Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 33, 2008, 81–85

AN APPLICATION OF THE TOPOLOGICAL RIGIDITY OF THE SINE FAMILY

Gaofei Zhang

Nanjing University, Department of Mathematics Hankou Road, No. 22, Nanjing, 210093, P.R. China; zhanggf@hotmail.com

Abstract. By using a result of Domínguez and Sienra on the topological rigidity of the Sine family, we give a different proof of a result in [8] which says that, for any bounded type irrational number $0 < \theta < 1$, the boundary of the Siegel disk of $e^{2\pi i\theta} \sin(z)$ is a quasi-circle passing through exactly two critical points $\pi/2$ and $-\pi/2$.

1. Introduction

Let $f: \mathbf{C} \to \mathbf{C}$ and $g: \mathbf{C} \to \mathbf{C}$ be two continuous maps. We say that f and g are topologically equivalent to each other if there are two homeomorphisms $\theta_1, \theta_2: \mathbf{C} \to \mathbf{C}$ such that $f = \theta_1^{-1} \circ g \circ \theta_2$. The following lemma on the topological rigidity of the Sine family was proved by Domínguez and Sienra(Lemma 1, [3]).

Lemma 1.1. Let f be an entire function. If f(z) is topologically equivalent to $\sin(z)$, then $f(z) = a + b \sin(cz + d)$ where $a, b, c, d \in \mathbf{C}$, and $b, c \neq 0$.

The main purpose of this paper is to use this lemma to give a new but simpler proof of the following result, which was previously proved in [8].

Theorem. Let $0 < \theta < 1$ be a bounded type irrational number. Then the boundary of the Siegel disk of $f_{\theta}(z) = e^{2\pi i \theta} \sin(z)$ is a quasi-circle which passes through exactly two critical points $\pi/2$ and $-\pi/2$.

Here is the idea of the new proof. Following the idea of Cheritat [2], we first construct a Ghys-like model $G_{\theta}(z)$ for the map $e^{2\pi i\theta} \sin(z)$. Next we do a standard quasi-conformal surgery on the model map $G_{\theta}(z)$ and get an entire function $g_{\theta}(z)$. We then derive the theorem from Lemma 1.1 and the fact that g_{θ} and f_{θ} are topologically equivalent to each other.

It is interesting to contrast the proof here with the one in [8]. The proof in [8] is based on a non-symmetric model map $\tilde{f}_{\theta}(z)$. One of the most important characteristics of this model map is its periodicity which plays a key role in the proof there. In this paper, we use the symmetric model map G_{θ} , which does not have the periodicity. A priori, the resulted entire map g_{θ} may not be periodic either.

²⁰⁰⁰ Mathematics Subject Classification: Primary 58F23; Secondary 37F10, 37F50, 30D35. Key words: Topological rigidity.

Partially supported by NJU-0203005116.

But because of the topological rigidity of the Sine family, the map g_{θ} turns out to be equal to f_{θ} , and this implies the theorem.

I would like to mention that by using trans-quasiconformal surgery introduced in [7] and the techniques in this paper, the theorem was recently extended to David type Siegel disks of the Sine family[9].

2. A Ghys-like model

We use the idea of Cheritat in the following construction (see [2]). Let Δ be the unit disk and $T(z) = \sin(z)$. It follows that the map T(z) has exactly two critical values 1 and -1. Let D be the component of $T^{-1}(\Delta)$ which contains the origin. The following lemma is obvious and we leave the proof to the reader.

Lemma 2.1. D is a Jordan domain which is symmetric about the origin. Moreover, ∂D passes through exactly two critical points $\pi/2$ and $-\pi/2$, and the map $T|\partial D: \partial D \to \partial \Delta$ is a homeomorphism.

For $k \in \mathbb{Z}$, let $D_k = \{z + k\pi \mid z \in D\}$. It follows that $D_0 = D$. Note that for any two distinct integers k and j, if $\partial D_k \cap \partial D_j \neq \emptyset$, then any point in $\partial D_k \cap \partial D_j$ must be a critical point of $\sin(z)$. This, together with Lemma 2.1, implies

Lemma 2.2. For any $k \in \mathbb{Z}$, $\partial D_k \cap \partial D_{k+1} = \{k\pi + \pi/2\}$. For any two distinct integers k and j with $|k - j| \neq 1$, $\partial D_k \cap \partial D_j = \emptyset$. In particular, if $\Lambda \subset \mathbb{Z}$ contains infinitely many elements but $\Lambda \neq \mathbb{Z}$, then $\bigcup_{k \in \Lambda} \partial D_k$ is disconnected.

