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ON POINTWISE INVERSION OF THE FOURIER TRANSFORM
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Abstract. Using a Riemann-Lebesgue lemma for the Fourier transform over
the class of bounded variation functions that vanish at infinity, we prove the
Dirichlet–Jordan theorem for functions on this class. Our proof is in the
Henstock–Kurzweil integral context and is different to that of Riesz-Livingston
[Amer. Math. Monthly 62 (1955), 434–437]. As consequence, we obtain the
Dirichlet–Jordan theorem for functions in the intersection of the spaces of
bounded variation functions and of Henstock–Kurzweil integrable functions.
In this intersection there exist functions in L2(R)\L(R).

1. Introduction

It is known that if f : R → R is a function such that for s ∈ R the product
f(t)e−ist is integrable, in some sense, then its Fourier transform in s is defined as

f̂(s) =

∫ ∞

−∞
f(t)e−istdt. (1.1)

In the space of Lebesgue integrable functions, denoted by L (R) , we have that
f is integrable if and only if its Fourier tranform exists for each s ∈ R. However,
this situation is not true for functions that are not in L (R). For example, the
function f : R → R defined as f(x) = sin x/x for x 6= 0 and 1 for x = 0, does not
belong to L(R), it is improper Lebesgue integrable and its Fourier transform, as
(1.1), does not exist in s = 1.

A fundamental problem for the Fourier transform is its pointwise inversion,
which means recovering the function at given points from its Fourier transform.
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The Dirichlet-Jordan theorem in L (R) solves the pointwise inversion for functions
in BV (R), the space of bounded variation functions on R. This theorem tells us
that if f ∈ L(R) ∩BV (R) then, for each x ∈ R,

lim
M→∞

1

2π

M∫
−M

eixsf̂(s)ds =
1

2
{f(x + 0) + f(x− 0)}.

In [4], M. Riesz and A. E. Livingston proved the following version of the pre-
vious theorem when f is of bounded variation but not necessarily Lebesgue inte-
grable: Suppose that f ∈ BV (R) and lim|t|→∞ f(t) = 0 then, for each x ∈ R,

lim
M→∞
ε→0

1

2π

∫
ε<|s|<M

eixs

∫ ∞

−∞
f(t)e−istdt ds =

1

2
{f(x + 0) + f(x− 0)}.

The class of functions in BV (R) that vanish at infinity (its limit is zero at infinity)
is represented as BV0(R).

In this paper we make a proof of the Dirichlet-Jordan theorem on BV0(R)
in the Henstock-Kurzweil integral context, which is different to that of Riesz-
Livingston. We first prove that if f is in BV0(R) then its Fourier transform exists
for each s ∈ R\{0}. We prove a Riemann-Lebesgue lemma over BV0(R) and we
employ it for prove our main result. The validity of this lemma is interesting
because, in [5], E. Talvila proved that, in general, the Riemann-Lebesgue lemma
is not valid in the space of Henstock-Kurzeil integrable functions on R, denoted
HK(R). The Dirichlet-Jordan theorem on L (R)∩BV (R) and HK(R)∩BV (R)
are consequences of our main theorem.

In the following section we will give the basic notions about the Henstock-
Kurzweil integral and the bounded variation functions. We will explain our main
results in section 3.

2. Preliminaries on the Henstock-Kurzweil integral

The Henstock-Kurzweil integral was defined in the mid-twentieth century by
Jaroslav Kurzweil and Ralph Henstock. Both mathematicians developed their
integrals independently and it was not until later that these were proven to be
equal. This integral is also equivalent to Denjoy-Perron integral, but its construc-
tion follows the same pattern as the construction of the Riemann integral. More-
over, all Riemann and Lebesgue integrable functions and those that are improper
Riemann or Lebesgue integrable, over R, are Henstock-Kurzweil integrable. The
basic notions of this integral are presented below.

Let I ⊂ R a closed interval, finite or infinite. A partition P of I is a increasing
finite collection of points {t1, t2, ..., tn} ⊂ I such that if I = [a, b], a, b ∈ R, then
t0 = a and tn = b; if I = [a,∞), t0 = a; and if I = (−∞, b] then tn = b.

