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Abstract. By using a result of Domínguez and Sienra on the topological rigidity of the Sine
family, we give a different proof of a result in [8] which says that, for any bounded type irrational
number 0 < θ < 1, the boundary of the Siegel disk of e2πiθ sin(z) is a quasi-circle passing through
exactly two critical points π/2 and −π/2.

1. Introduction

Let f : C → C and g : C → C be two continuous maps. We say that f and g are
topologically equivalent to each other if there are two homeomorphisms θ1, θ2 : C →
C such that f = θ−1

1 ◦ g ◦ θ2. The following lemma on the topological rigidity of the
Sine family was proved by Domínguez and Sienra(Lemma 1, [3]).

Lemma 1.1. Let f be an entire function. If f(z) is topologically equivalent to
sin(z), then f(z) = a + b sin(cz + d) where a, b, c, d ∈ C, and b, c 6= 0.

The main purpose of this paper is to use this lemma to give a new but simpler
proof of the following result, which was previously proved in [8].

Theorem. Let 0 < θ < 1 be a bounded type irrational number. Then the
boundary of the Siegel disk of fθ(z) = e2πiθ sin(z) is a quasi-circle which passes
through exactly two critical points π/2 and −π/2.

Here is the idea of the new proof. Following the idea of Cheritat [2], we first
construct a Ghys-like model Gθ(z) for the map e2πiθ sin(z). Next we do a stan-
dard quasi-conformal surgery on the model map Gθ(z) and get an entire function
gθ(z). We then derive the theorem from Lemma 1.1 and the fact that gθ and fθ are
topologically equivalent to each other.

It is interesting to contrast the proof here with the one in [8]. The proof in
[8] is based on a non-symmetric model map f̃θ(z). One of the most important
characteristics of this model map is its periodicity which plays a key role in the
proof there. In this paper, we use the symmetric model map Gθ, which does not
have the periodicity. A priori, the resulted entire map gθ may not be periodic either.
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But because of the topological rigidity of the Sine family, the map gθ turns out to
be equal to fθ, and this implies the theorem.

I would like to mention that by using trans-quasiconformal surgery introduced
in [7] and the techniques in this paper, the theorem was recently extended to David
type Siegel disks of the Sine family[9].

2. A Ghys-like model

We use the idea of Cheritat in the following construction (see [2]). Let ∆ be the
unit disk and T (z) = sin(z). It follows that the map T (z) has exactly two critical
values 1 and −1. Let D be the component of T−1(∆) which contains the origin.
The following lemma is obvious and we leave the proof to the reader.

Lemma 2.1. D is a Jordan domain which is symmetric about the origin. More-
over, ∂D passes through exactly two critical points π/2 and −π/2, and the map
T |∂D : ∂D → ∂∆ is a homeomorphism.

For k ∈ Z, let Dk = {z + kπ
∣∣ z ∈ D}. It follows that D0 = D. Note that for

any two distinct integers k and j, if ∂Dk ∩ ∂Dj 6= ∅, then any point in ∂Dk ∩ ∂Dj

must be a critical point of sin(z). This, together with Lemma 2.1, implies

Lemma 2.2. For any k ∈ Z, ∂Dk ∩ ∂Dk+1 = {kπ + π/2}. For any two distinct
integers k and j with |k − j| 6= 1, ∂Dk ∩ ∂Dj = ∅. In particular, if Λ ⊂ Z contains
infinitely many elements but Λ 6= Z, then

⋃
k∈Λ ∂Dk is disconnected.

Let φ : Ĉ − ∆ → Ĉ − D be the Riemann map such that φ(∞) = ∞ and
φ(1) = π/2. Since ∆ and D are both symmetric about the origin, we have

Lemma 2.3. φ is odd.

For z ∈ C, let z∗ denote the symmetric image of z about the unit circle. Define

(1) G(z) =

{
T ◦ φ(z) for z ∈ C−∆,

(T ◦ φ(z∗))∗ for z ∈ ∆− {0}.
From the construction of G(z), we have

Lemma 2.4. G(z) is holomorphic in C−{0} and is symmetric about the unit
circle. Moreover, G(z) is odd.

By Lemma 2.1, we see that G|∂∆: ∂∆ → ∂∆ is a critical circle homeomorphism.
By Proposition 11.1.9 of [5], we get

Lemma 2.5. There exists a unique t ∈ [0, 1) such that e2πitG|∂∆: ∂∆ → ∂∆
is a critical circle homeomorphism of rotation number θ.

Let t ∈ [0, 1) be the number given in Lemma 2.5. Let us denote e2πitG(z)
by Gθ(z). By Herman–Swiatek’s quasi-symmetric linearization theorem on criti-
cal circle mappings [6], it follows that there is a quasi-symmetric homeomorphism
h : ∂∆ → ∂∆ such that h(1) = 1 and Gθ|∂∆ = h−1 ◦ Rθ ◦ h, where Rθ is the rigid
rotation given by θ.
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Lemma 2.6. Gθ and h are both odd.

