

Ann. Funct. Anal. 1 (2010), no. 2, 103–111 *ANNALS OF FUNCTIONAL ANALYSIS* al ISSN: 2008-8752 (electronic) URL: www.emis.de/journals/AFA/

(δ, ε) -DOUBLE DERIVATIONS ON BANACH ALGEBRAS

SHIRIN HEJAZIAN^{1*}, HUSSEIN MAHDAVIAN RAD² AND MADJID MIRZAVAZIRI³

Communicated by S.-M. Jung

ABSTRACT. Let \mathcal{A} be an algebra and let $\delta, \varepsilon : \mathcal{A} \to \mathcal{A}$ be two linear mappings. A (δ, ε) -double derivation is a linear mapping $d : \mathcal{A} \to \mathcal{A}$ satisfying $d(ab) = d(a)b + ad(b) + \delta(a)\varepsilon(b) + \varepsilon(a)\delta(b)$ $(a, b \in \mathcal{A})$. We study some algebraic properties of these mappings and give a formula for calculating $d^n(ab)$. We show that if \mathcal{A} is a Banach algebra such that either is semi-simple or every derivation from \mathcal{A} into any Banach \mathcal{A} -bimodule is continuous then every (δ, ε) -double derivation on \mathcal{A} is continuous whenever so are δ and ε . We also discuss the continuity of ε when d and δ are assumed to be continuous.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} be an algebra. A linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is said to be a derivation if it satisfies the Leibniz rule $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in \mathcal{A}$. Now suppose that δ, ε are two ordinary derivations. We see that $d = \delta \varepsilon$ satisfies

$$d(ab) = d(a)b + ad(b) + \delta(a)\varepsilon(b) + \varepsilon(a)\delta(b) \quad (a, b \in \mathcal{A}).$$
(1.1)

This can be assumed as a generalization of the concept of a derivation.

Now let $\delta, \varepsilon : \mathcal{A} \to \mathcal{A}$ be two linear mappings. A linear mapping $d : \mathcal{A} \to \mathcal{A}$ is said to be a (δ, ε) -double derivation if it satisfies (1.1). By a δ -double derivation we mean a (δ, δ) -double derivation. See [7] for an initial study of δ -double derivations. Clearly, if d is a derivation then d^2 is a d-double derivation, and also d is a 0double derivation where 0 denotes the zero mapping. Moreover, if I denotes the identity mapping on \mathcal{A} , then each σ -derivation $d : \mathcal{A} \to \mathcal{A}$ is a $(\sigma - I, d)$ -double derivation. Here by a σ -derivation we mean a linear mapping d on \mathcal{A} satisfying $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ $(a, b \in \mathcal{A})$, for some linear mapping σ on \mathcal{A} , see

Date: Received: 20 November 2010; Accepted: 25 December 2010.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B47; Secondary 46H40.

Key words and phrases. derivation, (δ, ε) -double derivation, automatic continuity.

[4, 6] for more about σ -derivations. Also, every homomorphism $\varphi: \mathcal{A} \to \mathcal{A}$ is a $(\frac{\varphi}{2} - I, \varphi)$ -double derivation.

In Section 2, we study some algebraic properties of (δ, ε) -double derivations and give a formula to calculate $d^n(ab)$. Section 3 is devoted to the study of automatic continuity of (δ, ε) -double derivations on Banach algebras and to extension of some results of [7]. We will observe that under the assumption of continuity of any pair of the linear mappings d, δ and ε , what happens for the third one. Assuming that δ and ε are continuous on \mathcal{A} , we show that if every derivation from \mathcal{A} into a Banach \mathcal{A} -bimodule is continuous then every (δ, ε) -double derivation on \mathcal{A} is continuous. Also, it is proved that every (δ, ε) -double derivation on a semisimple Banach algebra is continuous whenever so are δ and ε . Next we assume that d and δ are continuous and obtain some results concerning the separating space of ε . We will show that if d is a continuous (δ, ε) -double derivation on a commutative unital prime Banach algebra, then ε is continuous whenever δ is nonzero and continuous. We also obtain some results concerning δ -double derivations.