Let $\phi: \widehat{\mathbf{C}} - \overline{\Delta} \to \widehat{\mathbf{C}} - \overline{D}$ be the Riemann map such that $\phi(\infty) = \infty$ and $\phi(1) = \pi/2$. Since Δ and D are both symmetric about the origin, we have

Lemma 2.3. ϕ is odd.

For $z \in \mathbf{C}$, let z^* denote the symmetric image of z about the unit circle. Define

(1)
$$G(z) = \begin{cases} T \circ \phi(z) & \text{for } z \in \mathbf{C} - \Delta, \\ (T \circ \phi(z^*))^* & \text{for } z \in \Delta - \{0\}. \end{cases}$$

From the construction of G(z), we have

Lemma 2.4. G(z) is holomorphic in $\mathbb{C} - \{0\}$ and is symmetric about the unit circle. Moreover, G(z) is odd.

By Lemma 2.1, we see that $G|\partial \Delta : \partial \Delta \to \partial \Delta$ is a critical circle homeomorphism. By Proposition 11.1.9 of [5], we get

Lemma 2.5. There exists a unique $t \in [0,1)$ such that $e^{2\pi i t} G | \partial \Delta : \partial \Delta \to \partial \Delta$ is a critical circle homeomorphism of rotation number θ .

Let $t \in [0,1)$ be the number given in Lemma 2.5. Let us denote $e^{2\pi i t}G(z)$ by $G_{\theta}(z)$. By Herman–Swiatek's quasi-symmetric linearization theorem on critical circle mappings [6], it follows that there is a quasi-symmetric homeomorphism $h: \partial \Delta \to \partial \Delta$ such that h(1) = 1 and $G_{\theta} | \partial \Delta = h^{-1} \circ R_{\theta} \circ h$, where R_{θ} is the rigid rotation given by θ .

Lemma 2.6. G_{θ} and h are both odd.

Proof. The assertion that G_{θ} is odd follows from that G(z) is odd (Lemma 2.4). Now let us prove that h is odd. First let us show that h(-1) = -1. Let U(N) be the number of the points in $\{G_{\theta}^{k}(1) \mid k = 1, \dots, N\}$ which lie in the upper half circle. Let L(N) be the number of the points in $\{G_{\theta}^{k}(-1) \mid k = 1, \dots, N\}$ which lie in the lower half circle. Note that G_{θ} is odd, it follows that U(N) = L(N). Since the angle length of the image of the upper half circle under h is equal to the limit of $2\pi U(N)/N$ as $N \to \infty$, and the angle length of the image of the lower half circle under h is equal to the limit of $2\pi L(N)/N$ as $N \to \infty$, it follows that the angle length of the images of the upper half circle and the lower half circle under h are equal to each other. This implies that h(-1) = -1.

To show that h is odd, let t(z) = -h(-z). We have t(1) = 1 = h(1). Since

$$t^{-1} \circ R_{\theta} \circ t(z) = -G_{\theta} |\partial \Delta(-z) = G_{\theta} |\partial \Delta(z)|$$

it follows that t = h. This proves Lemma 2.6.

Let $H: \overline{\Delta} \to \overline{\Delta}$ be the Douady–Earle extension of h. We refer the reader to [4] for the definition and properties of Douady–Earle extension. It follows that H is odd also. In particular, H(0) = 0. Define

(2)
$$\widetilde{G}_{\theta}(z) = \begin{cases} G_{\theta}(z) & \text{for } z \in \mathbf{C} - \Delta \\ H^{-1} \circ R_{\theta} \circ H(z) & \text{for } z \in \Delta. \end{cases}$$

For $k \in \mathbf{Z}$, let $\Delta_k = \phi^{-1}(D_k)$. Note that $\Delta_0 = \Delta$.

Lemma 2.7. \widetilde{G}_{θ} is odd. The critical set of \widetilde{G}_{θ} is contained in the set $\widetilde{G}_{\theta}^{-1}(\partial \Delta) = \bigcup_{k \in \mathbf{Z}} \partial \Delta_k$, and moreover, if $\Lambda \subset \mathbf{Z}$ contains infinitely many elements but $\Lambda \neq \mathbf{Z}$, then the set $\bigcup_{k \in \Lambda} \partial \Delta_k$ is disconnected.

Proof. The first assertion follows from the construction of \widetilde{G}_{θ} . The second one follows from Lemma 2.2.

Let ν_0 be the complex structure in Δ which is the pull back of the standard complex structure by H. Since H is odd, we have

Lemma 2.8. $\nu_0(-z) = \nu_0(z)$.

