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ON SPLITTING OF EXTENSIONS OF RINGS AND
TOPOLOGICAL RINGS

MART ABEL1

Communicated by V. Valov

Abstract. Several results on splitting of extensions of Banach algebras are
generalized to the case of (not necessarily commutative, not necessarily unital)
rings or topological rings. Detailed proofs of the results are provided.

1. Introduction and definitions

The Wedderburn Principal Theorem asserts that for any finite-dimensional al-
gebra A over C there exists a subalgebra B of A such that A is the direct sum of
B and the Jacobson radical rad A of A. In this case there exists an extension of
A by rad A, i.e., there exists a short exact sequence

θA → radA → A → B → θB

of algebras and algebra homomorphisms. Several authors have studied more gen-
eral problem, where they replaced the Jacobson radical by a two-sided ideal of A.
The main source for this paper was [1, pp. 1–13], where the case of extensions of
Banach algebras was studied. Some results on topological or algebraic extensions
of algebras or groups could be found also in [4], [6] or [7]. While studying the
proofs of the results in [1], it appeared that many of them work when we replace
Banach algebras with topological rings or even rings without any topology. The
aim of this paper is to give the results similar to the ones in [1] in more general
setting, i.e., for rings or topological rings instead of Banach algebras. All rings
and algebras in this paper are quite general, i.e., they are associative but the ex-
istence of a unital element or the commutativity of the multiplication is nowhere
assumed nor needed.
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Let R be a ring. In case R has the unit e, then we know what mean the sets
(e − p)R and R(e − p), where p ∈ R. In case R does not have the unit, we
define the sets (e − p)R and R(e − p) by (e − p)R := {r − pr : r ∈ R} and
R(e− p) := {r − rp : r ∈ R}, respectively. Notice that these definitions coincide
with the definitions of (e− p)R and R(e− p) in unital case. In what follows, we
use e just as a symbol. The actual existence of the unital element in R is not
required.

Let S be a subset of a ring R, n ∈ N and Sn := {s1 · . . . · sn : s1, . . . , sn ∈ S}.
Define a kind of ”linear span” for Sn by setting

Sn :=
⋃
l∈ N

{ l∑
i=1

miri : m1, . . . ,ml ∈ N, r1, . . . , rl ∈ Sn

}
.

It is easy to see that if I is a one-sided or a two-sided ideal of R, then In is also
an ideal of R of the same kind.

A ring is said to be Artinian (more precisely, right Artinian), if any non-empty
set of its right ideals has a minimal element (see [3, pp. 18–19]). A ring with
topology in which the addition is continuous and the multiplication is separately
continuous will be called a topological ring. The Jacobson radical rad R of a
(topological) ring R is the intersection of all (closed, in case of a topological
ring) maximal regular left (or right) ideals of R. The ring R is semisimple if
rad R = {θR}, where θR stands for the zero element of R.

An algebraic extension of a ring (or algebra) R is a short exact sequence of
rings (algebras) and homomorphisms

Σ(A; I) : θI → I
ι−→ A π−→ R → θR,

where ι is an inclusion and π is an epimorphism such that ι(I) = kerπ. This
condition implies that I is isomorphic to a two-sided ideal ι(I) of A. In what
follows, we take ι to be an identity map and hence, I to be a two-sided ideal of A.
The proofs do not depend on whether ι is an identity map or just an isomorpism
between I and a two-sided ideal ι(I) of A. An algebraic extension Σ(A; I) of R
splits algebraically if there is a homomorphism Θ : R → A such that π ◦Θ = idR,
where idR stands for the identity map on R. An algebraic extension Σ(A; I) of
R is

a) of dimension m if the algebraic dimension of I is m, i.e., dim I = m;
b) nilpotent, if I is nilpotent;
c) singular, if I2 = {θI}.

The algebraic extension Σ(A; I) of R is a topological extension of a topological ring
R if I and A are topological rings and π is continuous. A topological extension
Σ(A; I) of a topological ring R splits strongly if it splits algebraically and the map
Θ is continuous.

It can be shown that an algebraic extension Σ(A; I) of R splits algebraically if
and only if there is a subring B of A such that B ∩ I = {θA} and A = B+ I. An
extension Σ(A; I) of R splits strongly if and only if it splits algebraically so that
B and I are closed subspaces of A (see, for example, [1, p. 9]).
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An extension (algebraic or topological) Σ(A; I) of R is also called an (algebraic
or topological) extension of R by I. For fixed I and R there could be several
rings A for which Σ(A; I) is an extension of R by I.

