

Ann. Funct. Anal. 5 (2014), no. 2, 30–46
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ON RELATIONS AMONG SOLUTIONS OF THE HERMITIAN MATRIX EQUATION $AXA^* = B$ AND ITS THREE SMALL EQUATIONS

YING LI¹ AND YONGGE TIAN^{2*}

Dedicated to Professor Tsuyoshi Ando for his significant contributions in matrix and operator theory

Communicated by M. S. Moslehian

ABSTRACT. Assume that the linear matrix equation $AXA^* = B = B^*$ has a Hermitian solution and is partitioned as $\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} X \begin{bmatrix} A_1^*, A_2^* \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21}^* & B_{22} \end{bmatrix}$. We study in this paper relations among the Hermitian solutions of the equation and the three small-size matrix equations $A_1X_1A_1^* = B_{11}$, $A_1X_2A_2^* = B_{12}$ and $A_2X_3A_2^* = B_{22}$. In particular, we establish closed-form formulas for calculating the maximal and minimal ranks and inertias of $X - X_1 - X_2 - X_2^* - X_3$, and use the formulas to derive necessary and sufficient conditions for the Hermitian matrix equality $X = X_1 + X_2 + X_2^* + X_3$ to hold and Hermitian matrix inequalities $X > (\ge, <, \le) X_1 + X_2 + X_2^* + X_3$ to hold in the Löwner partial ordering.

¹College of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252059, China.

E-mail address: liyingliaoda@gmail.com

²CHINA ECONOMICS AND MANAGEMENT ACADEMY, CENTRAL UNIVERSITY OF FINANCE AND ECONOMICS, BEIJING 100081, CHINA.

E-mail address: yongge.tian@gmail.com

Date: Received: Jun 25, 2013; Accepted: October 2, 2013. *Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A24; Secondary 15B57, 47A62.

 $Key\ words\ and\ phrases.$ Matrix equation, Hermitian solution, equality, inequality, rank formula, inertia formula.