Ann. Funct. Anal. 2 (2011), no. 1, 1-12
\mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

MINIMIZATION OF CONSTRAINED QUADRATIC FORMS IN HILBERT SPACES

DIMITRIOS PAPPAS ${ }^{1}$
Communicated by J. Koliha

Abstract

A common optimization problem is the minimization of a symmetric positive definite quadratic form $\langle x, T x\rangle$ under linear constraints. The solution to this problem may be given using the Moore-Penrose inverse matrix. In this work at first we extend this result to infinite dimensional complex Hilbert spaces, where a generalization is given for positive operators not necessarily invertible, considering as constraint a singular operator. A new approach is proposed when T is positive semidefinite, where the minimization is considered for all vectors belonging to $\mathcal{N}(T)^{\perp}$.

[^0][^1]
[^0]: ${ }^{1}$ Department of Statistics, Athens University of Economics and Business, 76 Patission Str, 10434, Athens, Greece.

 E-mail address: dpappas@aueb.gr, pappdimitris@gmail.com

[^1]: Date: Received: 6 November 2010; Accepted: 24 January 2011.
 2010 Mathematics Subject Classification. Primary 47A05; Secondary 47N10, 15A09.
 Key words and phrases. Moore-Penrose inverse, quadratic form, constrained optimization, positive operator.

