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Abstract. Let A be a unital Banach algebra, and denote the spectral radius
of f ∈ A by ρ(f). If A is a uniform algebra and ρ(fh + 1) = ρ(gh + 1)
for all h ∈ A, then it can be shown that f = g, a result that also carries
in algebras of bounded linear operators on Banach spaces. On the other hand
ρ(fh) = ρ(gh) does not imply f = g in any unital algebra, marking a distinction
between the polynomials p(z, w) = zw + 1 and p(z, w) = zw. Such results are
known as spectral identification lemmas, and in this work we demonstrate first-
and second-degree polynomials of two variables that lead to identification via
the spectral radius, peripheral spectrum, or full spectrum in uniform algebras
and in algebras of bounded linear operators on Banach spaces. The primary
usefulness of identification lemmas is to determine the injectivity of a class of
mappings that preserve portions of the spectrum, and results corresponding to
the given identifications are also presented.

1. Background, Notation, and Preliminaries

Let A be a unital Banach algebra over C. The collection of multiplicatively
invertible elements of A is denoted A−1, and the spectrum of f ∈ A is σ(f) =
{λ ∈ C : f −λ /∈ A−1}. The peripheral spectrum of f is the set of spectral values
of maximum modulus and is denoted by

σπ(f) =

{
λ ∈ σ(f) : |λ| = max

z∈σ(f)
|z|

}
,
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and the spectral radius of f is ρ(f) = max
z∈σ(f)

|z|. It is well-known that the spectrum

of an element of a unital Banach algebra is a compact subset of the complex plane,
so the spectral radius is finite (see e.g. [18]).

Throughout, K is a compact Hausdorff space, and C(K) is the space of complex-
valued, continuous functions on K. A uniform algebra on K is a subalgebra
A ⊂ C(K) that contains the constant functions, separates points, and is com-
plete with respect to the uniform norm.

We denote by X a Banach space over C and by B(X) the Banach algebra of
bounded linear operators from X to itself. A subalgebra A ⊂ B(X) is called a
standard operator algebra if it contains the rank-one operators.

1.1. Spectral Identification and a Characterization of the Main Results.
There are different approaches to determining when two elements of a Banach
algebra A are the same. One natural way to identify elements is by analyzing
how they interact with other elements of the algebra. For example, f, g ∈ A are
clearly the same if fh = gh for even a single invertible element h ∈ A. We can ask
for less than knowing what the products of elements are, such as merely knowing
what the spectrum or spectral radii of the products are. It is straightforward
to see that ρ(fh) = ρ(gh) does not ensure that f = g, since ρ(−h) = ρ(h) for
all h ∈ A, and yet −1 6= 1. If we ask for slightly more, however, then this
multiplicative combination is enough in some algebras. For uniform algebras, we
have the following:

Lemma 1.1 ([14], Lemma 3). If A ⊂ C(K) is a uniform algebra, f, g ∈ A, and

σπ(fh) = σπ(gh) (1.1)

for all h ∈ A, then f = g.

This is an example of what has become known as a spectral identification
lemma, because it allows to identify f and g via a criterion concerning the spec-
trum. In fact, it is not necessary that (1.1) hold for all h ∈ A, but rather only
for all h in a particular subset of A.

Despite the fact that the spectral radius could not ensure identification via
products, it is enough for certain other combinations.

Lemma 1.2 ([13], Lemma 2.1). If A ⊂ C(K) is a uniform algebra, f, g ∈ A,
and

ρ(fh + 1) = ρ(gh + 1) (1.2)

for all h ∈ A, then f = g.

It is again not necessary that (1.2) hold for all h ∈ A, but it turns out that the
subset of A needed in this case is different from the subset required for Lemma
1.1.

These two results show a contrast in two-variable polynomials. If p(z, w) =
zw + 1, then ρ(p(f, h)) = ρ(p(g, h)) for all h ∈ A is enough to ensure that
f = g, whereas if q(z, w) = zw, it is necessary that σπ(q(f, h)) = σπ(q(g, h))
to ensure that f = g. One goal is to characterize which polynomials will lead
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to identifications in uniform algebras via the spectral radius and which via the
peripheral spectrum.

Given the results for uniform algebras, it is also natural to ask if such results
hold in other unital Banach algebras. The answer is affirmative, and results
similar to those given above for uniform algebras have been proven in algebras of
bounded linear operators on Banach spaces.

Lemma 1.3 ([19], Lemma 1). If A is a subalgebra of B(X) that contains the
rank-one operators; A, B ∈ A; and

σπ(AT ) = σπ(BT )

for all T ∈ A of rank one, then A = B.

This is the operator analogue of Lemma 1.1, which gives rise to several immedi-
ate questions. Firstly, can the first- and second-degree polynomials be classified
according to their spectral identification properties as with uniform algebras?
Secondly, is the classification the same for operator algebras as it is for uniform
algebras?

It is immediate that the answer to the second question – whether the classi-
fication is the same for uniform and operator algebras – must be no, since the
non-commutativity of operator algebras implies that there are many more poly-
nomials of two variables than there are for commutative algebras. Nonetheless,
for each polynomial characterized in the commutative case, there is a correspond-
ing polynomial which can be classified in the non-commutative case. The real
complication for algebras of operators, however, is not that they are noncommu-
tative but that they are not semi-simple – i.e. that many elements in an operator
algebra can have spectral radius 0 – and even the first-degree polynomial case is
significantly more complicated for operators than for functions in uniform alge-
bras.

Section 2 begins with characterizations of polynomials of two variables that
cannot lead to identification in any unital Banach algebra. Uniform algebras are
studied in Section 3, where we characterize first- and second-degree polynomials
in two variables that lead to identification, including polynomials that lead to
identification via the spectral radius, via the peripheral spectrum, and via the
full spectrum. Moreover, several results are given demonstrating which subsets
of a uniform algebra A are needed to guarantee identification on all elements. In
Section 4, we classify spectral identifications in standard operator algebras via
first-degree polynomials and give several results for second-degree polynomials,
including an operator algebra analogue to Lemma 1.2 and a generalization of
Lemma 1.3.

