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Abstract. Let E, F be two Hilbert C∗-modules over C∗-algebras A and B
respectively. In this paper, by the alternative fixed point theorem, we give the
Hyers-Ulam-Rassias stability of the equation

〈U(x), U(y)〉 = ϕ(〈x, y〉) (x, y ∈ E),

where U : E → F is a mapping and ϕ : A → B is an additive map.

1. Introduction and Preliminaries

A pre-Hilbert A-module is a right module E over C∗-algebra A, with a map
〈., .〉 : E × E → A which is conjugate linear in the first, linear in its second
argument and satisfies

(i) 〈x, ya〉 = 〈x, y〉a (x, y ∈ E, a ∈ A),
(ii) 〈x, y〉∗ = 〈y, x〉 (x, y ∈ E),
(iii) 〈x, x〉 ≥ 0 (x ∈ E),
(iv) 〈x, x〉 = 0 ⇒ x = 0.

A Hilbert A-module (briefly Hilbert module) is a pre-Hilbert A-module that is

complete in the norm defined by ‖x‖ = ‖〈x, x〉‖ 1
2 . For more details about Hilbert

modules see [12].
Let E,F be two Hilbert modules over C∗-algebras A and B respectively and

ϕ : A→ B be a map. A mapping U : E → F is called a ϕ-morphism if

〈U(x), U(y)〉 = ϕ(〈x, y〉) (x, y ∈ E).
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This kind of mappings were introduced by Bakić and Guljaš [3]. The first author
together with Moslehian and Niknam [1] used this kind of mappings to introduce
dynamical systems on Hilbert modules. Also Abbaspour and Skeide in [2] inves-
tigated the relation between ϕ-morphisms, where they called them generalized
module mappings, and ternary homomorphisms.

The stability problem of functional equations had been first raised by Ulam
[18] by the following question: For what metric groups G is it true that an
ε-automorphism of G is necessarily near to a strict automorphism? A partial
answer to the above question has been given as follows. Suppose E1 and E2 are
two real Banach spaces and f : E1 → E2 is a mapping. If there exist δ ≥ 0 and
p ≥ 0, p 6= 1 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ(‖x‖p + ‖y‖p)

for all x, y ∈ E1, then there is a unique additive mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2δ‖x‖p

|2− 2p|
(x ∈ E1).

This result is called the Hyers-Ulam-Rassias stability of the additive Cauchy equa-
tion. Indeed Hyers [10] obtained the above result for p = 0. Then Rassias [17]
generalized the result of Hyers to the case where 0 ≤ p < 1. Gajda [9] solved
the problem for p > 1 and gave an example that a similar result does not hold
for p = 1. For the case p < 0, recently Lee [13] has shown that f should be
an additive map. Thus the Hyers-Ulam-Rassias stability of the additive Cauchy
equation holds for p ∈ R \ {1}.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric
on X if d satisfies

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, y) ≤ d(x, z) + d(z, x).

Generalized metric space (X, d) is called complete if each Cauchy sequence con-
verges in X.

In 2003, Radu [16] employed the following theorem to prove the stability of a
Cauchy functional equation. Later many authors, [7, 11, 14, 15] used this strategy
to give the stability of functional equations. Before stating the theorem we recall
that a mapping J : X → X is called a strictly contractive operator with the
Lipschitz constant L, if

d(J(x), J(y)) < Ld(x, y) (x, y ∈ X).

Theorem 1.1. ([8]) Let (X, d) be a generalized complete metric space and J :
X → X be a strictly contractive operator with the Lipschitz constant L < 1. If
there exists a nonnegative integer k such that d(Jk+1x, Jkx) <∞ for some x ∈ X,
then the following are true:

(a) The sequence {Jnx} converges to a fixed point x∗ of J ,
(b) x∗ is the unique fixed point of J in

X∗ = {y ∈ X | d(Jkx, y) <∞},
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(c) if y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Jy, y).

In [4], Badora and Chmieliński, investigated the stability and superstability of
inner product preserving mappings on Hilbert spaces. After then Chmieliński and
Moslehian [6] investigated this problem in the framework of Hilbert C∗-modules;
see also [5]. We mention that each ϕ-morphism is in fact a mapping preserving
inner product modulo ϕ. In this paper, by using the alternative fixed point
theorem for generalized metric spaces, the stability of ϕ-morphisms on Hilbert
C∗-modules is considered. Throughout the paper we assume that E and F are
two Hilbert C∗-modules over C∗-algebras A and B respectively and ϕ : A → B
is an additive map.

2. main results

Definition 2.1. A mapping U : E → F is called an approximate ϕ-morphism if
there exists a control function τ : E2 → R such that

‖〈U(x), U(y)〉 − ϕ(〈x, y〉)‖ ≤ τ(x, y)

holds for each x, y ∈ E.
As a consequence of Theorem 2.4 we will show that under some conditions on
control function τ each approximate ϕ-morphism is near to a ϕ-morphism.