Suppose that I is a finite closed interval in R. A tagged partition of I is a
partition P of I such that for each subinterval Ii = [ti−1, ti] there is assigned
a point si ∈ Ii, which is called a tag of Ii. With this concept we define the
Henstock-Kurzweil integral on finite intervals in R.
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Definition 2.1. The function f : [a, b] → R is Henstock-Kurzweil integrable if
there exists H ∈ R which satisfies the following: for each ε > 0 exists a function
γε : [a, b] → (0,∞) such that if P = {( [ti−1, ti], si)}n

i=1 is a tagged partition such
that

[ti−1, ti] ⊂ [si − γε(si), si + γε(si) ] for i = 1, 2, ..., n., (2.1)

then

|Σn
i=1f(si)(si − si−1)−H| < ε.

H should be the integral of f over [a, b] and it should be denoted as

H =

∫ b

a

f or

∫ b

a

fdt

A tagged partition that satisfies (2.1) is called γε−fine.

The definition process for the Henstock-Kurzweil integral for functions over
infinite intervals is the following.

Definition 2.2. Given a function γ : [a,∞] → (0,∞), we will say that the tagged
partition P = {( [ti−1, ti], si)}n+1

i=1 is γ−fine if:

(a) t0 = a, tn+1 = ∞.
(b) [ti−1, ti] ⊂ [si − γε(si), si + γε(si) ] for i = 1, 2, ..., n.
(c) [tn,∞] ⊂ [1/γ(∞),∞].

If f is defined over an interval [a,∞), we may condition it to f(∞) = 0, this
allows us redefine to f over [a,∞]. Thus we have the following definition for
functions defined on [a,∞].

Definition 2.3. The function f : [a,∞] → R will be Henstock-Kurzweil in-
tegrable if it satisfies the Definition 2.1, but the partition P must be γε−fine
according to Definition 2.2.

For functions defined over intervals [−∞, a] and [−∞, +∞] we make similar
considerations. We denote as HK(I) the vector space of Henstock-Kurzweil in-
tegrable functions on I.

Suppose that I ⊂ R is a closed interval, finite or infinite.

Definition 2.4. A function f : I → R is of bounded variation over I if exists a
M > 0 such that

n∑
i=1

|f(ti)− f(ti−1)| < M,

for all finite partition P of I.

Definition 2.5. If f is a function of bounded variation, its total variation over
I is defined as

Vf (I) = sup

{
n∑

i=1

|f(ti)− f(ti−1)| : P is a partition of I

}
.
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For infinite intervals, the above definition can be reformulated equivalently as
follows: f is of bounded variation on I = [a,∞) if there exists N > 0 such that

Vf ([a, t]) ≤ N

for all t ≥ a. The total variation of f on I should be equal to

Vf ([a,∞)) = sup {Vf ([a, t] ) : a ≤ t} (2.2)

For I = (−∞, b] the equivalence is analogous. If I = R, the total variation should
be

Vf (R) = sup {Vf ([t, s] ) : t, s ∈ R, s < t} (2.3)

Since Vf ([a, t]) is increasing on [a,∞) and Vf ([t, b]) is decreasing on (−∞, b],
the expressions in (2.2) and (2.3) enables us to see that:

Vf ([a,∞)) = lim
t→∞

Vf ([a, t] ),

Vf ((−∞, b] = lim
t→−∞

Vf ([t, b] )

and

Vf (R ) = lim
t→−∞
s→∞

Vf ([t, s] ).

The space of bounded variation functions over I will be denoted as BV (I).
Some properties of BV (I) are the following:

• BV (I) is a vector space.
• f ∈ BV (I), if and only if, there exist f1 and f2 which are increasing

bounded functions such that f = f1 − f2.
• If I = [a,∞), then limt→∞ f(t) exists. For cases (−∞, b] and R we have

similar results. A particular case is when f is in the class BV0(I), when
lim|t|→∞ f(t) = 0.

Remark 2.6. Since if I = R, then lim|t|→∞ f(t) exists. Therefore, each
f ∈ BV (R) can be extended uniquely in a continuous way to a func-

tion f̃ ∈ BV (R). In this sense, we have that BV (R) ⊂ BV (R). On
the other hand, since if f = g a.e., with respect to Lebesgue measure,
their Henstock-Kurzweil integrals are the same, then there is not essential
difference between HK(R) and HK(R).

If I is a finite interval, we know that BV (I) ⊂ L(I) ⊂ HK(I). However, if I
is an infinite interval, we have the following inclusion relations, see [3].

(a) L(I) ( HK(I)
(b) BV0(I) * L(I) and BV0(I) * HK(I)
(c) BV (I) ∩HK(I) * L(I) and L(I) * BV (I) ∩HK(I).
(d) BV (I) ∩HK(I) ⊂ BV0(I).
(e) If f ∈ BV (I), then f, f ′ ∈ HKloc(I).