2. Algebraic properties

Let \mathcal{A} be an algebra. Suppose that δ, ε are two linear mappings on \mathcal{A} , and $d: \mathcal{A} \to \mathcal{A}$ is a (δ, ε) -double derivation, that is

$$d(ab) = d(a)b + ad(b) + \delta(a)\varepsilon(b) + \varepsilon(a)\delta(b) \quad (a, b \in \mathcal{A}).$$

For simplicity, we consider a bilinear mapping $\lambda : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ defined by

$$\lambda(a,b) = \delta(a)\varepsilon(b) + \varepsilon(a)\delta(b) \quad (a,b \in \mathcal{A}).$$

Proposition 2.1. Let \mathcal{A} be an algebra and let δ, ε be two linear mappings on \mathcal{A} . Suppose that $d: \mathcal{A} \to \mathcal{A}$ is a (δ, ε) -double derivation.

(i) For each idempotent $e \in \mathcal{A}$, $ed(e)e = -e\lambda(e, e)e$. Moreover, if \mathcal{A} is unital, then (*ii*) $\lambda(a, 1) = -ad(1), \lambda(1, a) = -d(1)a$ for all $a \in \mathcal{A}$, and $d(1) = -\lambda(1, 1)$; (*iii*) $\lambda(ab, 1) = a\lambda(b, 1), \lambda(1, ab) = \lambda(1, a)b$ for all $a, b \in \mathcal{A}$; (iv) d(1) = 0 if and only if $\lambda(a, 1) = 0 = \lambda(1, a)$ for all $a \in \mathcal{A}$.

Proof. (i) Let e be an idempotent in \mathcal{A} . Then

$$d(e) = d(e^{2}) = ed(e) + d(e)e + \lambda(e, e).$$
(2.1)

Multiplying (2.1) by *e* gives the result.

(*ii*) For each $a \in \mathcal{A}$,

$$d(a) = ad(1) + d(a)1 + \lambda(a, 1).$$
(2.2)

Hence $\lambda(a,1) = -ad(1)$. Similarly $\lambda(1,a) = -d(1)a$. The last assertion is now obvious.

(*iii*) By (*ii*), for $a, b \in \mathcal{A}$ we have $\lambda(ab, 1) = -abd(1) = a\lambda(b, 1), \lambda(1, ab) = abb(1)$ $-d(1)ab = \lambda(1, a)b.$

(iv) It follows from (2.2).

If δ, ε are derivations on an algebra \mathcal{A} , it is easy to see that $\delta\varepsilon$ is a (δ, ε) -double derivation. Now let δ, ε be derivations and let d be a (δ, ε) -double derivation. What can we say about d?

Proposition 2.2. Let δ, ε be derivations and let d be a (δ, ε) -double derivation on an algebra \mathcal{A} . Then there exists a derivation D on \mathcal{A} such that $d = \delta \varepsilon + D$.

Proof. Straightforward.

It is well known that every derivation on a commutative Banach algebra maps it into its radical, see [8]. As a consequence of Proposition 2.2, every (δ, ε) -double derivation d on a commutative Banach algebra \mathcal{A} , for which δ, ε are derivations, maps into the radical. If moreover, \mathcal{A} is semi-simple, then d = 0.

Now we are going to find a formula for $d^n(ab)$, where d is a (δ, ε) -double derivation. This is not as simple as the one for an ordinary derivation. In fact what we give here is something such as an algorithm to calculate $d^n(ab)$.

Let δ, ε be arbitrary linear mappings on an algebra \mathcal{A} . We construct a family of linear mappings $\{\phi_{n,k}^{\delta,\varepsilon}\}$, $(n \in \mathbb{N}, 0 \le k \le 2^n - 1)$, which is called the *binary* family for the ordered pair of linear mappings (δ, ε) , as follows.

Write the non-negative integer k in base 2 with exactly n digits, and put δ in place of 1's and ε in place of 0's. For example, if n = 4 then $6 = (0110)_2$, $10 = (1010)_2$, $\phi_{4,6}^{\delta,\varepsilon} = \varepsilon \delta \delta \varepsilon = \varepsilon \delta^2 \varepsilon$ and $\phi_{4,10}^{\delta,\varepsilon} = \delta \varepsilon \delta \varepsilon$. When there is no risk of ambiguity, we simply write $\phi_{n,k}$ instead of $\phi_{n,k}^{\delta,\varepsilon}$. The following lemma is stated in [6]. We give its proof for the sake of convenience.