Example 2.2. We know that each C∗-algebra A is a Hilbert C∗-module over
itself with the inner product defined by 〈a, b〉 = a∗b. Let A be a unital C*-
algebra , a ∈ A, ε = ‖a∗a − 1‖ and ϕ : A → A be a ∗-homomorphism. If we
define U(x) = aϕ(x) then we have

‖〈U(x), U(y)〉 − ϕ〈x, y〉‖ = ‖ϕ(x∗)a∗aϕ(y)− ϕ(x∗)ϕ(y)‖
= ‖ϕ(x∗)(a∗a− 1)ϕ(y)‖
≤ ε‖x‖‖y‖

≤ ε

2
(‖x‖2 + ‖y‖2)

If a is an unitary element then U is a ϕ-morphism, otherwise U is an approximate
ϕ-morphism with control function τ(x, y) = ε

2
(‖x‖2 + ‖y‖2).

Lemma 2.3. If U : E → F is a mapping such that ‖U(x+ y)−U(x)−U(y)‖ ≤
τ(x, y) for some control function τ : E2 → R and there is 0 < L < 1 with
τ(2x, 2y) ≤ 2Lτ(x, y), then there exists a unique additive map ψ : E → F such

that ‖U(x)− ψ(x)‖ ≤ 1

2− 2L
τ(x, x).

Proof. Let X = {g : E → F : g is a mapping} and define

d(g, h) = inf{c ≥ 0 : ‖g(x)− h(x)‖ ≤ cτ(x, x) ∀x ∈ E},
for g, h ∈ X. Then (X, d) is a complete generalized metric space. Now we
consider the mapping J : X → X by J(g)(x) = 1

2
g(2x). We can write for any

g, h ∈ X,
‖g(x)− h(x)‖ ≤ d(g, h)τ(x, x) (x ∈ E),
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therefore for x ∈ E,

‖J(g)(x)−J(h)(x)‖ = ‖1

2
g(2x)− 1

2
h(2x)‖ ≤ 1

2
d(g, h)τ(2x, 2x) ≤ Ld(g, h)τ(x, x).

Hence d(J(g), J(h)) ≤ Ld(g, h). Since d(J(U), U) ≤ 1
2
<∞, Theorem 1.1 implies

that

(i) J has a unique fixed point ψ : E → F in the set X∗ = {g ∈ X : d(g, U) <
∞}.

(ii) d(Jn(U), ψ) → 0 as n → ∞. This implies that limn→∞
U(2nx)

2n = ψ(x) for
all x ∈ E.

(iii) d(U, ψ) ≤ d(U,J(U))
1−L

≤ 1
2−2L

. That is, ‖U(x) − ψ(x)‖ ≤ 1
2−2L

τ(x, x) for all
x ∈ E.

Moreover, for each x, y ∈ E we have,

‖ψ(x+ y)− ψ(x)− ψ(y)‖ = lim
n→∞

‖U(2n(x+ y))

2n
− U(2nx)

2n
− U(2ny)

2n
‖

≤ lim
n→∞

1

2n
τ(2nx, 2ny)

≤ lim
n→∞

Lnτ(x, y)

= 0.

Hence ψ is an additive map. Now let ψ′ : E → F be another additive map such
that

‖U(x)− ψ′(x)‖ ≤ 1

2− 2L
τ(x, x) (x ∈ E),

so J(ψ′) = ψ′ and d(U, ψ′) ≤ 1
2−2L

. In other words ψ′ is a fixed point of J in X∗.
Thus ψ′ = ψ. �

Theorem 2.4. Let U : E → F be a mapping and ϕ : A→ B be an additive map
such that for some control function ρ : E2 → R, ‖〈Ux, Uy〉−ϕ(〈x, y〉)‖ ≤ ρ(x, y)
for all x, y ∈ E. Let

τ(x, y) =
(
ρ(x+ y, x+ y) + ρ(x+ y, x) + ρ(x, x+ y) + ρ(x+ y, y) + ρ(y, x+ y)

+ ρ(x, x) + ρ(y, y) + ρ(x, y) + ρ(y, x)
) 1

2

and suppose there is 0 < L < 1 such that τ(2x, 2y) ≤ 2Lτ(x, y). Then there exists

a unique ϕ-morphism T : E → F such that ‖U(x) − T (x)‖ ≤ 1

2− 2L
τ(x, x) for

all x ∈ X.
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Proof. For all x, y, z ∈ E we have

‖〈U(x+ y)− U(x)− U(y), U(z)〉‖
= ‖〈U(x+ y)− U(x)− U(y), U(z)〉 − ϕ(〈x+ y, z〉) + ϕ(〈x, z〉)

+ ϕ(〈y, z〉)‖
≤ ‖〈U(x+ y), U(z)〉 − ϕ(〈x+ y, z〉)‖+ ‖〈U(x), U(z)〉 − ϕ(〈x, z〉)‖

+ ‖〈U(y), U(z)〉 − ϕ(〈y, z〉)‖
≤ ρ(x+ y, z) + ρ(x, z) + ρ(y, z) .