Now we state some of the fundamental theorems about the Henstock-Kurzweil
integral that we will use frequently, [2, Theorems 10.12, 16.7 and 16.10].
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Multiplier Theorem. Let [a, b] be a finite interval. If ϕ ∈ HK([a, b]),
f ∈ BV ([a, b]) and Φ(x) =

∫ x

a
ϕ(t), for x ∈ [a, b], then ϕf ∈ HK([a, b]) and∫ b

a

ϕf = Φ(b)f(b)−
∫ b

a

Φdf. (2.4)

If a ∈ R and b = ∞, then ϕf ∈ HK([a,∞]) and (2.4) has the following form∫ ∞

a

ϕf = lim
b→∞

[
Φ(b)f(b)−

∫ b

a

Φdf

]
. (2.5)

The integrals on the right are Riemann-Stieljes integrals. For the case (2.5)

limb→∞
∫ b

a
Φdf =

∫∞
a

Φdf will be the improper Riemann-Stieljes integral. Anal-
ogously, if the integration is on the intervals [−∞, b] or [−∞,∞] we take the
respective limits in (2.5). This theorem is a version of the Integration by Parts
theorem, which is also valid in HK(I).

Hake’s Theorem. ϕ ∈ HK([a,∞]) if and only if for each b, ε such that

b > a, b− a > ε > 0, it follows that ϕ ∈ HK([a + ε, b]) and lim
ε→0, b→∞

∫ b

a+ε
ϕ(t)dt

exists. In this case, this limit shall be
∫∞

a
ϕ(t)dt.

Similar results are valid for the cases [−∞,∞] and [−∞, a].

Chartier-Dirichlet Test. Let ϕ, f : [a,∞] → R and suppose that: (a)

ϕ ∈ HK ([a, c]) for each c ≥ a, and Φ (t) =
∫ t

a
ϕdu is bounded on [a,∞) ; and

(b) f is monotonous with limt→∞ f (t) = 0. Then ϕf ∈ HK ([a,∞]) .

3. Main results

From the Multiplier theorem, Hake’s theorem and the Chartier-Dirichlet test,
the following lemma is deduced.

Lemma 3.1. Suppose that f ∈ BV0([a,∞]), ϕ ∈ HK([a, b]) for every b > a, and

Φ(t) =
∫ t

a
ϕdu is bounded on [a,∞). Then ϕf ∈ HK([a, b]),∫ ∞

a

ϕfdt = −
∫ ∞

a

Φ(t)df(t)

and ∣∣∣∣∫ ∞

a

ϕfdt

∣∣∣∣ ≤ sup
a<t

|Φ(t)|Vf ([a,∞]).

Similar results are valid for the cases [−∞,∞] and [−∞, a].

The function f : R → R defined by

f(t) =

{
1 for t ∈ (−1, 1),
1√
|t|

for |t| ∈ [1, ∞)

is in BV0( R) but f̂(0) does not exist. Now, observe for Proposition 2,b) in [5]

that if f ∈ BV0( R) then f̂(s) exists for each s ∈ R r {0}.
We have the following lemma which is a generalization of some results obtained
in [3].
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Lemma 3.2 (Riemann-Lebesgue lemma). If f ∈ BV0(R), then the Fourier trans-

form f̂ (s) exists for all s ∈ R\{0}, and has the following properties:

(i) f̂ : R → C is continuous at R\{0}.
(ii) lim

|s|→∞
f̂(s) = 0.

Proof. Above, we have mentioned the existence of f̂ on R r {0}. Let f̂+(s) =∫∞
0

f(t)e−istdt. According to Lemma 3.1, we have

f̂+(s) = −
∫ ∞

0

(
e−ist − 1

−is

)
df(t). (3.1)

Let β > 0 fixed. For each t ∈ [0,∞], the function s  (e−ist − 1)/(−is) is
continuous on [β,∞) and ∣∣∣∣e−ist − 1

−is

∣∣∣∣ ≤ 2

β
.

Applying the Lebesgue Dominate Convergence theorem on (3.1), we deduce that

f̂+ is continuous on [β,∞) for each β > 0. Therefore f̂+ is continuous on (0,∞).
Using a similar argument, we prove the case when (−∞, 0).

Also by (3.1), it holds ∣∣∣f̂+(s)
∣∣∣ ≤ 2

|s|
Vf ([a,∞]),

therefore it follows that lim|s|→∞ f̂+(s) = 0.