Lemma 2.3. Let $n \in \mathbb{N}$ and let k be a non-negative integer such that $0 \leq k \leq 2^n - 1$. Then

- (i) $\delta \phi_{n,k} = \phi_{n+1,k+2^n};$ (ii) $\varepsilon \phi_{n,k} = \phi_{n+1,k};$
- (*iii*) $\phi_{n,k} = \phi_{n+1,k}$; (*iii*) $\phi_{n,k} \delta = \phi_{n+1,2k+1}$;
- $(iv) \ \phi_{n,k} \varepsilon = \phi_{n+1,2k+1},$ $(iv) \ \phi_{n,k} \varepsilon = \phi_{n+1,2k}.$

 $(\cdot \cdot) \neq n, k = \forall n \neq n \neq 1, 2k$

Proof. Write k in the base 2 as $(c_n \dots c_2 c_1)_2$, where $c_j \in \{0, 1\}$ for $j = 1, \dots, n$. Then

(i)
$$\delta \phi_{n,k} = \phi_{n+1,(1c_n...c_2c_1)_2} = \phi_{n+1,k+2^n};$$

(ii) $\varepsilon \phi_{n,k} = \phi_{n+1,(0c_n...c_2c_1)_2} = \phi_{n+1,k};$
(iii) $\phi_{n,k}\delta = \phi_{n+1,(c_n...c_2c_1)_2} = \phi_{n+1,2k+1};$
(iv) $\phi_{n,k}\varepsilon = \phi_{n+1,(c_n...c_2c_1)_2} = \phi_{n+1,2k}.$

Now consider the algebraic tensor product $\mathcal{A} \otimes \mathcal{A}$. Let δ, ε and d be arbitrary linear mappings on \mathcal{A} . Consider two bilinear mappings $(a, b) \mapsto d(a) \otimes b + a \otimes d(b)$ and $(a, b) \mapsto \delta(a) \otimes \varepsilon(b) + \varepsilon(a) \otimes \delta(b)$ from $\mathcal{A} \times \mathcal{A}$ to $\mathcal{A} \otimes \mathcal{A}$. Then we have two linear mappings $\alpha, \beta : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ satisfying

$$\alpha(a \otimes b) = d(a) \otimes b + a \otimes d(b), \tag{2.3}$$

$$\beta(a \otimes b) = \delta(a) \otimes \varepsilon(b) + \varepsilon(a) \otimes \delta(b) \tag{2.4}$$

for $a, b \in \mathcal{A}$.

Lemma 2.4. If δ, ε and d are linear mappings on an algebra \mathcal{A} and α, β are defined as above, then for each positive integer n

(i)
$$\alpha^{n}(a \otimes b) = \sum_{k=0}^{n} \binom{n}{k} d^{k}(a) \otimes d^{n-k}(b);$$

(ii) $\beta^{n}(a \otimes b) = \sum_{k=0}^{2^{n}-1} \phi_{n,k}(a) \otimes \phi_{n,2^{n}-1-k}(b).$

Proof. (i) We proceed by induction. Clearly the equality in (i) holds for n = 1. Assume that the result is true for the positive integer n. Then form (2.3) we have

$$\begin{split} &\alpha^{n+1}(a \otimes b) = \alpha(\sum_{k=0}^{n} \binom{n}{k} d^{k}(a) \otimes d^{n-k}(b)) \\ &= \sum_{k=0}^{n} \binom{n}{k} d^{k+1}(a) \otimes d^{n-k}(b) + \sum_{k=0}^{n} \binom{n}{k} d^{k}(a) \otimes d^{n+1-k}(b) \\ &= \sum_{k=0}^{n-1} \binom{n}{k} d^{k+1}(a) \otimes d^{n+1-(k+1)}(b) + \binom{n}{n} d^{n+1}(a) \otimes b \\ &+ \sum_{k=0}^{n-1} \binom{n}{k+1} d^{k+1}(a) \otimes d^{n+1-(k+1)}(b) + \binom{n}{0} a \otimes d^{n+1}(b) \\ &= \sum_{k=0}^{n-1} (\binom{n}{k+1} + \binom{n}{k}) d^{k+1}(a) \otimes d^{n+1-(k+1)}(b) \\ &+ \binom{n}{0} a \otimes d^{n+1}(b) + \binom{n}{n} d^{n+1}(a) \otimes b \\ &= \sum_{k=1}^{n} \binom{n+1}{k} d^{k}(a) \otimes d^{n+1-k}(b) + \binom{n+1}{0} a \otimes d^{n+1}(b) + \binom{n+1}{n+1} d^{n+1}(a) \otimes b \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} d^{k}(a) \otimes d^{n+1-k}(b). \end{split}$$