2. Results

In what follows, we generalize the results of [1] for rings and topological rings.

Proposition 2.1. Let Σ(A; I) be an algebraic extension of a ring R.

(i) Suppose that I contains a non-zero idempotent p such that I = pI + Ip.
Then Σ(A; I) splits algebraically. Moreover, if I and R are topological
rings and A is a topological ring which is also a Hausdorff space, then
Σ(A; I) is a topological extension of R which splits strongly.

(ii) Suppose that I is semisimple and finite-dimensional complex algebra. Then
Σ(A; I) splits algebraically. Moreover, if I and R are topological rings and
A is a topological ring which is also a Hausdorff space, then Σ(A; I) is a
topological extension of R which splits strongly.

Proof. (i) Let p ∈ I be a non-zero idempotent such that I = pI + Ip.
Take an arbitrary a ∈ A. Then pa ∈ I and pa = p2a = p(pa) ∈ pI. Similarily,

ap ∈ I and ap = ap2 = (ap)p ∈ Ip. Hence, pA ⊆ pI ⊆ I and Ap ⊆ Ip ⊆ I.
Since I ⊆ A, then also Ip ⊆ Ap and pI ⊆ pA. Therefore, Ip = Ap, pI = pA and
I = pI + Ip = pA+Ap.

We also have pAp = (pA)p ⊆ (pI)p ⊆ Ip ⊆ I. Now,

I = pA+Ap ⊆ pA+Ap− pAp ⊆ I + I + I ⊆ I.

Hence,

I = pA+Ap = pA+Ap− pAp = pA(e− p) + (e− p)Ap + pAp.

Let B := (e− p)A(e− p). Then it is easy to see that B is a subring of A (the
product of any two elements a − pa − ap + pap and b − pb − bp + pbp of B is
(ab + apb)− p(ab + apb)− (ab + apb)p + p(ab + apb)p ∈ B) and A = B + I.

Take b ∈ B ∩ I. Then there exist a ∈ A and c, d ∈ I such that
b = (e− p)a(e− p) = pc + dp. Now,

θA = pc−pcp−p2c+pcp+dp−dp2−pdp+pdp2 = (e−p)pc(e−p)+(e−p)dp(e−p) =

= (e−p)(pc+dp)(e−p) = (e−p)b(e−p) = b−pb−bp+pbp = (a−pa−ap+pap)−
−p(a− pa− ap + pap)− (a− pa− ap + pap)p + p(a− pa− ap + pap)p = b.

Hence, B ∩ I = {θI}, which means that Σ(A; I) splits algebraically.
Suppose, that A is a topological ring and take an element

b0 ∈ clAB = clA
(
(e− p)A(e− p)

)
.

Since (e − p)A(e − p) = {a − pa − ap + pap : a ∈ A}, then there exist nets
(bλ)λ∈Λ in B and (aλ)λ∈Λ in A such that bλ = aλ − paλ − aλp + paλp for every
λ ∈ Λ and the net (bλ)λ∈Λ converges to b0. Exactly as we did before in case of
b ∈ B ∩ I, we can now show that bλ − pbλ − bλp + pbλp = bλ for every λ ∈ Λ.
The net (bλ − pbλ − bλp + pbλp)λ∈Λ converges to b0 − pb0 − b0p + pb0p. Since
B ⊆ A, then b0 ∈ clAB ⊆ clAA = A. Hence, b0 − pb0 − b0p + pb0p ∈ B. Because
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bλ = bλ − pbλ − bλp + pbλp for every λ ∈ Λ, then the net bλ converges also to
b0− pb0− b0p+ pb0p. Therefore, b0 = b0− pb0− b0p+ pb0p ∈ B, which means that
B is closed.

Suppose that A is also a Hausdorff space and I, R are topological rings. Then
the set {θA} is closed in A. Define a map Tp : A → A by Tp(a) := a−pa−ap+pap
for every a ∈ A. It is clear that Tp is a continuous linear map. Hence, the original
of {θA} by Tp is closed in A. This means that ker Tp is closed in A.

