Ann. Funct. Anal. 5 (2014), no. 2, 30-46
\mathscr{A} NNALS OF \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ON RELATIONS AMONG SOLUTIONS OF THE HERMITIAN MATRIX EQUATION $A X A^{*}=B$ AND ITS THREE SMALL EQUATIONS

YING LI ${ }^{1}$ AND YONGGE TIAN ${ }^{2 *}$
Dedicated to Professor Tsuyoshi Ando for his significant contributions in matrix and operator theory
Communicated by M. S. Moslehian

Abstract. Assume that the linear matrix equation $A X A^{*}=B=B^{*}$ has a Hermitian solution and is partitioned as $\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right] X\left[A_{1}^{*}, A_{2}^{*}\right]=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21}^{*} & B_{22}\end{array}\right]$. We study in this paper relations among the Hermitian solutions of the equation and the three small-size matrix equations $A_{1} X_{1} A_{1}^{*}=B_{11}, A_{1} X_{2} A_{2}^{*}=B_{12}$ and $A_{2} X_{3} A_{2}^{*}=B_{22}$. In particular, we establish closed-form formulas for calculating the maximal and minimal ranks and inertias of $X-X_{1}-X_{2}-X_{2}^{*}-X_{3}$, and use the formulas to derive necessary and sufficient conditions for the Hermitian matrix equality $X=X_{1}+X_{2}+X_{2}^{*}+X_{3}$ to hold and Hermitian matrix inequalities $X>(\geqslant,<, \leqslant) X_{1}+X_{2}+X_{2}^{*}+X_{3}$ to hold in the Löwner partial ordering.

[^0][^1]
[^0]: ${ }^{1}$ College of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252059, China

 E-mail address: liyingliaoda@gmail.com
 ${ }^{2}$ China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081, China.

 E-mail address: yongge.tian@gmail.com

[^1]: Date: Received: Jun 25, 2013; Accepted: October 2, 2013.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 15A24; Secondary 15B57, 47A62.
 Key words and phrases. Matrix equation, Hermitian solution, equality, inequality, rank formula, inertia formula.

