

Ann. Funct. Anal. 3 (2012), no. 2, 144–154 ANNALS OF FUNCTIONAL ANALYSIS al ISSN: 2008-8752 (electronic) URL: www.emis.de/journals/AFA/

## ON CERTAIN PROJECTIONS OF C\*-MATRIX ALGEBRAS

## A. AL-RAWASHDEH

Communicated by T. Loring

ABSTRACT. In 1955, H. Dye defined certain projections of a  $C^*$ -matrix algebra by

$$P_{i,j}(a) = (1 + aa^*)^{-1} \otimes E_{i,i} + (1 + aa^*)^{-1} a \otimes E_{i,j} + a^* (1 + aa^*)^{-1} \otimes E_{i,i} + a^* (1 + aa^*)^{-1} a \otimes E_{i,i},$$

which was used to show that in the case of factors not of type  $I_{2n}$ , the unitary group determines the algebraic type of that factor. We study these projections and we show that in  $\mathbb{M}_2(\mathbb{C})$ , the set of such projections includes all the projections. For infinite  $C^*$ -algebra A, having a system of matrix units, we have  $A \simeq \mathbb{M}_n(A)$ . M. Leen proved that in a simple, purely infinite  $C^*$ -algebra A, the \*-symmetries generate  $\mathcal{U}_0(A)$ . Assuming  $K_1(A)$  is trivial, we revise Leen's proof and we use the same construction to show that any unitary close to the unity can be written as a product of eleven \*-symmetries, eight of such are of the form  $1 - 2P_{i,j}(\omega)$ ,  $\omega \in \mathcal{U}(A)$ . In simple, unital purely infinite  $C^*$ -algebras having trivial  $K_1$ -group, we prove that all  $P_{i,j}(\omega)$  have trivial  $K_0$ -class. Consequently, we prove that every unitary of  $\mathcal{O}_n$  can be written as a finite product of \*-symmetries, of which a multiple of eight are conjugate as group elements.

DEPARTMENT OF MATHEMATICAL SCIENCES, UAEU, 17551, AL-AIN, UNITED ARAB EMIRATES.

E-mail address: aalrawashdeh@uaeu.ac.ae

Date: Received: 22 February 2012; Revised: 20 May 2012; Accepted: 25 May 2012. 2010 Mathematics Subject Classification. Primary 46L05; Secondary 46L80.

Key words and phrases.  $C^*$ -algebras, matrix projection,  $K_0$ -class.

This paper was presented in the 3rd Conference of Settat on Operator Algebras and Applications, 1–5 November 2011, Morocco.