Since I = pA+Ap and

Tp(pa + bp) = pa + bp− p2a− pbp− pap− bp2 + p2ap + pbp = θA

for every a, b ∈ A, then I ⊆ ker Tp. Take a ∈ ker Tp. Then a−pa−ap+pap = θA.
Hence, a = pa+ap− pap = p(a−ap)+ap ∈ pA+Ap = I. Therefore, ker Tp ⊆ I
implies I = ker Tp. Thus, I is closed in A. Consequently, Σ(A; I) splits strongly.

(ii) By the Wederburn Structure Theorem (see [2, Theorem 1.5.9, p. 72] or
[5, Theorem 8.11, p. 658].) it is known that every non-zero finite-dimensional
semisimple complex algebra has an identity e. Hence, we can take p = e in part
(i). Then the conditions of the part (i) are fulfilled and the claim follows from
the part (i). �

Let Σ(A; I) be an algebraic extension of a ring R and let J be a two-sided ideal
of A with J ⊆ I. Then it is easy to see that

Σ(A/J ; I/J) : θI/J → I/J
ιJ−→ A/J

πJ−→ R → θR,

with ιJ([x]) := [ι(x)] for every x ∈ I and πJ([a]) := [π(a)] for every a ∈ A,
is also an algebraic extension of R. In case R is a topological ring, Σ(A; I)
is a topological extension of R and J is a closed two-sided ideal of A, then
Σ(A/J ; I/J) is a topological extension of R.

Proposition 2.2. Let Σ(A; I) : θI → I
ι−→ A π−→ R → θR be a topological

extension of a topological ring R and let J be a closed two-sided ideal of A with
J ⊆ I.

(i) Suppose that every topological extension of R by J splits strongly and that
the topological extension Σ(A/J ; I/J) of R splits strongly. Then Σ(A; I)
splits strongly, as well.

(ii) Suppose that every topological extension of R by J splits algebraically and
that the topological extension Σ(A/J ; I/J) of R splits strongly. Then
Σ(A; I) splits algebraically, as well.

Proof. Since the topological extension

Σ(A/J ; I/J) : θI/R → I/J
ιJ−→ A/J

πJ−→ R → θR

of R splits strongly, then there exists a closed subring D of A/J with
A/J = D+(I/J) and D∩(I/J) = {θI/J}. Using the quotient map q : A → A/J ,
we define C := q−1(D). Then C (as an original of a closed set by a continuous
linear map) is a closed subring of A. Moreover, J ⊂ C and C/J = D.

Consider the following topological extension of R by J :

Σ(C; J) : θJ → J
ι|J−→ C π|C−−→ R → θR.
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It is really a topological extension of R by J because J and C are topological
rings and ι|J (J) = ker π|J . (Clearly ι|J (J) = ι(J) = J ∈ ker π ∩ C = ker π|C.
Let c ∈ ker π|C⊆ ker π = I. Then c ∈ C ∩ I. Hence,

q(c) ∈ q(C ∩ I) ⊆ q(C) ∩ q(I) = D ∩ I/J = {θI/J}.

Thus, c ∈ J and ker π|C ⊂ J = ι|J (J).)
By assumptions, this extension splits strongly in case (i) and algebraically in

case (ii). Hence, there exists a (closed, in case (i)) subring B of C such that
C = B + J and B ∩ J = {θI}. Since C is a closed subring of A, then C is also a
(closed, in case (i)) subring of A.

Since D ∩ (I/J) = {θI/J}, then A = q−1(A/J) = q−1(D + (I/J)) = C + I.
Hence, A = C + I = (B + J) + I = B + (J + I) = B + I.

Let i ∈ B∩I ⊆ C∩I. Then q(i) ∈ q(C)∩q(I) = D∩(I/J) = {θI/J}. Therefore,
i ∈ J and hence, i ∈ B ∩ J . Thus, B ∩ I = B ∩ J = {θI}. Hence, Σ(A; I) splits
strongly in case (i) and algebraically in case (ii). �

In the next Corollary we suppose that we are already in the situation where
something similar to the Wedderburn Principal Theorem holds.

Corollary 2.3. Let Σ(A; I) be a topological extension of a topological ring R.
Suppose that A is a Hausdorff space and I/rad I is a finite-dimensional complex
algebra.

(i) If every topological extension of R by rad I splits strongly, then Σ(A; I)
splits strongly, as well.

(ii) If every topological extension of R by rad I splits algebraically, then Σ(A; I)
splits algebraically, as well.