(*ii*) Obviously, the result is true for n = 1. Let (*ii*) hold for n. Then from (2.4) and Lemma 2.3, we have

$$\beta^{n+1}(a \otimes b) = \beta \left(\sum_{k=0}^{2^n - 1} \phi_{n,i}(a) \otimes \phi_{n,2^n - 1 - j}(b) \right)$$

= $\sum_{k=0}^{2^n - 1} \delta \phi_{n,k}(a) \otimes \varepsilon \phi_{n,2^n - 1 - k}(b) + \sum_{k=0}^{2^n - 1} \varepsilon \phi_{n,k}(a) \otimes \delta \phi_{n,2^n - 1 - k}(b)$
= $\sum_{k=0}^{2^n - 1} \phi_{n+1,k+2^n}(a) \otimes \phi_{n+1,2^n - 1 - k}(b) + \sum_{k=0}^{2^n - 1} \phi_{n+1,k}(a) \otimes \phi_{n+1,2^{n+1} - 1 - k}(b)$

$$=\sum_{k=2^{n}}^{2^{n+1}-1} \phi_{n+1,k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b) + \sum_{k=0}^{2^{n}-1} \phi_{n+1,k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b)$$
$$=\sum_{k=0}^{2^{n+1}-1} \phi_{n+1,k}(a) \otimes \phi_{n+1,2^{n+1}-1-k}(b)$$

Suppose that $\delta, \varepsilon, d, \alpha$ and β are as above. Let $\{\psi_{n,j}\}$ $(n \in \mathbb{N}, 0 \le j \le 2^n - 1)$, be the binary family for (α, β) . We calculate $\{\psi_{n,j}\}$ for n = 3.

Example 2.5. Take n = 3. By the definition of $\{\psi_{n,j}\}$ and Lemma 2.4 we have

$$\begin{split} 0 &= (000)_{2}, \psi_{3,0}(a \otimes b) = \beta^{3}(a \otimes b) = \sum_{i=0}^{2^{3}-1} \phi_{3,i}(a) \otimes \phi_{3,2^{3}-1-i}(b) \\ 1 &= (001)_{2}, \psi_{3,1}(a \otimes b) = \beta^{2}\alpha(a \otimes b) = \sum_{i=0}^{2^{2}-1} \sum_{k=0}^{1} \binom{1}{k} \phi_{2,i}(d^{k}(a)) \otimes \phi_{2,2^{2}-1-i}(d^{1-k}(b)) \\ 2 &= (010)_{2}, \psi_{3,2}(a \otimes b) = \alpha\beta\alpha(a \otimes b) \\ &= \sum_{r=0}^{2^{1}-1} \sum_{k=0}^{1} \sum_{i=0}^{2^{1}-1} \binom{1}{k} \phi_{1,r}(d^{k}(\phi_{1,i}(a))) \otimes \phi_{1,2^{1}-1-r}(d^{1-k}(\phi_{1,2^{1}-1-i}(b))) \\ 3 &= (011)_{2}, \psi_{3,3}(a \otimes b) = \beta\alpha^{2}(a \otimes b) = \sum_{i=0}^{2^{1}-1} \sum_{k=0}^{2} \binom{2}{k} \phi_{1,i}(d^{k}(a)) \otimes \phi_{1,2^{1}-1-i}(d^{1-k}(b)) \\ 4 &= (100)_{2}, \psi_{3,4}(a \otimes b) = \alpha\beta^{2}(a \otimes b) = \sum_{k=0}^{1} \sum_{i=0}^{2^{2}-1} \binom{1}{k} d^{k}(\phi_{2,i}(a)) \otimes d^{1-k}(\phi_{2,2^{2}-1-i}(b)) \\ 5 &= (101)_{2}, \psi_{3,5}(a \otimes b) = \alpha\beta\alpha(a \otimes b) \\ &= \sum_{k=0}^{1} \sum_{i=0}^{2^{1}-1} \sum_{s=0}^{1} \binom{1}{k} \binom{1}{s} d^{k}(\phi_{1,i}(d^{s}(a)) \otimes d^{1-k}\phi_{1,2^{1}-1-i}(d^{1-s}(b)) \\ 6 &= (110)_{2}, \psi_{3,6}(a \otimes b) = \alpha^{2}\beta(a \otimes b) = \sum_{k=0}^{2} \sum_{i=0}^{2^{1}-1} \binom{2}{k} d^{k}(\phi_{1,i}(a)) \otimes d^{2-k}(\phi_{1,2^{1}-1-i}(b)) \\ 7 &= (111)_{2}, \psi_{3,7}(a \otimes b) = \alpha^{3}(a \otimes b) = \sum_{k=0}^{3} \binom{3}{k} d^{k}(a) \otimes d^{3-k}(b). \end{split}$$

