theorem

1 imply our main theorem.

Remark. In the course of proving Proposition 1 and the special case of Propo-
sition 2, it is clear that the constant 2/3 in condition (1) can be easily relaxed, but
the proof of Proposition 2 relies on this constant and it doesn’t seem to be easy to
raise it.

Remark. Along an earthquake curve Et determined by tσ, t ≥ 0, with σ
satisfying condition (1), the earthquakes may become generalized earthquakes for
t > 1. But interestingly, if an earthquake measure σ satisfies

(8) σ(β) ≤ ln ln ln
1

δ(β)
+ C

for a constant C and any geodesic arc β transversal to the lamination L of σ of
hyperbolic length ≤ 1 and sufficiently close to the boundary S1 in the Euclidean
metric, then an earthquake curve Et determined by tσ, t ≥ 0, is a curve of earth-
quakes for all t ≥ 0. The differentiability of such a curve on t will be studied in the
forthcoming note by Hu and/or Su.
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