Now we can define a $\widetilde{G}_{\theta}(z)$ -invariant complex structure ν on the complex plane. The procedure is standard. For $z \in \Delta$, define $\nu = \nu_0$. For $z \notin \Delta$, there are two cases. In the first case, there is some integer $m \geq 1$ such that $\widetilde{G}_{\theta}^m(z) \in \Delta$. In this case, define $\nu(z)$ to be the pull back of $\nu_0(\widetilde{G}_{\theta}^m(z))$ by \widetilde{G}_{θ}^m . In the second case, the forward orbit of z does not intersect the unit disk. In this case, define $\nu(z) = 0$. Since \widetilde{G}_{θ} is odd, by Lemma 2.8, we have

Lemma 2.9. $\nu(-z) = \nu(z)$.

Gaofei Zhang

Now by Ahlfors–Bers's theorem [1], there is a unique quasi-conformal homeomorphism ψ of the Riemann sphere which solves the Beltrami equation given by ν , and which fixes 0 and the infinity, and maps 1 to $\pi/2$.

Lemma 2.10. ψ is odd.

Proof. Let $r(z) = -\psi(-z)$. Let ν_r and ν_{ψ} denote the dilations of r and ψ , respectively. By Lemma 2.9, it follows that $\nu_r(z) = \nu_{\psi}(z)$. Since $r(0) = \psi(0) = 0$ and $r(\infty) = \psi(\infty) = \infty$, we get that $r(z) = a\psi(z)$ for some constant a. This implies that $\psi(z) = \psi(-(-z)) = -a\psi(-z) = a^2\psi(z)$. It follows that $a^2 = 1$. We then have a = 1 or a = -1. If a = -1, we get $\psi(-z) = \psi(z)$ for all z. This is impossible since $\psi(z)$ is a homeomorphism. Therefore a = 1. The Lemma follows.

Let $g_{\theta}(z) = \psi \circ \widetilde{G}_{\theta} \circ \psi^{-1}(z)$ and let $\Omega = \psi(\Delta)$. By the construction, we get

Lemma 2.11. $g_{\theta}(z)$ is an odd entire function which has a Siegel disk Ω centered at the origin with rotation number θ . Moreover, Ω is symmetric about the origin, and $\partial \Omega$ is a quasi-circle passing through exactly two critical points $\pi/2$ and $-\pi/2$.

For $k \in \mathbb{Z}$, let $\Omega_k = \psi(\Delta_k)$. It follows that $\Omega = \Omega_0$ and each Ω_k is a component of $g_{\theta}^{-1}(\Omega_0)$. By Lemma 2.7, we get

Lemma 2.12. The critical set of g_{θ} is contained in the set $g_{\theta}^{-1}(\partial \Omega_0) = \bigcup_{k \in \mathbb{Z}} \partial \Omega_k$. Moreover, if $\Lambda \subset \mathbb{Z}$ contains infinitely many elements but $\Lambda \neq \mathbb{Z}$, then the set $\bigcup_{k \in \Lambda} \partial \Omega_k$ is disconnected.

3. Topological equivalence

Lemma 3.1. Let $f: \mathbb{C} \to \mathbb{C}$ and $g: \mathbb{C} \to \mathbb{C}$ be two continuous maps such that f = g on the outside of the unit disk. If in addition, $f: \overline{\Delta} \to \overline{\Delta}$ and $g: \overline{\Delta} \to \overline{\Delta}$ are both homeomorphisms, then f and g are topologically equivalent to each other.

Proof. Define $\theta_2(z) = z$ for $z \notin \Delta$ and $\theta_2(z) = g^{-1} \circ f(z)$ for $z \in \Delta$. It follows that $\theta_2 \colon \mathbf{C} \to \mathbf{C}$ is a homeomorphism. Let $\theta_1 = \mathrm{id}$. Then $f = \theta_1^{-1} \circ g \circ \theta_2$. The Lemma follows.

Let $\phi: \widehat{\mathbf{C}} - \overline{\Delta} \to \widehat{\mathbf{C}} - \overline{D}$ be map in the definition of G(z). Let $\eta: \widehat{\mathbf{C}} \to \widehat{\mathbf{C}}$ be a homeomorphic extension of ϕ . As before let $T(z) = \sin(z)$. It follows that T(z) is topologically equivalent to $T \circ \eta$. Let $t \in [0, 1)$ be the number in Lemma 2.5. Let $S(z) = e^{2\pi i t} T \circ \eta(z)$. It follows that S(z) is topologically equivalent to T(z). By Lemma 3.1, we have

Lemma 3.2. S(z) is topologically equivalent to $\tilde{G}_{\theta}(z)$.

