Ann. Funct. Anal. 3 (2012), no. 1, 10-18
\mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

SINGULAR VALUE AND ARITHMETIC-GEOMETRIC MEAN INEQUALITIES FOR OPERATORS

HUSSIEN ALBADAWI

Communicated by M. S. Moslehian

Abstract. A singular value inequality for sums and products of Hilbert space
operators is given. This inequality generalizes several recent singular value
inequalities, and includes that if A, B, and X are positive operators on a
complex Hilbert space H, then

$$
s_{j}\left(A^{1 / 2} X B^{1 / 2}\right) \leq \frac{1}{2}\|X\| s_{j}(A+B), \quad j=1,2, \cdots,
$$

which is equivalent to

$$
s_{j}\left(A^{1 / 2} X A^{1 / 2}-B^{1 / 2} X B^{1 / 2}\right) \leq\|X\| s_{j}(A \oplus B), j=1,2, \cdots
$$

Other singular value inequalities for sums and products of operators are presented. Related arithmetic-geometric mean inequalities are also discussed.

Mathematics Program, Preparatory Year Deanship, King Faisal University, Ahsaa, Saudi Arabia.
E-mail address: albadawi1@gmail.com

[^0]
[^0]: Date: Received: 15 October 2011; Accepted: 27 November 2011.
 2010 Mathematics Subject Classification. Primary 47A30; Secondary 15A18, 47A63, 47B10.
 Key words and phrases. Singular value, unitarily invariant norm, positive operator, arithmetic-geometric mean inequality.