Proof. Take J := rad I = I∩ rad A (The last equation holds, for example, by
[3, Theorem 1.2.5, p. 16].). Since Σ(A; I) splits strongly in both cases, then J is
closed in A. Clearly, J is a two-sided ideal in A (see, for example, [3, pp. 8–9].).
It is known (see [3, Theorem 1.2.4, p. 15]) that I/J is semisimple. Hence, we are
in the situation of Proposition 2.1, part (ii). Thus, every topological extension
of R by I/J splits strongly by Proposition 2.1, part (ii). Now, the claim follows
from the Proposition 2.2. �

Corollary 2.4. Let R be a topological ring and let m ∈ N. Suppose that every
nilpotent topological extension of dimension at most m of R splits strongly (re-
spectively, algebraically). If I is an Artinian topological ring with dim I ≤ m
and I/ rad I is a complex algebra, then every topological extension Σ(A; I) of R,
where A is a Hausdorff space, splits strongly (respectively, algebraically), as well.

Proof. Let Σ(A; I) be any topological extension of R such that I is an Artinian
ring and dim I ≤ m. Then rad I is nilpotent by [3, Theorem 1.3.1, p. 20]. Since
dim I ≤ m, then also dim(radI) ≤ m. Clearly, I/rad I is finite-dimensional. The
claim follows directly from Corollary 2.3. �

For the next Proposition we need the following Lemmas.
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Lemma 2.5. Let R be a topological ring and k, m ∈ N. If the nets
(xαij

ij )
αij∈Aij

with

xij = lim
αij

(xαij

ij )

consist of elements of R for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}, then
m∑

i=1

x1i . . . xki =
m∑

i=1

(lim
α1i

xα1i

1i ) . . . (lim
αki

xαki

ki ) = lim
αkm

. . . lim
α11

m∑
i=1

xα1i

1i . . . xαki

ki .

Proof. Let the multiplication in R be separately continuous. It means that for
any p ∈ R the maps lp, rp : R → R, defined by lp(q) := pq and rp(q) := qp for any
q ∈ R, are continuous. Hence, for any r, s ∈ R and a convergent net (tα)α∈A of
elements of R we have

(lim
α

tα)r = rr(lim
α

tα) = lim
α

(rr(tα)) = lim
α

(tαr) (2.1)

and
s(lim

α
tα) = ls(lim

α
tα) = lim

α
(ls(tα)) = lim

α
(stα). (2.2)

First, for any i ∈ {1, . . . ,m} we have by (2.1),

x1ix2i . . . xki = (lim
α1i

xα1i

1i )(x2i . . . xki) =

= rx2i...xki
(lim

α1i
xα1i

1i ) = lim
α1i

(rx2i...xki
(xα1i

1i )) = lim
α1i

(xα1i

1i x2i . . . xki).

Now, suppose that for some j ≥ 2 we have

(lim
α1i

xα1i

1i ) . . .
(

lim
α(j−1)i

xα(j−1)i

(j−1)i

)
xji . . . xki =

= lim
α(j−1)i

(
lim

α(j−2)i
. . . (lim

α1i
(xα1i

1i xα2i

2i . . . xα(j−1)i

(j−1)i xji . . . xki)) . . .
)
.

Certainly it is true for j = 2. Then, using (2.1) and (2.2), we have

b := (lim
α1i

xα1i

1i ) . . .
(

lim
α(j−1)i

xα(j−1)i

(j−1)i

)
(lim

αji
xαji

ji )x(j+1)i . . . xki =

=
[
(lim

α1i
xα1i

1i ) . . . ( lim
α(j−1)i

xα(j−1)i

(j−1)i )
][

(lim
αji

xαji

ji )x(j+1)i . . . xki

]
=

= l
(limα1i xα1i

1i )...(lim
α(j−1)i xα(j−1)i

(j−1)i
)
(rx(j+1)i...xki

(lim
αji

xαji

ji )) =

= l
(limα1i xα1i

1i )...(lim
α(j−1)i xα(j−1)i

(j−1)i
)
(lim

αji
(rx(j+1)i...xki

(xαji

ji ))) =

= lim
αji

(l
(limα1i xα1i

1i )...(lim
α(j−1)i xα(j−1)i

(j−1)i
)
(rx(j+1)i...xki

(xαji

ji ))) =

= lim
αji

([
(lim

α1i
xα1i

1i ) . . .
(

lim
α(j−1)i

xα(j−1)i

(j−1)i

)]
[xαji

ji x(j+1)i . . . xki]
)