Proof. The assertion that Gθ is odd follows from that G(z) is odd (Lemma 2.4).
Now let us prove that h is odd. First let us show that h(−1) = −1. Let U(N)
be the number of the points in {Gk

θ(1)
∣∣ k = 1, · · · , N} which lie in the upper half

circle. Let L(N) be the number of the points in {Gk
θ(−1)

∣∣ k = 1, · · · , N} which lie
in the lower half circle. Note that Gθ is odd, it follows that U(N) = L(N). Since
the angle length of the image of the upper half circle under h is equal to the limit
of 2πU(N)/N as N →∞, and the angle length of the image of the lower half circle
under h is equal to the limit of 2πL(N)/N as N → ∞, it follows that the angle
length of the images of the upper half circle and the lower half circle under h are
equal to each other. This implies that h(−1) = −1.

To show that h is odd, let t(z) = −h(−z). We have t(1) = 1 = h(1). Since

t−1 ◦Rθ ◦ t(z) = −Gθ|∂∆(−z) = Gθ|∂∆(z),

it follows that t = h. This proves Lemma 2.6. ¤
Let H : ∆ → ∆ be the Douady–Earle extension of h. We refer the reader to [4]

for the definition and properties of Douady–Earle extension. It follows that H is
odd also. In particular, H(0) = 0. Define

(2) G̃θ(z) =

{
Gθ(z) for z ∈ C−∆,

H−1 ◦Rθ ◦H(z) for z ∈ ∆.

For k ∈ Z, let ∆k = φ−1(Dk). Note that ∆0 = ∆.

Lemma 2.7. G̃θ is odd. The critical set of G̃θ is contained in the set G̃−1
θ (∂∆) =⋃

k∈Z ∂∆k, and moreover, if Λ ⊂ Z contains infinitely many elements but Λ 6= Z,
then the set

⋃
k∈Λ ∂∆k is disconnected.

Proof. The first assertion follows from the construction of G̃θ. The second one
follows from Lemma 2.2. ¤

Let ν0 be the complex structure in ∆ which is the pull back of the standard
complex structure by H. Since H is odd, we have

Lemma 2.8. ν0(−z) = ν0(z).

Now we can define a G̃θ(z)-invariant complex structure ν on the complex plane.
The procedure is standard. For z ∈ ∆, define ν = ν0. For z /∈ ∆, there are two
cases. In the first case, there is some integer m ≥ 1 such that G̃m

θ (z) ∈ ∆. In this
case, define ν(z) to be the pull back of ν0(G̃

m
θ (z)) by G̃m

θ . In the second case, the
forward orbit of z does not intersect the unit disk. In this case, define ν(z) = 0.
Since G̃θ is odd, by Lemma 2.8, we have

Lemma 2.9. ν(−z) = ν(z).
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Now by Ahlfors–Bers’s theorem [1], there is a unique quasi-conformal homeo-
morphism ψ of the Riemann sphere which solves the Beltrami equation given by ν,
and which fixes 0 and the infinity, and maps 1 to π/2.

Lemma 2.10. ψ is odd.

Proof. Let r(z) = −ψ(−z). Let νr and νψ denote the dilations of r and ψ,
respectively. By Lemma 2.9, it follows that νr(z) = νψ(z). Since r(0) = ψ(0) = 0
and r(∞) = ψ(∞) = ∞, we get that r(z) = aψ(z) for some constant a. This implies
that ψ(z) = ψ(−(−z)) = −aψ(−z) = a2ψ(z). It follows that a2 = 1. We then have
a = 1 or a = −1. If a = −1, we get ψ(−z) = ψ(z) for all z. This is impossible since
ψ(z) is a homeomorphism. Therefore a = 1. The Lemma follows. ¤

Let gθ(z) = ψ ◦ G̃θ ◦ ψ−1(z) and let Ω = ψ(∆). By the construction, we get

Lemma 2.11. gθ(z) is an odd entire function which has a Siegel disk Ω centered
at the origin with rotation number θ. Moreover, Ω is symmetric about the origin,
and ∂Ω is a quasi-circle passing through exactly two critical points π/2 and −π/2.

For k ∈ Z, let Ωk = ψ(∆k). It follows that Ω = Ω0 and each Ωk is a component
of g−1

θ (Ω0). By Lemma 2.7, we get

Lemma 2.12. The critical set of gθ is contained in the set g−1
θ (∂Ω0) =

⋃
k∈Z ∂Ωk.

Moreover, if Λ ⊂ Z contains infinitely many elements but Λ 6= Z, then the set⋃
k∈Λ ∂Ωk is disconnected.