1.2. Motivation and Applications. Spectral identification lemmas are useful
in the study of spectral preserver problems. A spectral preserver problem is the
study of a map T : A → B between Banach algebras that preserves some subset
or property of the spectrum. The study of spectral preservers is quite old – going
back at least to Fröbenius [2] – but was reinvigorated by Molnár in [15], who
showed that a surjective map T : C(K) → C(K) – where K is a first-countable,
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compact Hausdorff space – that satisfied

σ(fg) = σ(T (f)T (g)) (1.3)

for all f, g ∈ A is automatically linear. If, moreover, T (1) = 1, then T is also
multiplicative. Fundamental to this study was that linearity of T was not assumed
a priori, but that it was a consequence of (1.3).

The results of Molnár have been extended in several directions. Suppose that
K1 and K2 are compact Hausdorff spaces (not assumed to be first-countable),
that A ⊂ C(K1) and B ⊂ C(K2) are uniform algebras, and that T : A → B is
a surjective map. Luttman and Tonev [14] and Hatori, Miura and Takagi [6, 7]
generalized the work of Molnár and showed that if

σπ(fg) = σπ(T (f)T (g)) (1.4)

for all f, g ∈ A, then T is linear. Again, if T (1) = 1, then T is also multiplicative
and thus an isometric algebra isomorphism. It is, therefore, not required to
preserve the full spectra of products, but merely the peripheral spectra.

Among the first steps in proving that such a T is a linear bijection is proving
that T is injective, and this is where the associated spectral identification lemma
is particularly useful. Note that the conditions

σπ(T (f)T (h)) = σπ(fh) and σπ(fh) = σπ(gh)

are clearly related, as they both correspond to a spectral condition involving
the polynomial p(z, w) = zw. Any T satisfying (1.4) must be injective, since
T (f) = T (g) implies

σπ(fh) = σπ(T (f)T (h)) = σπ(T (g)T (h)) = σπ(gh)

for all h ∈ A. Lemma 1.1 then gives that f = g.
A related result in [13], proven independently also by Honma [8, 9], was that

if T : A → B satisfies

‖fh + 1‖ = ‖T (f)T (h) + 1‖
for all h ∈ A, then T is a generalized weighted composition operator. Here ‖f‖
denotes the uniform norm, which is equal to the spectral radius, so this naturally
corresponds to Lemma 1.2. Again, if T (f) = T (g), then we have

‖fh + 1‖ = ‖T (f)T (h) + 1‖ = ‖T (g)T (h) + 1‖ = ‖gh + 1‖

for all h ∈ A, which implies that f = g by Lemma 1.2.
These examples demonstrate that a general classification of spectral identifica-

tion will lead to a large-scale characterization of which spectral-preserver maps
must be injective.

2. Preliminary Results on Arbitrary Unital Algebras

Before looking specifically at uniform algebras and algebras of operators on
Banach spaces, we first present some preliminary results that hold in any unital
algebra, regardless of whether it is normed or complete.
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2.1. Polynomials that do not Identify. A first step in determining which
polynomials p(z, w) of two variables can lead to an identification lemma is deter-
mining which polynomials will not lead to identification. In particular, p(z, w) =
z2w cannot give identification in any unital algebra A, since

σ
(
(1)2h

)
= σ

(
(−1)2h

)
for all h ∈ A, but 1 6= −1. Note that since preservation of the full spectrum
will not suffice, neither will preservation of the peripheral spectrum nor spectral
radius. We formalize this example as a lemma.

Lemma 2.1. Let A be a unital Banach algebra and f, g ∈ A. If p(z, w) is a
polynomial and α, β ∈ C with α 6= β are such that p(α, w) = p(β, w) for all
w ∈ C, then

σ (p(α, h)) = σ (p(β, h))

for all h ∈ A, and therefore p(z, w) does not lead to identification via the spectrum.

Though this result is helpful for ruling out certain polynomials, it is not use-
ful unless we can know specifically which polynomials will have the property
p(α, w) = p(β, w) for some distinct α and β and all w ∈ C. It is well-known that
a polynomial p(z) over C satisfies p(α) = p(β) if and only if

p(z) = (z − α)(z − β)h(z) + z0 (2.1)

for some polynomial h(z) and some complex number z0. The “if” part is obvious
and the “only if” part follows as z − α and z − β must both divide p(z)− p(α).
Thus z0 = p(α), and (z − α)(z − β)h(z) = p(z)− p(α).

More generally, a characterization analogous to (2.1) holds for polynomials of
two-variables.

Lemma 2.2. Let p(z, w) be a complex-valued polynomial and α, β ∈ C with
α 6= β. Then p(α, w) = p(β, w) for all w ∈ C if and only if

p(z, w) = (z − α)(z − β)q(z, w) + s(w) (2.2)

for some polynomials q(z, w) and s(w).

Proof. If p(z, w) has the form (2.2), then clearly p(α, w) = p(β, w) for all w ∈ C,
so assume that p(α, w) = p(β, w) for all w ∈ C. Then p(z, w) can be written

p(z, w) = pn(z)wn + pn−1(z)wn−1 + . . . + p1(z)w + p0(z)

with pi(z) ∈ C[z], 0 ≤ i ≤ n. Since p(α, w) = p(β, w) for all w ∈ C, pi(α) = pi(β),
so, by (2.1), there exist polynomials hi(z) ∈ C[z] such that pi(z) = (z − α)(z −
β)hi(z) + pi(α). Thus

p(z, w) = pn(z)wn + pn−1(z)wn−1 + . . . + p1(z)w + p0(z)

= (z − α)(z − β)
(
hn(z)wn + hn−1(z)wn−1 + . . . + h0(z)

)
+ p(α, w).

Setting q(z, w) =
n∑

i=0

hi(z)wi gives

p(z, w) = (z − α)(z − β)q(z, w) + p(α, w),

which proves the result. �



110 D. ETHIER, T. LINDBERG, A. LUTTMAN

This leads to some immediate examples of polynomials in two variables that
cannot lead to identification in any unital algebra.

Example 2.3. Let p(z, w) = z3w + z2w + w + 1 = z(z + 1)(zw) + (w + 1). This
polynomial has the form (2.2), so Lemma 2.2 shows that it will not lead to an
identification. This can be seen directly, as p(0, w) = p(−1, w) for all w ∈ C.