In case j = k, there will not be any x(j+1)i . . . xki. Otherwise everything will
remain the same. By our assumption,[

(lim
α1i

xα1i

1i ) . . .
(

lim
α(j−1)i

xα(j−1)i

(j−1)i

)]
[xαji

ji x(j+1)i . . . xki] =

= lim
α(j−1)i

( lim
α(j−2)i

. . . (lim
α1i

(xα1i

1i xα2i

2i . . . xα(j−1)i

(j−1)i xαji

ji x(j+1)i . . . xki) . . . ).
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Hence,

b = lim
αji

( lim
α(j−1)i

( lim
α(j−2)i

. . . (lim
α1i

(xα1i

1i xα2i

2i . . . xα(j−1)i

(j−1)i xαji

ji x(j+1)i . . . xki)) . . . ).

Since it is true for any j ∈ {1, . . . , k}, then

x1ix2i . . . xki = lim
αki

( lim
α(k−1)i

. . . (lim
α1i

(xα1i

1i xα2i

2i . . . xα(k−1)i

(k−1)i xαki

ki )) . . . )

for any i ∈ {1, . . . ,m}. Since the addition in R is continuous, then
m∑

i=1

x1i . . . xki =
m∑

i=1

(lim
α1i

xα1i

1i ) . . . (lim
αki

xαki

ki ) = lim
αkm

. . . lim
α11

m∑
i=1

xα1i

1i . . . xαki

ki .

�

Lemma 2.6. Let R be a topological ring, J a two-sided ideal of R and k ∈ N
with k ≥ 2. Then (clR(J))k ⊆ clR(Jk) (Here clR(J) denotes the closure of J in
R.).

Proof. Take an element x ∈ (clR(J))k. Then there exists m ∈ N, n1, . . . , nm ∈ Z
and x11, x12, . . . , x1m, x21, . . . , xkm ∈ clR(J) such that

x =
m∑

i=1

nix1i . . . xki.

Then for all i ∈ {1, . . . , k} and all j ∈ {1, . . . ,m} there exist nets (xαij

ij )
αij∈Aij

in

J such that
xij = lim

αij
xαij

ij .

Now, using Lemma 2.5, we have

x =
m∑

i=1

nix1i . . . xki =
m∑

i=1

ni(lim
α1i

xα1i

1i ) . . . (lim
αki

xαki

ki ) = lim
αkm

. . . lim
α11

m∑
i=1

nix
α1i

1i . . . xαki

ki .

Since
m∑

i=1

nix
α1i

1i . . . xαki

ki ∈ Jk,

then x ∈ clR(Jk). Therefore, (clR(J))k ⊆ clR(Jk). �

Now we are ready for the next result.

Proposition 2.7. Let R be a topological ring and m ∈ N.

(i) Suppose that every singular topological extension of dimension at most m
of R splits strongly. Then every nilpotent topological extension Σ(A; I) of
dimension at most m of R, where A is a Hausdorff space, splits strongly,
as well.

(ii) Suppose that every singular topological extension of dimension at most m
of R splits strongly. Then every topological extension Σ(A; I) of dimension
at most m of R, where A is a Hausdorff space and I is an Artinian
topological ring for which I/rad I is a complex algebra, splits strongly, as
well.
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Proof. (i) We will prove it by induction on the minimum index n ∈ N \ {1} such
that In = {θI}. In case I2 = {θI}, I is singular and the claim is true.

Suppose that Σ(A; I) is a topological extension of dimension at most m of
R such that I has the minimum index k > 3 and A is a Hausdorff space. By
the induction, we can assume, that the claim holds for all topological extensions
Σ(A; J) of R which have the dimension at most m and minimum index at most
k − 1. Take J =clA(I2). Then J is a closed two-sided ideal of A. Using Lemma
2.6, we get

Jk−1 = (clA(I2))
k−1 ⊆ clA(I2k−2) = clA(IkIk−2) = clA({θI}) = {θI},

because k− 2 > 1 and Ik = {θI}. Since clA(I2) ⊆ clA(I) = I then the dimension
of J is at most m. Hence, every topological extension of R by J splits strongly
by the assumption of the induction.

Consider the set I/J = I/clA(I2). It is clear that the dimension of I/J is at
most m. Take any elements [i1], . . . , [ik−1] ∈ I/J . Since k − 1 > 2 and J is an
ideal of A, then i1 · · · · · ik−1 ∈ I2 ⊆ J . Hence, [i1] · · · · · [ik−1] = [i1 · · · · · ik−1] = [θI ].