Lemma 2.6. $(\alpha + \beta)^n = \sum_{j=0}^{2^n - 1} \psi_{n,j}.$

Proof. The equality holds for n = 1. Suppose that we have the equality for n. Then

$$\begin{aligned} (\alpha + \beta)^{n+1}(a \otimes b) &= (\alpha + \beta)((\alpha + \beta)^n(a \otimes b)) = (\alpha + \beta)(\sum_{j=0}^{2^n - 1} \psi_{n,j})(a \otimes b) \\ &= \alpha(\sum_{j=0}^{2^n - 1} \psi_{n,j}(a \otimes b)) + \beta(\sum_{j=0}^{2^n - 1} \psi_{n,j}(a \otimes b)) \\ &= \sum_{j=0}^{2^n - 1} \psi_{n+1,j+2^n}(a \otimes b). \end{aligned}$$

Let \mathcal{A} be an algebra and $d \in (\delta, \varepsilon)$ -double derivation on \mathcal{A} . Suppose that $\sigma : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$, is the linear mapping defined by $\sigma(a \otimes b) = ab \quad (a, b \in \mathcal{A})$. If α, β are defined as above, then it is easy to see that $d(ab) = \sigma((\alpha + \beta)(a \otimes b))$. In other words, $d(\sigma(a \otimes b) = \sigma((\alpha + \beta)(a \otimes b)))$, that is $d\sigma = \sigma(\alpha + \beta)$.

Theorem 2.7. Let d be a (δ, ε) -double derivation on an algebra \mathcal{A} . Then

$$d^{n}(ab) = \sigma((\alpha + \beta)^{n}(a \otimes b)) = \sigma(\sum_{j=0}^{2^{n}-1} \psi_{n,j}(a \otimes b)).$$

$$(2.5)$$

Proof. We apply an induction argument. The result is clear for n = 1. Let (2.5) hold for n. Then

$$d^{n+1}(ab) = d(d^n(ab)) = d(\sigma(\alpha + \beta)^n(a \otimes b)) = \sigma(\alpha + \beta)(\alpha + \beta)^n(a \otimes b))$$

= $\sigma((\alpha + \beta)^{n+1}(a \otimes b)).$

The last equality follows from Lemma 2.6.

3. Automatic continuity

Let \mathcal{A} be a Banach algebra and $d \in (\delta, \varepsilon)$ -double derivation on \mathcal{A} . We recall that for a linear mapping $T : \mathcal{A} \to \mathcal{A}$, the separating space of T is the set

$$\mathcal{S}(T) = \{ a \in \mathcal{A} : \exists \{a_n\} \subseteq \mathcal{A} \text{ s.t. } a_n \to 0, T(a_n) \to a \}.$$

By the closed graph theorem T is continuous if and only if $\mathcal{S}(T) = \{0\}$.

We are going to find out under which conditions the continuity of any pair of the linear mappings d, δ and ε , implies the continuity of the third one. First we assume that δ and ε are continuous and observe what happens for d. In the second step we assume continuity of d and one of δ or ε , say δ , and observe what happens for the third one. We also prove some results concerning δ -double derivations. For the first step we need some preliminaries.

Let \mathcal{A} be a Banach algebra and \mathcal{X} a Banach \mathcal{A} -bimodule. A linear mapping $S: \mathcal{A} \longrightarrow \mathcal{X}$ is said to be left-intertwining if the mapping

$$b \longmapsto aS(b) - S(ab), \ \mathcal{A} \longrightarrow \mathcal{X},$$

is continuous for each $a \in \mathcal{A}$, and right-intertwining if the mapping

$$a \longmapsto S(a)b - S(ab), \ \mathcal{A} \longrightarrow \mathcal{X},$$

is continuous for all $b \in \mathcal{A}$. A linear mapping $S : \mathcal{A} \longrightarrow \mathcal{X}$ is intertwining if it is both left- and right-intertwining. For more about these objects see [1, Section 2.7].