Example 2.4. The polynomial p(z, w) = z2 + w2 + z + w + 1 cannot identify,
since p(0, w) = w2 + w + 1 = p (−1, w) for all w ∈ C. It will be seen that this
example characterizes the degree-two polynomials that fail to identify in unital
algebras.

Example 2.5. The polynomial p(z, w) = z3 + z2w + z + 1 will not lead to
identification, since p(z, w) = (z2 + 1)(z + w) + (−w + 1), which is of the form
(2.2).

More generally, Lemma 2.2 has consequences for certain polynomials that have
degree higher than one in z.

Corollary 2.6. Let A be a unital Banach algebra, and

p(z, w) = q(z)r(z, w) + s(w) (2.3)

for some polynomials q(z), r(z, w), and s(w), where r(z, w) has no factors of the
form az + b (a, b ∈ C). If q(z) has more than one (distinct) root, then there exist
α, β ∈ C (and thus in A) with α 6= β such that σ(p(α, h)) = σ(p(β, h)) for all
h ∈ A.

Thus p(z, w) cannot lead to an identification lemma. Note that every polyno-
mial in two variables can be written in the form (2.3), and it is only to check
whether q(z) has more than 1 distinct root.

In particular, Corollary 2.6 shows that, for polynomials of degree higher than
2 in z, the “cross terms” are essential.

Example 2.7. Suppose A is a unital Banach algebra and

p(z, w) = α(z − ν)2 + βw2 + γw + η

for α, β ∈ C \ {0} and ν, γ, η ∈ C. Then p(z, w) does not identify. For the same
reason, p(z, w) = q(z) + s(w) cannot identify whenever the degree of q is greater
than or equal to 2, without any restriction on s(w).

3. Identification in Uniform Algebras

Let K be a compact Hausdorff space and C(K) the space of continuous,
complex-valued functions on K. A uniform algebra A on K is a subalgebra
of C(K) that is complete with respect to the uniform norm, contains the con-
stant functions, and separates points, i.e. for every pair x, y ∈ K with x 6= y
there exists f ∈ A such that f(x) 6= f(y). Throughout we denote by ‖f‖ the
uniform norm of f .

In this section we generalize the known results on polynomial spectral identifi-
cation in uniform algebras. As well as determining which polynomials will lead to
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identification in uniform algebras, we also explore which functions in a uniform
algebra are necessary to use. A subset of a uniform algebra A of particular inter-
est is the set of peaking functions. A peaking function is a function h ∈ A such
that σπ(h) = {1}. That is, h is a peaking function if |h(x)| ≤ 1 for all x ∈ K and
|h(x)| = 1 if and only if h(x) = 1. The peak set, or maximizing set, of a peaking
function h ∈ A is the set M(h) = {x ∈ K : h(x) = 1}. It was noted after the
statement of Lemma 1.1 that σπ(fh) = σπ(gh) need not hold for all h ∈ A, but
only for a subset, in order to ensure f = g. The peaking functions are one such
sufficient subset.

A related set of functions are the C-peaking functions, which are simply scalar
multiples of the peaking functions, i.e. the collection of functions with singleton
peripheral spectrum. An analysis of the proof of Lemma 1.2 given in [13] shows
that the C-peaking functions are those needed for Lemma 1.2 to hold, so we have
the following restatement:

Lemma 3.1. If A is a uniform algebra, f, g ∈ A, and

‖fh + 1‖ = ‖gh + 1‖
for all C-peaking functions h ∈ A, then f = g.

The reason that the peaking functions and C-peaking functions are of particular
interest is that they isolate the important points of the underlying domain K. A
point x ∈ K is called a strong boundary point (or weak peak point or p-point) if
for every open neighborhood U of x there exists a peaking function h ∈ A such
that {x} ⊂ M(h) ⊂ U . It is well-known that in a uniform algebra, the strong
boundary points are exactly the points of the Choquet boundary [3], which we
denote by δA. Since δA is a boundary for A, it is only necessary to show that
f(x) = g(x) for all x ∈ δA in order that they be equal at all points of K.

A classical result that is necessary for our analysis is Bishop’s Lemma [1, The-
orem 2.4.1]. Though there are several versions of this result, here we give a
variation of the version given by Hatori et. al. [4, Proposition 2.2], by combining
it with [13, Corollary 1.2]. We denote by exp(A) the exponent of the algebra A,

i.e. the collection of elements h ∈ A such that h =
∞∑

k=0

fk

k!
for some f ∈ A. It is

well-known that every such element is invertible.

Lemma 3.2 (Bishop’s Lemma). Let A be a uniform algebra on a compact Haus-
dorff space K, and suppose that f ∈ A and x0 ∈ δA. If f(x0) 6= 0, then there
exists a peaking function h ∈ exp(A) such that h(x0) = 1 and σπ(fh) = {f(x0)}.
If f(x0) = 0, then for every ε > 0 there exists a peaking function h ∈ exp(A)
such that h(x0) = 1 and ‖fh‖ < ε. In either case, if U is any open neighborhood
of x0, h can be chosen so that M(h) ⊂ U .

Proof. If f(x0) = 0 and ε > 0 is given, then [4, Proposition 2.2] gives the existence
of a peaking function h1 ∈ exp(A) with h1(x0) = 1 and ‖fh1‖ < ε. Since x0 is
a strong boundary point, given any open neighborhood U of x0 there exists a
peaking function k such that x0 ∈ M(k) ⊂ U . Now h2 = exp(k − 1) is also
a peaking function with M(h2) = M(k) (see [13, Corollary 1.2]), so h1h2 is a
peaking function contained in exp(A) with x0 ∈ M(h1h2) ⊂ U and ‖fh1h2‖ < ε.
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If f(x0) 6= 0, then [4, Proposition 2.2] gives the existence of a peaking function
h1 ∈ exp(A) such that σπ(fh1) = {f(x0)}. If U is any open neighborhood of
x0, then, since x0 is a strong boundary point, there exists a peaking function
k ∈ A such that {x0} ⊂ M(k) ⊂ U , and [13, Corollary 1.2] gives a peaking
function h2 ∈ A such that M(h2) = M(k) ⊂ U , h2 ∈ exp(A), and fh2 attains
its maximum modulus exclusively on M(k) = M(h2). Thus h1(x0)h2(x0) = 1,
which implies that h1h2 is a peaking function with h1h2 ∈ exp(A). Moreover,
since fh2 attains its maximum modulus exclusively on M(h2), we also have that
M(fh1h2) ⊂ U and {f(x0)} = σπ(fh1) = σπ(fh1h2). �

A related result has been proven more recently for additive combinations by
Yates and Tonev (see e.g. [21, Lemma 3.4.5] or [20, Lemma 1]) and will also be
used.

