Ann. Funct. Anal. 3 (2012), no. 2, 144-154
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

ON CERTAIN PROJECTIONS OF C^{*}-MATRIX ALGEBRAS

A. AL-RAWASHDEH

Communicated by T. Loring

Abstract. In 1955, H. Dye defined certain projections of a C^{*}-matrix algebra by

$$
\begin{aligned}
P_{i, j}(a) & =\left(1+a a^{*}\right)^{-1} \otimes E_{i, i}+\left(1+a a^{*}\right)^{-1} a \otimes E_{i, j} \\
& +a^{*}\left(1+a a^{*}\right)^{-1} \otimes E_{j, i}+a^{*}\left(1+a a^{*}\right)^{-1} a \otimes E_{j, j}
\end{aligned}
$$

which was used to show that in the case of factors not of type $I_{2 n}$, the unitary group determines the algebraic type of that factor. We study these projections and we show that in $\mathbb{M}_{2}(\mathbb{C})$, the set of such projections includes all the projections. For infinite C^{*}-algebra A, having a system of matrix units, we have $A \simeq \mathbb{M}_{n}(A)$. M. Leen proved that in a simple, purely infinite C^{*}-algebra A, the $*$-symmetries generate $\mathcal{U}_{0}(A)$. Assuming $K_{1}(A)$ is trivial, we revise Leen's proof and we use the same construction to show that any unitary close to the unity can be written as a product of eleven $*$-symmetries, eight of such are of the form $1-2 P_{i, j}(\omega), \omega \in \mathcal{U}(A)$. In simple, unital purely infinite C^{*}-algebras having trivial K_{1}-group, we prove that all $P_{i, j}(\omega)$ have trivial K_{0}-class. Consequently, we prove that every unitary of \mathcal{O}_{n} can be written as a finite product of $*$-symmetries, of which a multiple of eight are conjugate as group elements.

Department of Mathematical Sciences, UAEU, 17551, Al-Ain, United Arab Emirates.

E-mail address: aalrawashdeh@uaeu.ac.ae

Date: Received: 22 February 2012; Revised: 20 May 2012; Accepted: 25 May 2012.
2010 Mathematics Subject Classification. Primary 46L05; Secondary 46L80.
Key words and phrases. C^{*}-algebras, matrix projection, K_{0}-class.
This paper was presented in the 3rd Conference of Settat on Operator Algebras and Applications, 1-5 November 2011, Morocco.