Theorem 3.1. [2, Theorem 2.1] Let \mathcal{A} be a Banach algebra. Suppose that each derivation from \mathcal{A} to a Banach \mathcal{A} -bimodule is continuous. Then each left intertwining map from \mathcal{A} to each Banach \mathcal{A} -bimodule is continuous.

Theorem 3.2. Let \mathcal{A} be a Banach algebra. Suppose that each derivation from \mathcal{A} into a Banach \mathcal{A} -bimodule is continuous. Then each (δ, ε) -double derivation d on \mathcal{A} with continuous δ and ε is continuous.

Proof. Since δ and ε are continuous, it is easy to see that d is an intertwining map when we consider \mathcal{A} as a Banach \mathcal{A} -bimodule in a natural way. Thus, by Theorem 3.1, d is continuous.

It is a well known result due to B. E. Johnson and A. M. Sinclair [5] that every derivation on a semi-simple Banach algebra is continuous. Here we give a similar result for double derivations.

Theorem 3.3. Let \mathcal{A} be a semi-simple Banach algebra and let δ, ε be continuous linear mappings on \mathcal{A} . Then every (δ, ε) -double derivation on \mathcal{A} is continuous.

Proof. Consider \mathcal{A} as a Banach \mathcal{A} -bimodule with it's own product. Let d be a (δ, ε) -double derivation on \mathcal{A} . Thus d is an intertwining map and the separating space $\mathcal{S}(d)$ of d is a separating ideal of \mathcal{A} , see [1, Theorem 5.2.24]. Therefore by [1, Lemma 5.2.25], $\mathcal{S}(d)$ is finite dimensional and hence it contains a nonzero idempotent e, whenever $\mathcal{S}(d) \neq \{0\}$, [1, Corollary 5.2.26]. Let $a_n \to 0$ and $d(a_n) \to e$. Then

$$d(ea_n) = ed(a_n) + d(e)a_n + \lambda(e, a_n)$$

which tends to e as $n \to \infty$. But $ea_n \in S(d)$ and d is continuous on the finite dimensional Banach algebra S(d). Hence e = 0, a contradiction.

In [7, Theorem 3.7] it is proved that every $*{-}(\delta, \varepsilon)$ -double derivation on a C^* algebra, with continuous δ and ε , is continuous. Also in [7, Theorem 3.8] it is proved that a (δ, ε) -double derivation on a C^* -algebra is continuous whenever δ and ε are continuous linear *-mappings. The next Corollary is a more general result.

Corollary 3.4. Let δ, ε be continuous linear mappings on a C^{*}-algebra \mathcal{A} . Then every (δ, ε) -double derivation on \mathcal{A} is continuous.

Now we begin the second step.

Let \mathcal{B} and \mathcal{C} be subsets of \mathcal{A} . By \mathcal{BC} we mean the set $\{bc : b \in \mathcal{B}, c \in \mathcal{C}\}$. We recall that, the left (resp. right) ideal of \mathcal{A} generated by \mathcal{B} is the linear span of \mathcal{AB} (resp. \mathcal{BA}). The closed left (resp. right) ideal of \mathcal{A} generated by \mathcal{B} is defined to be the closure of the linear span of \mathcal{AB} (resp. \mathcal{BA}). Clearly, if \mathcal{A} is commutative then the two sided ideal generated by \mathcal{B} is the linear span of \mathcal{AB} . **Theorem 3.5.** Let d be a (δ, ε) -double derivation on a Banach algebra \mathcal{A} . If d and δ are continuous then $\mathcal{S}(\varepsilon)\delta(\mathcal{A}) = \delta(\mathcal{A})\mathcal{S}(\varepsilon) = \{0\}$.