Lemma 3.3 (Additive Bishop’s Lemma). Let A ⊂ C(K) be a uniform algebra,
f ∈ A, x0 ∈ δA, and r > 1. Then there exists a C-peaking function h ∈ A such
that x0 ∈ M(h), h(x0) > 0, ‖h‖ = r‖f‖,

|f(x)|+ |h(x)| < |f(x0)|+ |h(x0)|
for all x ∈ K \M(h), and

|f(x)|+ |h(x)| = |f(x0)|+ |h(x0)|
for all x ∈ M(h). In particular, ‖|f | + |h|‖ = |f(x0)| + |h(x0)|, and, given any
neighborhood U of x0, h can be chosen so that M(h) ⊂ U .

3.1. Degree-One Polynomials. In light of Lemma 1.1, which shows that prod-
ucts of algebra elements carry information about the factors, it is natural to ask
whether sums also carry such information, and, in general, the answer is yes.

Theorem 3.4. Let A ⊂ C(K) be a uniform algebra, α, β ∈ C \ {0}, γ ∈ C, and
f, g ∈ A. If

‖αf + βh + γ‖ = ‖αg + βh + γ‖ (3.1)

for all C-peaking functions h ∈ A, then f = g.

First we note that, if h were allowed to range over all elements of A, then
the result is trivial, taking h = −1

β
(αf + γ). Allowing h to range only over the

C-peaking functions – the elements of A with singleton peripheral spectrum – is
not so direct.

Proof. Note that we may assume β = 1 without loss of generality, since h is a
C-peaking function if and only if βh is a C-peaking function for every β ∈ C\{0}.
We begin by assuming that α = 1 and γ = 0.

Let f, g ∈ A, and suppose that ‖f + h‖ = ‖g + h‖ for all C-peaking functions

h ∈ A. Assume ‖g‖ < ‖f‖, and let λ ∈ σπ(f). Then h(x) = f(x)
2

+ f(x)2

2λ
is a

C-peaking function with λ ∈ σπ(h) that attains its maximum modulus whenever
f takes the value λ. In particular, M(h) ∩M(f) 6= Ø, so

‖g + h‖ ≤ ‖g‖+ ‖h‖ < ‖f‖+ ‖h‖ = 2|λ| = ‖f + h‖
– contrary to hypothesis – which implies ‖f‖ = ‖g‖.
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In fact, not only must f and g be equal in norm, they must be equal in absolute
value at every point x ∈ δA. Fix x0 ∈ δA; assume |f(x0)| > |g(x0)|; and let U be
an open neighborhood of x0 such that |f(x0)| > |g(y)| for all y ∈ U . Since x0 is an
element of the Choquet boundary, we may choose a peaking function k ∈ A with
x0 ∈ M(k) ⊂ U , and, by taking a high enough power of k, we may assume that

|k(x)| < |f(x0)|
2‖f‖ for all x ∈ K \ U . Then h = ‖f‖

|f(x0)|f(x0)k is a C-peaking function

such that h(x0) = ‖f‖
|f(x0)|f(x0) and |h(x)| < |f(x0)|/2 on K \ U . Therefore

|f(x0)|+ ‖f‖ = |f(x0)|+
‖f‖
|f(x0)|

|f(x0)| =
∣∣∣∣f(x0) +

‖f‖
|f(x0)|

f(x0)

∣∣∣∣
= |(f + h)(x0)| ≤ ‖f + h‖.

Combining this result with the fact that ‖f‖ = ‖g‖ gives

|g(x) + h(x)| < ‖g‖+ |f(x0)|/2 = ‖f‖+ |f(x0)|/2 < ‖f‖+ |f(x0)| ≤ ‖f + h‖

for all x ∈ K \ U . On the other hand, for x ∈ U ,

|g(x) + h(x)| ≤ |g(x)|+ |h(x)| < |f(x0)|+ |h(x0)| = |f(x0)|+ ‖f‖ ≤ ‖f + h‖,

recalling that |g(x)| < |f(x0)| for x ∈ U and that x0 ∈ M(h). Therefore ‖g+h‖ <
‖f + h‖, which contradicts (3.1), proving |f(x)| = |g(x)| for all x ∈ δA.

Lastly, we prove that f and g must coincide in value at each point of δA.
Let x0 ∈ δA, and assume f(x0) 6= g(x0). Since |g(x0)| = |f(x0)|, there is an
open neighborhood U of x0 with f(U) ∩ g(U) = Ø and such that arg(f(x0)) /∈
arg (g(U)). By Lemma 3.3, there exists a C-peaking function h ∈ A with x0 ∈
M(h) ⊂ U such that h(x0) > 0, ‖h‖ = 2‖f‖, |f(x)| + |h(x)| < |f(x0)| + |h(x0)|
for x /∈ M(h) and ‖|f | + |h|‖ = |f(x0)| + |h(x0)|. Set h′ = f(x0)

|f(x0)|h, then h′ is a

C-peaking function with M(h′) = M(h) and |h′| = |h|. Moreover

|f(x0)|+ |h(x0)| = |f(x0)|+ |h′(x0)| = |f(x0)|+
∣∣∣∣ f(x0)

|f(x0)|
h(x0)

∣∣∣∣ = |f(x0)+h′(x0)|,

where the last equality holds due to the fact that h(x0)/|f(x0)| is a strictly positive
real number.

Since h′ is a C-peaking function, (3.1) gives that ‖f + h′‖ = ‖g + h′‖, but for
x /∈ M(h)

|g(x) + h′(x)| ≤ |g(x)|+ |h′(x)| = |f(x)|+ |h(x)| < |f(x0) + h′(x0)|.