3. Topological equivalence

Lemma 3.1. Let f : C → C and g : C → C be two continuous maps such that
f = g on the outside of the unit disk. If in addition, f : ∆ → ∆ and g : ∆ → ∆ are
both homeomorphisms, then f and g are topologically equivalent to each other.

Proof. Define θ2(z) = z for z /∈ ∆ and θ2(z) = g−1 ◦ f(z) for z ∈ ∆. It follows
that θ2 : C → C is a homeomorphism. Let θ1 = id. Then f = θ−1

1 ◦ g ◦ θ2. The
Lemma follows. ¤

Let φ : Ĉ−∆ → Ĉ−D be map in the definition of G(z). Let η : Ĉ → Ĉ be a
homeomorphic extension of φ. As before let T (z) = sin(z). It follows that T (z) is
topologically equivalent to T ◦ η. Let t ∈ [0, 1) be the number in Lemma 2.5. Let
S(z) = e2πitT ◦ η(z). It follows that S(z) is topologically equivalent to T (z). By
Lemma 3.1, we have

Lemma 3.2. S(z) is topologically equivalent to G̃θ(z).

Lemma 3.3. gθ(z) is topologically equivalent to T (z).

Proof. By the construction of gθ, it follows that gθ is topologically equivalent
to G̃θ. The Lemma then follows from Lemma 3.2. ¤

Proof of the Theorem. By Lemma 1.1, it follows that gθ(z) = a + b sin(cz + d)
where a, b, c, d ∈ C and b, c 6= 0. Since gθ(−z) = −gθ(z) by Lemma 2.11, by
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differentiating on both sides of the equation, we get
cos(cz + d) = cos(−cz + d)

for all z. It follows that
sin(d) sin(cz) = 0

for all z. Since c 6= 0, it follows that d = kπ for some integer k. Therefore, we
may assume that gθ(z) = a + b sin(cz). Since gθ(0) = 0, it follows that a = 0. This
implies that gθ(z) = b sin(cz).

Since g′θ(π/2) = 0, it follows that c is some odd integer. By changing the sign
of b, we may assume that c is positive. Suppose c = 2l + 1 for some integer l ≥ 0.
Recall that Ω0 = Ω is the Siegel disk of gθ centered at the origin. For k ∈ Z, let
Ek = {z + kπ

∣∣ z ∈ Ω0}. Since Ω0 is symmetric about the origin, it follows that
every Ek is a component of g−1

θ (Ω0). Since ∂Ω0 passes through π/2 and −π/2 by
Lemma 2.11, it follows that for every k ∈ Z, π/2 + kπ ∈ ∂Ek ∩ ∂Ek+1, and hence
that the set

⋃
k∈Z ∂Ek is connected. By Lemma 2.12, we get g−1

θ (∂Ω0) =
⋃

k∈Z ∂Ek.
By Lemma 2.12 again, it follows that the critical set of gθ is contained in

⋃
k∈Z ∂Ek.

Since ∂E0 = ∂Ω0 passes through exactly two critical points π/2 and −π/2 of gθ(z)
and since g′θ(z) = (−1)kg′θ(z + kπ), it follows that every critical point of gθ has the
form π/2 + kπ where k ∈ Z is some integer. This implies that c = 1. It follows that
b = e2πiθ and therefore gθ(z) = fθ(z). This completes the proof of the theorem. ¤

Acknowledgement. I would like to thank the referee for his or her many impor-
tant comments which greatly improve the paper.

References

[1] Ahlfors, L.V.: Lectures on quasiconformal mappings. - Van Nostrand, 1966.

[2] Cheritat, A.: Ghys-like models providing trick for a class of simple maps. - arXiv:
maths.DS/0410003 v1 30 Sep 2004.

[3] Domínguez, P., and G. Sienra: A study of the dynamics of λ sin z. - Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 12:12, 2002, 2869–2883.

[4] Douady, A., and C. Earle: Conformally natural extension of homeomorphisms of the circle.
- Acta Math. 157, 1986, 23–48.

[5] Katok, A., and B. Hasselblatt: Introduction to the modern theory of dynamical systems.
- Encyclopedia Math. Appl. 54, Cambridge Univ. Press, London–New York, 1995.

[6] Petersen, C.: Herman–Swiatek theorems with applications. - London Math. Soc. Lecture
Note Ser. 274, 2000, 211–225.

[7] Petersen, C., and S. Zakeri: On the Julia set of a typical quadratic polynomial with a
Siegel disk. - Ann. of Math. (2) 159:1, 2004, 1–52.

[8] Zhang, G.: On the dynamics of e2πiθ sin(z). - Illinois J. Math. 49:4, 2005, 1171–1179.

[9] Zhang, G.: On David type Siegel disks of the Sine family. - Preprint, 2007.

Received 25 June 2006