Thus, (I/J)k−1 = {θI}. Notice, that A/J is a Hausdorff space, because J is a
closed two-sided ideal of A. Again, by the assumption of the induction, we get
that every topological extension of R by I/J splits strongly.

Now the claim follows from Proposition 2.2, part (i).
(ii) Suppose that I is as in the part (i) of the proof and that I is also Artinian

ring. Then, by Corollary 2.4, the claim (ii) follows from the part (i) of the
Proposition 2.7. �

Last result is of purely algebraic nature and holds for arbitrary rings.

Theorem 2.8. Let R be a ring and let Σ(A; I) be an algebraic extension of R.
Suppose that there exist such two-sided ideals J and K of A that I = J + K and
J ∩K = {θA}. If the algebraic extensions Σ(A/J ; I/J) and Σ(A/K; I/K) both
split algebraically, then Σ(A; I) splits algebraically, as well.

Proof. Since Σ(A/J ; I/J) and Σ(A/K; I/K) both split algebraically, there exist
subrings CJ and CK of A/J and A/K, respectively, such that
A/J = CJ + (I/J), A/K = CK + (I/K), with CJ ∩ (I/J) = {θA/J} and
CK ∩ (I/K) = {θA/K}.

Define BJ := ρ−1
J (CJ) = {a ∈ A : ρJ(a) ∈ CJ} and

BK := ρ−1
K (CK) = {a ∈ A : ρK(a) ∈ CK}, where ρJ : A → A/J and

ρK : A → A/K are the quotient maps. Set B := BJ ∩ BK . Then it is easy
to check that BJ ,BK and B are subrings of A.

Take any a ∈ A. Then ρJ(a) ∈ A/J and ρK(a) ∈ A/K. Since

ρJ(BJ + I) = ρJ(BJ) + ρj(I) = CJ + (I/J) = A/J,

then a ∈ (BJ + I) + J ⊆ BJ + I. Hence, there exist b1 ∈ BJ and i1 ∈ I such that
a = b1 + i1. Similarly from ρK(BK + I) = A/K it follows that there exist b2 ∈ BK

and i2 ∈ I such that a = b2 + i2. Hence, b1 − b2 = i2 − i1 ∈ I = J + K and there
exist j ∈ J and k ∈ K such that b1 − b2 = j + k.
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Now, b1 − j = b2 + k. Notice, that

ρJ(b1 − j) ∈ ρJ(b1 + J) ⊂ ρJ(b1) + ρJ(J) = ρJ(b1) + θA/J = ρJ(b1) ∈ CJ .

Hence, b1 − j ∈ BJ . Similarly we get that

ρK(b1 − j) = ρK(b2 + k) ∈ ρK(b2 + K) ∈ CK

and b1−j ∈ BK . Hence, b1−j ∈ BJ∩BK = B. Therefore, b1 = (b1−j)+j ∈ B+J .
Thus, a = b1 + i1 ∈ (B + J) + I ⊂ B + I. Since a was an arbitrary element in A
and B + I ⊆ A, we have A = B + I.

Take any a ∈ B ∩ I. Then a ∈ BJ implies ρJ(a) ∈ CJ . From a ∈ I follows that
ρJ(a) ∈ I/J . Hence, ρJ(a) ∈ CJ ∩ (I/J) = {θA/J}. Thus, a ∈ J . Similarly we get
from a ∈ BK that ρK(a) ∈ CK ∩ (I/K) = {θA/K}. Hence, a ∈ K, as well. Since
J ∩ K = θA, we have B ∩ I = {θA}. Together with A = B + I it implies that
Σ(A; I) splits algebraically. �

Remark 2.9. Proposition 2.1 is a generalization of [1, Proposition 1.4, pp. 10–11];
Proposition 2.2 is a generalization of [1, Proposition 1.5, p. 11]; Corollary 2.3 is
a generalization of [1, Theorem 1.6, p.12]; Corollary 2.4 is a generalization of [1,
Theorem 1.7, p. 11]; Proposition 2.7 is a generalization of [1, Theorem 1.8, p.
13] and Theorem 2.8 is a generalization of [1, Theorem 1.9, p.13]. The proofs of
the aforementioned results follow the ideas of proofs from [1], although in several
places the proofs of [1] had to be modified or carried out in more details than in
[1].
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