Since the argument of h′(x0) = 2‖f‖ f(x0)
|f(x0)| is the same as the argument of f(x0)

and arg(f(x0)) /∈ arg (g(U)), for x ∈ M(h) ⊂ U we have

|g(x) + h′(x)| = |g(x) + h′(x0)| < |g(x)|+ |h′(x0)| = |f(x)|+ |h′(x0)|
≤ ‖|f |+ |h′|‖ = |f(x0)|+ |h(x0)|.

Therefore |g(x) + h′(x)| < |f(x0) + h′(x0)| for all x, contradicting the hypothesis.
This contradiction yields that f(x) = g(x) for all x ∈ δA, which implies that
f(x) = g(x) for all x ∈ K.
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Recalling that β = 1 without loss of generality, suppose α ∈ C\{0} and γ ∈ C,
and set f ′ = αf + γ and g′ = αg + γ. Then

‖αf + h + γ‖ = ‖αg + h + γ‖
for all C-peaking functions h implies that

‖f ′ + h‖ = ‖g′ + h‖
for all C-peaking functions h, which implies f ′ = g′. Thus αf + γ = αg + γ, i.e.
f = g. �

In this case it is natural to ask whether it is possible to further restrict the set
of required h’s, for example by allowing only the true peaking functions rather
than all scalar multiples of peaking functions. It turns out that using only the
peaking functions is not necessarily sufficient, depending on the norms of f and
g. In fact, even the peripheral spectrum is not sufficient to ensure identification
when h is taken over any class of functions with uniformly bounded norm (which
includes the peaking functions).

Proposition 3.5. Let A ⊂ C(K) be a uniform algebra, f, g ∈ A, and d > 0. If
f(x) = g(x) for all x ∈ K such that |f(x)| ≥ ‖f‖− 2d or |g(x)| ≥ ‖g‖− 2d, then

σπ(f + h) = σπ(g + h)

for all h ∈ A with ‖h‖ ≤ d. Thus σπ(f + h) = σπ(g + h) for all ‖h‖ ≤ d is not
sufficient to ensure that f = g.

Proof. Given xf , xg ∈ K where f and g respectively attain their maximum mod-
ulus, ‖f‖ = |f(xf )| = |g(xf )| and ‖g‖ = |g(xg)| = |f(xg)|. Thus ‖f‖ ≥ |f(xg)| =
‖g‖ and ‖g‖ ≥ |g(xf )| = ‖f‖, implying ‖f‖ = ‖g‖.

Let N = {x ∈ K : |f(x)| ≥ ‖f‖ − 2d}, and let h ∈ A with ‖h‖ ≤ d. Observe
that |(f + h)(xf )| ≥ ‖f‖ − d by the triangle inequality, so xf ∈ N . For any
y /∈ N , |f(y)| < ‖f‖ − 2d, so |(f + h)(y)| < ‖f‖ − d, which implies f + h attains
its maximum modulus exclusively on N .

Let M = {x ∈ K : |g(x)| ≥ ‖g‖ − 2d}. Given xN ∈ N , |g(xN)| = |f(xN)| ≥
‖f‖− 2d = ‖g‖− 2d, so xN ∈ M . Similarly, given xM ∈ M , |f(xM)| = |g(xM)| ≥
‖g‖ − 2d = ‖f‖ − 2d, so xM ∈ N . Thus M = N and g + h also attains its
maximum modulus only on N .

By hypothesis, f |N = g|N which implies that (f + h)|N = (g + h)|N . Then
σπ(f + h) = σπ(g + h) since f + h and g + h attain their maximum modulus only
on N . �

If either ‖f‖ or ‖g‖ is strictly greater than 2, then σπ(f + h) = σπ(g + h) for
all peaking functions h is not sufficient to ensure that f = g. Allowing h to range
over all C-peaking functions, however, gives that ρ(f + h) = ρ(g + h) implies
f = g. We demonstrate with a simple example.

Example 3.6. Suppose K = [0, 1], A = C([0, 1]), and let

f(x) = 20(1− x) and g(x) =

{
20(1− x) 0 ≤ x ≤ 1

2

10− 20x
(
x− 1

2

)
1
2
≤ x ≤ 1.
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Then f, g ∈ C([0, 1]), and f 6= g. If ‖h‖ ≤ 5, then ‖f + h‖ ≥ 15. Thus
x0 ∈ M(f+h) implies |(f+h)(x0)| ≥ 15, so |f(x0)| ≥ 10, which means x0 ∈

[
0, 1

2

]
.

But f(x) = g(x) for x ∈
[
0, 1

2

]
. The same holds for g+h, so σπ(f +h) = σπ(g+h)

for all h ∈ A with ‖h‖ ≤ 5.

Thus all degree-one polynomials p(z, w), in which both z and w appear, uniquely
identify elements of uniform algebras via the spectral radius, as long as the func-
tions h to which we compare range over all C-peaking functions. If h is restricted
in norm, then it is possible that even the peripheral spectrum condition is not
sufficient to identify.

3.2. Second-Degree Polynomials. All degree-two polynomials in z and w are
of the form

p(z, w) = z(αz + γw + δ) + (βw2 + ηw + ν) (3.2)

for α, β, γ, δ, η, ν ∈ C, where at least one of α, β, and γ is not zero. This section
characterizes identification in uniform algebras via such polynomials.

Recalling that Lemma 3.1 requires only the C-peaking functions to ensure
identification, we have an immediate extension.

Corollary 3.7. Let A ⊂ C(K) and f, g ∈ A. If α, β, γ ∈ C \ {0} and

‖αfh + βh + γ‖ = ‖αgh + βh + γ‖ (3.3)

for all C-peaking functions h ∈ A, then f = g.