Proof. Let $a \in \mathcal{A}$, $b \in \mathcal{S}(\varepsilon)$. There is a sequence $\{b_n\}$ in \mathcal{A} converging to 0 with $\lim_{n \to \infty} \varepsilon(b_n) = b$. We have

$$d(ab_n) = ad(b_n) + d(a)b_n + \delta(a)\varepsilon(b_n) + \varepsilon(a)\delta(b_n).$$

Continuity of d and δ implies that $\delta(a)b = 0$. Similarly $b\delta(a) = 0$.

Corollary 3.6. Let d be a (δ, ε) -double derivation on a commutative unital prime Banach algebra \mathcal{A} . If d and δ are continuous and δ is nonzero, then ε is also continuous.

Proof. We have $\delta(\mathcal{A})\mathcal{S}(\varepsilon) = \{0\}$. Let \mathcal{I}_1 and \mathcal{I}_2 be the ideals generated by $\delta(\mathcal{A})$ and $\mathcal{S}(\varepsilon)$, respectively. Then $\mathcal{I}_1\mathcal{I}_2 = \{0\}$. Since $\mathcal{I}_1 \neq \{0\}$, \mathcal{I}_2 and hence $\mathcal{S}(\varepsilon)$ is zero.

Finally, we give some results concerning continuity of δ -double derivations.

Theorem 3.7. If d is a continuous δ -double derivation on a Banach algebra \mathcal{A} then $\mathcal{S}(\delta)\delta(\mathcal{A}) = \delta(\mathcal{A})\mathcal{S}(\delta) = \{0\}$. Moreover, for each $a \in \mathcal{S}(\delta)$, $a^2 = 0$.

Proof. The same argument as in Theorem 3.5 gives that $S(\delta)\delta(\mathcal{A}) = \delta(\mathcal{A})S(\delta) = \{0\}$. Now let $a_n \to 0$ and $\delta(a_n) \to a$. Then

$$0 = \lim_{n \to \infty} d(a_n^2) = \lim_{n \to \infty} a_n d(a_n) + d(a_n)a_n + 2\delta(a_n)^2,$$

which implies that $a^2 = 0$.

Corollary 3.8. If d is a continuous δ -double derivation on a commutative unital semi-prime Banach algebra \mathcal{A} , then δ is continuous.

Proof. Consider \mathcal{I} to be the closed ideal generated by $\mathcal{S}(\delta)$ in \mathcal{A} . Note that \mathcal{I} contains $\mathcal{S}(\delta)$ since \mathcal{A} is unital. Commutativity of \mathcal{A} and Theorem 3.7 imply that \mathcal{I} is a closed nil and hence nilpotent ideal, see [3]. Since \mathcal{A} is semi-prime, $\mathcal{I} = \{0\}$. It follows that $\mathcal{S}(\delta) = \{0\}$.

Corollary 3.9. If D is a derivation on a Banach algebra \mathcal{A} such that D^2 is continuous, then $\mathcal{S}(D)$ is nilpotent.

Proof. When D is a derivation D^2 is a D-double derivation and S(D) is a closed nil and hence nilpotent ideal.

Acknowledgement. The authors would like to thank the referee for valuable comments and suggestions.

References

- 1. H.G. Dales, Banach Algebras and Aautomatic Continuity, Clarendon Press, Oxford, 2000.
- H.G. Dales, and A.R. Villena, Continuity of derivations, intertwining maps, and cocycles from Banach algebras, J. Lond. Math. Soc. (2) 63 (2001), 215–225.
- 3. S. Grabiner, The nilpotency of nil Banach algebras, Proc. Amer. Math. Soc. 21 (1969) 510.
- J.T. Hartwig, D. Larsson and S.D. Silvestrov, Deformations of Lie algebras using σderivations, J. Algebra 295 (2006), 314–361.

- B.E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073.
- M. Mirzavaziri and M.S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (2006), 65–78.
- M. Mirzavaziri, E. Omidvar Tehrani, δ-double derivations on C^{*}-algebras, Bull. Iranian Math. Soc. 35 (2009), 147–154.
- M.P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435–460.

 1 Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

E-mail address: hejazian@um.ac.ir

² Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;

TUSI MATHEMATICAL RESEARCH GROUP (TMRG), MASHHAD, IRAN.

E-mail address: hmahdavianrad@gmail.com

³ DEPARTMENT OF PURE MATHEMATICS, CENTER OF EXCELLENCE IN ANALYSIS ON AL-GEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P. O. BOX 1159, MASHHAD 91775, IRAN.

E-mail address: mirzavaziri@math.um.ac.ir