Thus

‖U(x+ y)− U(x)− U(y)‖2

= ‖〈U(x+ y)− U(x)− U(y), U(x+ y)− U(x)− U(y)〉‖
≤ ‖〈U(x+ y)− U(x)− U(y), U(x+ y)〉‖

+ ‖〈U(x+ y)− U(x)− U(y), U(x)〉‖
+ ‖〈U(x+ y)− U(x)− U(y), U(y)〉‖

≤ ρ(x+ y, x+ y) + ρ(x, x+ y) + ρ(y, x+ y) + ρ(x+ y, x) + ρ(x, x)

+ ρ(y, x) + ρ(x+ y, y) + ρ(x, y) + ρ(y, y).

It follows that

‖U(x+ y)− U(x)− U(y)‖ ≤ τ(x, y).

By Lemma 2.3, there is a unique additive map T : E → F such that

‖U(x)− T (x)‖ ≤ 1

2− 2L
τ(x, x) (x ∈ E).

Then

T (x) = lim
n→∞

U(2nx)

2n
.

Now for each x, y ∈ E we have

‖〈Tx, Ty〉 − ϕ(〈x, y〉)‖ = lim
n→∞

1

4n
‖〈U(2nx), U(2ny)〉 − ϕ(〈2nx, 2ny〉)‖

≤ lim
n→∞

1

4n
ρ(2nx, 2ny) ≤ lim

n→∞

1

4n
τ(2nx, 2ny)2

= lim
n→∞

(
1

2n
τ(2nx, 2ny)

)2

≤
(

lim
n→∞

Lnτ(x, y)
)2

= 0.

This shows that T is a ϕ-morphism. Since each ϕ-morphism is an additive map
Lemma 2.3 implies that T is the unique ϕ-morphism as desired. �

One can replace the condition τ(2x, 2y) ≤ 2Lτ(x, y) on the control function τ
by

τ(x, y) ≤ 1

2
Lτ(2x, 2y)

and obtain the following results.
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Lemma 2.5. If U : E → F is a mapping such that ‖U(x+ y)−U(x)−U(y)‖ ≤
τ(x, y) for some control function τ : E2 → R and there is 0 < L < 1 with
τ(x, y) ≤ 1

2
Lτ(2x, 2y), then there exists a unique additive map ψ : E → F such

that ‖U(x)− ψ(x)‖ ≤ L

2− 2L
τ(x, x).

Theorem 2.6. Let U : E → F be a mapping and ϕ : A→ B be an additive map
such that for some control function ρ : E2 → R, ‖〈Ux, Uy〉−ϕ(〈x, y〉)‖ ≤ ρ(x, y)
for all x, y ∈ E. Let

τ(x, y) =
(
ρ(x+ y, x+ y) + ρ(x+ y, x) + ρ(x, x+ y) + ρ(x+ y, y) + ρ(y, x+ y)

+ ρ(x, x) + ρ(y, y) + ρ(x, y) + ρ(y, x)
) 1

2

and suppose there is 0 < L < 1 such that τ(x, y) ≤ 1
2
Lτ(2x, 2y). Then there exists

a unique ϕ-morphism T : E → F such that ‖U(x) − T (x)‖ ≤ L

2− 2L
τ(x, x) for

all x ∈ X.

For a real number p let Ep denote either the whole space E if p ≥ 0 or E \ {0}
if p < 0.

Corollary 2.7. Let U : E → F be a mapping and ϕ : A→ B be an additive map
such that for some p 6= 2,

‖〈Ux, Uy〉 − ϕ(〈x, y〉)‖ ≤ c(‖x‖p + ‖y‖p) (x, y ∈ Ep).

Then there exists a unique ϕ-morphism T : E → F such that

‖U(x)− T (x)‖ ≤
√

6c(2p + 2)

|2− 2
p
2 |

‖x‖
p
2 (x ∈ Ep).

Proof. Define ρ : Ep×Ep → R by ρ(x, y) = c(‖x‖p + ‖y‖p), then apply Theorems
2.4 and 2.6 with

τ(x, y) =
√

6c(‖x+ y‖p + ‖x‖p + ‖y‖p)

�

Remark 2.8. If E and F are two Hilbert C∗-modules over the same C∗-algebra
A and ϕ : A→ A is the identity map, then [6, Corollary 4.2] is a consequence
of the above corollary.

Applying Theorem 2.4 and 2.6 with ρ(x, y) = c‖x‖p‖y‖p we have the next
result.

Corollary 2.9. Let U : E → F be a mapping and ϕ : A→ B be an additive map
such that for some p 6= 1,

‖〈Ux, Uy〉 − ϕ(〈x, y〉)‖ ≤ c‖x‖p‖y‖p (x, y ∈ Ep).

Then there exists a unique ϕ-morphism T : E → F such that

‖U(x)− T (x)‖ ≤
√
c(2p + 2)

|2− 2p|
‖x‖p (x ∈ Ep).
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