Proof. Since γ 6= 0, (3.3) gives

|γ|
∥∥∥∥α

γ
fh +

β

γ
h + 1

∥∥∥∥ = ‖αfh + βh + γ‖ = ‖αgh + βh + γ‖

= |γ|
∥∥∥∥α

γ
gh + h

β

γ
+ 1

∥∥∥∥
for all C-peaking functions h ∈ A. Therefore∥∥∥∥(

α

γ
f +

β

γ

)
h + 1

∥∥∥∥ =

∥∥∥∥(
α

γ
g +

β

γ

)
h + 1

∥∥∥∥ ,

for all C-peaking functions h ∈ A, which, by Lemma 3.1, implies that α
γ
f + β

γ
=

α
γ
g + β

γ
, i.e. f = g. �

It is clear that p(z, w) = zw is not sufficient to ensure identification via the
spectral radius in any unital Banach algebra, since ρ(h) = ρ(−h) for all h ∈ A,
though 1 6= −1. Nonetheless, in Lemma 1.1 it was noted that if σπ(fh) = σπ(gh)
for all h ∈ A, then f = g. Though it is perhaps surprising that multiplicatively
preserving the peripheral spectrum is enough to ensure the equality of f and g,
it turns out that this is not entirely necessary. In fact, it is only necessary that
the peripheral spectra of all products intersect each other, and a small class of
functions h ∈ A is enough. The following is a generalization of results given in
[14] and [10]:
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Theorem 3.8. Let A ⊂ C(K) and f, g ∈ A. If

σπ(fh) ∩ σπ(gh) 6= Ø (3.4)

for all peaking functions h ∈ exp(A), then f = g.

Proof. By Bishop’s Lemma 3.2, if x0 ∈ δA, f(x0) 6= 0, and g(x0) 6= 0, then
there exist peaking functions h1, h2 ∈ exp(A) such that h1(x0) = h2(x0) = 1,
σπ(fh1) = {f(x0)} and σπ(gh2) = {g(x0)}. Setting h = h1h2 then gives h ∈
exp(A), h(x0) = 1, σπ(fh) = {f(x0)} and σπ(gh) = {g(x0)}, so (3.4) implies
f(x0) = g(x0).

If f(x0) = 0, then Lemma 3.2 implies that there exists h ∈ exp(A) such that
h(x0) = 1 and ‖fh‖ < ε. Since σπ(fg) ∩ σπ(gh) 6= Ø implies ‖fh‖ = ‖gh‖, it
must be that ‖gh‖ < ε. In particular, h(x0) = 1 implies |g(x0)| < ε, which, by
the liberty of the choice of ε gives that g(x0) = 0. �

The above result shows that the zw term alone carries a great deal of infor-
mation for second-degree identification. This is not surprising, as Example 4
demonstrated that the zw term is, in fact, essential in any second-degree classi-
fication.

3.3. Further Identifications in Uniform Algebras. As has been hinted at
now several times, polynomial terms divisible by zw are essential to higher-order
polynomial identification. In fact, given that powers of peaking functions are
peaking functions, it should not be surprising that combinations of z with powers
of w also identify. The results that follow are extensions of results in [14], and
the proofs are similar.

Lemma 3.9. Let n ∈ N and f, g ∈ A. If ‖fhn‖ ≤ ‖ghn‖ for all peaking functions
h ∈ A ⊂ C(K), then |f(x)| ≤ |g(x)| on δA.

Proof. Let f, g ∈ A, and fix n ∈ N. Suppose that |f(x0)| > |g(x0)| for some
x0 ∈ δA; let γ > 0 be such that |f(x0)| > γ > |g(x0)|; and let V be an open
neighborhood of x0 such that |g(x)| < γ on V . Let h ∈ A be any peaking function
such that h(x0) = 1 and M(h) ⊂ V , then there exists a power m ∈ N of h such
that |g(x)hm(x)| < γ for all x ∈ K \ V . Now k := hm is a peaking function as is
kn, which satisfies |g(x)kn(x)| < γ for all x ∈ K \ V . This inequality also holds
on V , so

‖gkn‖ < γ < |f(x0)k
n(x0)| ≤ ‖fkn‖. (3.5)

Therefore ‖fhn‖ ≤ ‖ghn‖ for all peaking functions h ∈ A implies |f(x)| ≤
|g(x)| on δA. �

This intermediate lemma gives the following corollary:

Corollary 3.10. Let n ∈ N, f, g ∈ A ⊂ C(K). If ‖fhn‖ = ‖ghn‖ for all peaking
functions h ∈ A then |f(x)| = |g(x)| for all x ∈ δA.

The identification result follows immediately from the corollary.

Theorem 3.11. Let n ∈ N. If f, g ∈ A satisfy

σπ(fhn) ∩ σπ(ghn) 6= Ø (3.6)

for all peaking functions h ∈ A, then f = g.
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Proof. The hypothesis immediately implies that ‖fhn‖ = ‖ghn‖ for all peaking
functions h ∈ A, and it follows from Corollary 3.10 that |f(x)| = |g(x)| for all
x ∈ δA. Let x0 ∈ δA. If f(x0) = 0, then |g(x0)| = |f(x0)| = 0, hence g(x0) = 0.

If |f(x0)| 6= 0, by Bishop’s Lemma 3.2, there exists a peaking function h1 ∈
exp(A) such that σπ(fh1) = {f(x0)} and a peaking function h2 ∈ exp(A) such
that σπ(gh2) = {g(x0)}, so set h = h1h2. Then h ∈ exp(A) is a peaking function
with h(x0) = 1, σπ(fh) = {f(x0)} and σπ(gh) = {g(x0)}. Fix n ∈ N, then
hn ∈ exp(A) is also a peaking function with hn(x0) = 1, σπ(fhn) = {f(x0)} and
σπ(ghn) = {g(x0)}, so (3.6) implies that f(x0) = g(x0). �

4. Identification in Algebras of Bounded Linear Operators on
Banach Spaces

We now transition to analyzing polynomial identification in algebras of bounded
linear operators on Banach spaces. Algebras of operators differ from uniform
algebras primarily in two regards. Firstly, such algebras are, in general, non-
commutative. They are also not semi-simple. This means that many elements in
an algebra of operators may have spectral radius 0, a phenomenon that does not
occur in uniform algebras.

