Ann. Funct. Anal. 5 (2014), no. 2, 80-89
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY MULTIPLICATIVE HOLOMORPHIC FUNCTIONS OF MATRICES

Qingying Bu ${ }^{1}$, CHINGJOU LIAO ${ }^{2}$ AND NGAI-CHING WONG ${ }^{3 *}$
This paper is dedicated to Professor Tsuyoshi Ando

Communicated by D. H. Leung

Abstract

Let $H: M_{m} \rightarrow M_{m}$ be a holomorphic function of the algebra M_{m} of complex $m \times m$ matrices. Suppose that H is orthogonally additive and orthogonally multiplicative on self-adjoint elements. We show that either the range of H consists of zero trace elements, or there is a scalar sequence $\left\{\lambda_{n}\right\}$ and an invertible S in M_{m} such that $H(x)=\sum_{n \geq 1} \lambda_{n} S^{-1} x^{n} S, \quad \forall x \in M_{m}$, or $H(x)=\sum_{n \geq 1} \lambda_{n} S^{-1}\left(x^{t}\right)^{n} S, \quad \forall x \in M_{m}$.

Here, x^{t} is the transpose of the matrix x. In the latter case, we always have the first representation form when H also preserves zero products. We also discuss the cases where the domain and the range carry different dimensions.
${ }^{1}$ Department of Mathematics, University of Mississippi, University, MS 38677, USA.

E-mail address: qbu@olemiss.edu
${ }^{2}$ Department of Mathematics, Hong Kong Baptist University, Hong Kong.
E-mail address: cjliao@hkbu.edu.hk
${ }^{3}$ Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.

E-mail address: wong@math.nsysu.edu.tw

Date: Received: August 13, 2013; Revised: October 16, 2013; Accepted: November 11, 2013.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 46G25; Secondary 17C65, 46L05, 47B33.
Key words and phrases. Holomorphic functions, homogeneous polynomials, orthogonally additive and multiplicative, zero product preserving, matrix algebras.