Lemma 3.3. $g_{\theta}(z)$ is topologically equivalent to T(z).

Proof. By the construction of g_{θ} , it follows that g_{θ} is topologically equivalent to \tilde{G}_{θ} . The Lemma then follows from Lemma 3.2.

Proof of the Theorem. By Lemma 1.1, it follows that $g_{\theta}(z) = a + b \sin(cz + d)$ where $a, b, c, d \in \mathbf{C}$ and $b, c \neq 0$. Since $g_{\theta}(-z) = -g_{\theta}(z)$ by Lemma 2.11, by

84

differentiating on both sides of the equation, we get

$$\cos(cz+d) = \cos(-cz+d)$$

for all z. It follows that

$$\sin(d)\sin(cz) = 0$$

for all z. Since $c \neq 0$, it follows that $d = k\pi$ for some integer k. Therefore, we may assume that $g_{\theta}(z) = a + b \sin(cz)$. Since $g_{\theta}(0) = 0$, it follows that a = 0. This implies that $g_{\theta}(z) = b \sin(cz)$.

Since $g'_{\theta}(\pi/2) = 0$, it follows that c is some odd integer. By changing the sign of b, we may assume that c is positive. Suppose c = 2l + 1 for some integer $l \ge 0$. Recall that $\Omega_0 = \Omega$ is the Siegel disk of g_{θ} centered at the origin. For $k \in \mathbb{Z}$, let $E_k = \{z + k\pi \mid z \in \Omega_0\}$. Since Ω_0 is symmetric about the origin, it follows that every E_k is a component of $g_{\theta}^{-1}(\Omega_0)$. Since $\partial\Omega_0$ passes through $\pi/2$ and $-\pi/2$ by Lemma 2.11, it follows that for every $k \in \mathbb{Z}$, $\pi/2 + k\pi \in \partial E_k \cap \partial E_{k+1}$, and hence that the set $\bigcup_{k \in \mathbb{Z}} \partial E_k$ is connected. By Lemma 2.12, we get $g_{\theta}^{-1}(\partial\Omega_0) = \bigcup_{k \in \mathbb{Z}} \partial E_k$. By Lemma 2.12 again, it follows that the critical set of g_{θ} is contained in $\bigcup_{k \in \mathbb{Z}} \partial E_k$. Since $\partial E_0 = \partial \Omega_0$ passes through exactly two critical points $\pi/2$ and $-\pi/2$ of $g_{\theta}(z)$ and since $g'_{\theta}(z) = (-1)^k g'_{\theta}(z + k\pi)$, it follows that every critical point of g_{θ} has the form $\pi/2 + k\pi$ where $k \in \mathbb{Z}$ is some integer. This implies that c = 1. It follows that $b = e^{2\pi i \theta}$ and therefore $g_{\theta}(z) = f_{\theta}(z)$. This completes the proof of the theorem. \Box

Acknowledgement. I would like to thank the referee for his or her many important comments which greatly improve the paper.

References

- [1] AHLFORS, L. V.: Lectures on quasiconformal mappings. Van Nostrand, 1966.
- [2] CHERITAT, A.: Ghys-like models providing trick for a class of simple maps. arXiv: maths.DS/0410003 v1 30 Sep 2004.
- [3] DOMÍNGUEZ, P., and G. SIENRA: A study of the dynamics of $\lambda \sin z$. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12:12, 2002, 2869–2883.
- [4] DOUADY, A., and C. EARLE: Conformally natural extension of homeomorphisms of the circle.
 Acta Math. 157, 1986, 23–48.
- [5] KATOK, A., and B. HASSELBLATT: Introduction to the modern theory of dynamical systems.
 Encyclopedia Math. Appl. 54, Cambridge Univ. Press, London–New York, 1995.
- [6] PETERSEN, C.: Herman–Swiatek theorems with applications. London Math. Soc. Lecture Note Ser. 274, 2000, 211–225.
- [7] PETERSEN, C., and S. ZAKERI: On the Julia set of a typical quadratic polynomial with a Siegel disk. - Ann. of Math. (2) 159:1, 2004, 1–52.
- [8] ZHANG, G.: On the dynamics of $e^{2\pi i\theta} \sin(z)$. Illinois J. Math. 49:4, 2005, 1171–1179.
- [9] ZHANG, G.: On David type Siegel disks of the Sine family. Preprint, 2007.

Received 25 June 2006