Throughout this section, X is a Banach space and B(X) is the Banach algebra
of bounded linear operators from X to itself. We denote by B1(X) the operators
of rank one. It is well known that rank-one operators are simple tensors, which
is to say that for any T ∈ B1(X), there exist x ∈ X and f ∈ X∗ such that
T = x ⊗ f , i.e. Ty = (x ⊗ f)(y) = f(y)x for any y ∈ X. A standard operator
algebra A is a subalgebra of B(X) such that B1(X) ⊂ A. It is not assumed that
standard operator algebras are complete nor that they are unital.

Note that, though a standard operator algebra A ⊂ B(X) need not be unital,
we can nonetheless talk about the spectrum of A ∈ A in the context of B(X).
Thus we set σ(A) = {λ ∈ C : A − λI 6∈ B(X)−1}, where I is the identity
operator. There are several subsets of the spectrum of an operator that are of
interest, and one that will be important for the proofs that follow is the point
spectrum, which is the set

σp(A) = {λ ∈ σ(A) : A− λI is not injective} .

If U is the open unit ball in X, then T ∈ B(X) is compact if T (U) is a relatively
compact set in X. In particular, finite-rank operators are compact. It is well-
known that if T is compact and λ ∈ σ(T )\{0}, then λ ∈ σp(T ) (see [18, Theorem
4.25(b)]), so that σp(T ) \ {0} = σ(T ) \ {0}, which implies σπ(T ) ⊂ σp(T ) when
σp(T ) is not empty. Specifically, σπ(T ) ⊂ σp(T ) for any rank-one operator T
when the dimension of X is greater than 1.

Despite the fact that algebras of operators are quite different from uniform
algebras, particularly in that they are not commutative, many of the identification
results proven in uniform algebras have analogues in algebras of operators. Before
proving identification results, we characterize the peripheral spectra of certain
operators.
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Lemma 4.1. If A ∈ B(X), T = x⊗ f ∈ B1(X), and α ∈ C \ {0}, then each of
the following holds:

(1) If dim(X) = 1, then σ(αT ) = σp(αT ) = {αf(x)}. If dim(X) > 1, then
σ(αT ) = σp(αT ) = {αf(x), 0}. In either case, σπ(αT ) = {αf(x)}.

(2) If dim(X) = 1, then σ(αAT ) = σp(αTA) = {αf(Ax)}. If dim(X) > 1,
then σ(αAT ) = σp(αTA) = {αf(Ax), 0}. In either case, σπ(αAT ) =
σπ(αTA) = {αf(Ax)}.

(3) If dim(X) = 1, then σ(AT + αI) = σ(TA + αI) = {f(Ax) + α}. If
dim(X) > 1, then σ(AT + αI) = σ(TA + αI) = {f(Ax) + α, α}. In
particular, σp(AT + αI) = σ(TA + αI) = σ(AT + αI).

Proof. Choose x ∈ X \ {0}, f ∈ X∗ \ {0}, and α ∈ C \ {0}. Since T = x ⊗ f is
rank-one, it is invertible if and only if the dimension of X is 1, which is to say
that 0 /∈ σ(αT ) if and only if dim(X) = 1. We also have that (αT − αf(x)I)x =
α(f(x)x − f(x)x) = 0, which implies that αT − αf(x)I is not injective, i.e.
αf(x) ∈ σp(αT ).

If λ ∈ σp(αT ) \ {0}, then there exist distinct y1, y2 ∈ X such that

(αT − λI)y1 = (αT − λI)y2,

which is to say that αf(y1−y2)x = λ(y1−y2). Thus kx = y1−y2 for some k ∈ C,
i.e. αf(kx)x = λkx. Since f is linear, this implies that λ = αf(x), which – along
with the fact that T is compact – further gives

{αf(x)} = σp(αT ) \ {0} = σ(αT ) \ {0}.

Therefore σ(αT ) = σp(αT ) = {αf(x), 0} when dim(X) > 1 and σ(αT ) =
σp(αT ) = {αf(x)} when dim(X) = 1. In either case, σπ(αT ) = {αf(x)}, proving
part (1).

Part (2) follows immediately, noting that AT = (Ax)⊗f and TA = x⊗(f ◦A).
Suppose that λ ∈ σ(AT + αI). Then AT − (λ − α)I is not invertible, i.e.

λ−α ∈ σ(AT ) = σp(AT ). By Part (2), λ−α ∈ {f(Ax), 0}, so λ = f(Ax) + α or
λ = α. In either case, λ ∈ σp(AT +αI), proving that σ(AT +αI) ⊂ σp(AT +αI).
Moreover, λ = α occurs when dim(X) = 1 only if f(Ax) = α. A similar argument
applies to σ(TA + αI). �

4.1. Degree-One Polynomials. The result of the degree-one polynomial case
for unital standard operator algebras is similar to that for uniform algebras. Since
A ⊂ B(X) is not a semi-simple algebra, the method of proof for uniform algebras
does not carry.

Theorem 4.2. Let X be a Banach space and A ⊂ B(X) a unital standard
operator algebra. If A, B ∈ A, α, β ∈ C \ {0}, γ ∈ C, and

ρ(αA + βT + γ) = ρ(αB + βT + γ) (4.1)

for all T ∈ A, then A = B.

Proof. Fix A, B ∈ A, assume that α = β = 1 and γ = 0, and suppose that (4.1)
holds for all T ∈ A and that A 6= B. Set S = T +A, and note that S ranges over
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all operators in A as T does. Thus (4.1) can be rewritten

ρ(S) = ρ((B − A) + S) (4.2)

for all S ∈ A, which immediately implies that ρ(A) = ρ(B) (choosing S = A)
and ρ(B − A) = 0 (choosing S = 0).

Since we have assumed A 6= B, there exists x0 ∈ X such that (B − A)x0 6= 0.
Moreover, since ρ(B − A) = 0, (B − A)x0 is not a multiple of x0 (in particular,
x0 is not an eigenvector of B −A). Therefore x0 and x0 − (B −A)x0 are linearly
independent, which – by the Hahn-Banach Theorem – means there exists f ∈ X∗

such that f(x0) = 1 and f(x0−(B−A)x0) = 0. Now set S = (x0 − (B − A)x0)⊗f .
By Lemma 4.1,

ρ(S) = ρ ((x0 − (B − A)x0)⊗ f) = |f(x0 − (B − A)x0)| = 0,

but

[(B − A) + S] x0 = (B − A)x0 + Sx0 = (B − A)x0 + f(x0) [x0 − (B − A)x0]

= (B − A)x0 + x0 − (B − A)x0 = x0,

which shows that ρ((B −A) + S) ≥ 1. Thus ρ(S) < ρ((B −A) + S), contrary to
hypothesis. This contradiction yields that A = B.

Lastly we remove the assumptions on α, β, and γ. Note that ρ(αA+βT +γ) =
ρ(αB + βT + γ) for all T ∈ A if and only if ρ

(
A + β

α
T + γ

α

)
= ρ

(
B + β

α
T + γ

α

)
for all T ∈ A if and only if ρ(A + T ) = ρ(B + T ) for all T ∈ A. Thus α and β
can be chosen arbitrarily in C \ {0} and γ may chosen arbitrarily in C. �

Given the degree-one classification, we can now classify which spectral pre-
servers are injective on algebras of bounded linear operators.

Corollary 4.3. Suppose that X and Y are Banach spaces. Let A ⊂ B(X) and
B ⊂ B(Y ) be unital standard operator algebras. If α, β ∈ C \ {0}, γ ∈ C, and
ϕ : A → B is any map that satisfies

ρ(αA + βT + γI) = ρ(αϕ(A) + βϕ(T ) + γϕ(I))

for all T ∈ A, then ϕ is injective.

The proof is identical to the arguments given above for proving injectivity.

4.2. Second-Degree Polynomials. It was noted in Lemma 1.3 that σπ(AT ) =
σπ(BT ) for all T ∈ A ensures that A = B. We generalize that result here.

Lemma 4.4. Let A be a standard operator algebra. If A, B ∈ A, α ∈ C \ {0},
and either

σπ(αAT ) = σπ(αBT ) or σπ(αTA) = σπ(αTB)

for all T ∈ B1(X), then A = B.

Proof. Suppose that σπ(αTA) = σπ(αTB) for all T ∈ B1(X). Note that, without
loss of generality, we may assume that α = 1, since identifying αA and identifying
A are equivalent. Observe that by Lemma 4.1, σπ(TA) = {f(Ax)} and σπ(TB) =
{f(Bx)}. Thus σπ(TA) = σπ(TB) for all T ∈ B1(X) implies f(Ax) = f(Bx)
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for all f ∈ X∗ and all x ∈ X. By the Hahn-Banach Theorem, Ax = Bx for all
x ∈ X, which is to say that A = B.

If σπ(αAT ) = σπ(αBT ) for all T ∈ B1(X), then A = B by a similar proof
(which can be found in [19, Lemma 1]). �

Corollary 4.5. If α 6= 0 and ϕ : A → B is a surjective mapping between standard
operator algebras that satisfies

σπ(αAT ) = σπ(αϕ(A)ϕ(T )) or σπ(αTA) = σπ(αϕ(T )ϕ(A))

for all A ∈ A and all T ∈ B1(X), then ϕ is injective.

It has not previously been shown that ρ(AT + I) = ρ(BT + I) – which is the
operator algebra analogy to Lemma 1.2 – is sufficient to guarantee identification,
so we show that here.

Theorem 4.6. Let A ⊂ B(X) be a unital standard operator algebra, A, B ∈ A,
and α, β ∈ C\{0}. If

ρ(βAT + αI) = ρ(βBT + αI) or ρ(βTA + αI) = ρ(βTB + αI)

for all T ∈ B1(X), then A = B.

Proof. Note that βT is rank-one if and only if T is rank-one, so it is without loss
of generality that we may assume β = 1. Thus we assume α ∈ C\{0} and A 6= B,
so there exists x0 ∈ X such that Ax0 6= Bx0. If x ∈ X \ {0} and f ∈ X∗ \ {0},
then, for T = x⊗ f , Lemma 4.1 gives

σ(AT + αI) = σp(AT + αI) ⊂ {f(Ax) + α, α}
σ(BT + αI) = σp(BT + αI) ⊂ {f(Bx) + α, α}.

Since Ax0 6= Bx0, without loss of generality we may assume that ‖Ax0‖ ≥ ‖Bx0‖.
By the Hahn-Banach Theorem there exists f ∈ X∗ such that f(Ax0) = α, and,
moreover, f may be chosen so that f(Bx0) 6= α and |f(Bx0)| ≤ |α|. Then,
setting T = x0 ⊗ f gives ρ(AT + αI) = |f(Ax0) + α| = 2|α| and ρ(BT +
αI) = max{|f(Bx0) + α|, |α|} < 2|α|. Thus ρ(AT + αI) 6= ρ(BT + αI), so
ρ(AT + αI) = ρ(BT + αI) for all T ∈ B1(X) implies that A = B.

The proof for ρ(βTA + αI) = ρ(βTB + αI) follows similarly. �

As with the previous results, this leads immediately to a corollary on the in-
jectivity of related spectral preservers.

Corollary 4.7. If α 6= 0 and ϕ : A → B is a surjective mapping between unital,
standard operator algebras and satisfies

ρ(AT + αI) = ρ(ϕ(A)ϕ(T ) + αI) or ρ(TA + αI) = ρ(ϕ(T )ϕ(A) + αI)

for all A ∈ A and all T ∈ B1(X), then ϕ is injective.

Thus, for unital standard operator algebras, we have a complete classification
of degree-one spectral identifications, as well as the operator algebra analogues
of the original degree-two results shown for uniform algebras, giving the related
characterizations on the injectivity of the associated spectral preservers.
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5. Conclusions

Proving that mappings between uniform algebras – or algebras of bounded
linear operators on a Banach space – that preserve spectral properties are injective
often first requires a technical tool to determine when two elements of a single
algebra must coincide. Such results are known as spectral identification lemmas,
and in this work we have collected many of the previously known polynomial
spectral identification lemmas and presented a class of new results. In particular,
we have given a complete classification of the degree-one polynomial identification
in uniform algebras, as well as sufficient conditions for degree-one classification in
algebras of operators. We have also extended the class of degree-two polynomials
that have been shown to identify in both uniform algebras and standard operator
algebras.
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