Defining f̂−(s) =
∫ 0

−∞ f(t)e−istdt and following a similar argument over [−∞, 0]
we obtain (i) and (ii). �

If g, h ∈ BV ([a,∞]) and Q1, Q2 are upper bounds of g and h, respectively,
then for every b > a : Vgh([a, b]) ≤ Q2Vg([a,∞]) + Q1Vh([a,∞]). It follows that
gh ∈ BV ([a,∞]). Using this fact and Lemma 3.2 we formulated the following
corollary.

Corollary 3.3. Suppose that δ, α > 0 and f ∈ BV (R), then

lim
M→∞

∞∫
δ

f(t)

tα
e−iMtdt = 0.

The function defined in R by sin t/t, for t 6= 0, and 1 for t = 0, belongs to
HK(R). It is known that from the previous function the Sine Integral is defined
as

Si(x) =
2

π

∫ x

0

sin t

t
dt,

which has the properties:

(1) Si(0) = 0, limx→∞ Si(x) = 1 and
(2) Si(x) ≤ Si(π) for all x ∈ [0,∞].

We use the Sine Integral function in the proof of the following lemma.
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Lemma 3.4. Let δ > 0. If f ∈ BV0(R), then

lim
ε→0

∫ ∞

δ

f(t)
sin εt

t
dt = 0.

Proof. By Lemma 3.1 we have∣∣∣∣∫ ∞

δ

sin εt

t
f(t)dt

∣∣∣∣ ≤ ∣∣∣∣∫ ∞

δ

(∫ tε

δε

sin u

u
du

)
df(t)

∣∣∣∣ . (3.2)

Observe that for each t ∈ [a,∞): limε→0

∫ tε

δε
sin u

u
du = 0 and

∣∣∣∫ tε

δε
sin u

u
du

∣∣∣ ≤ πSi(π)

for all ε > 0. Then, applying the Lebesgue Dominated Convergence theorem to
the integral on the right in (3.2), we obtain the result. �

Lemma 3.5. Suppose that f ∈ BV0(R), and α, β ∈ R are such that 0 < α < β
or α < β < 0. For all s ∈ [α, β] we have

lim
a→−∞
b→∞

∫ β

α

eixs

∫ b

a

f(t)e−istdtds =

∫ β

α

eixs

∫ ∞

−∞
f(t)e−istdtds. (3.3)

Proof. Suppose that 0 < α < β. Let f̂0b(s) =
∫ b

0
f(t)e−istdt and f̂0(s) =∫∞

0
f(t)e−istdt, which are continuous on R r {0}. Therefore the integrals in (3.3)

exist. We know that there is R > 0 such that |f(t)| ≤ R for all t ∈ R, and that
for any b > 0 : Vf ([0, b]) ≤ Vf ([0,∞)). For each s ∈ [α, β] the Multiplier theorem
implies ∣∣∣f̂0b(s)

∣∣∣ ≤ 2

α
{R + Vf ([0,∞))} = N.

This inequality implies that for any b > 0 and all s ∈ [α, β] :
∣∣∣eixsf̂0b(s)

∣∣∣ ≤ N,

for each x ∈ R. Applying the theorem of Hake we have: limb→∞ f̂0b(s) = f̂0(s).
Then, by the Lebesgue Dominated Convergence theorem,

lim
b→∞

∫ β

α

eixsf̂0b(s)ds =

∫ β

α

eixsf̂0(s)ds.

To obtain the result, we follow a similar process over the interval [a, 0] leading
a to minus infinity. �

To conclude this section, we state the following lemma [1, Theorem 11.8].

Lemma 3.6. Let δ > 0. If g is of bounded variation on [0, δ], then

lim
M→∞

2

π

∫ δ

0

g(t)
sin Mt

t
dt = g(0+)
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3.1. Main theorem. We do not know if eixsf̂ is Henstock-Kurzweil integrable
around 0, so our main theorem is as follows:

Theorem 3.7. If f ∈ BV0(R), then, for each x ∈ R,

lim
M→∞
ε→0

1

2π

∫
ε<|s|<M

eixsf̂(s)ds =
1

2
{f(x + 0) + f(x− 0)}. (3.4)

Proof. Suppose that δ > 0 and let g(x, t) = f(x−t)+f(x+t). By Lemma 3.5 and
by Fubini’s theorem for the Lebesgue integral [1, Theorem 15.7], at [−M,−ε] ×
[a, b] and [ε, M ]× [a, b], and we have∫

ε<|s|<M

eixs

∫ ∞

−∞
f(t)e−istdtds = lim

a→−∞
b→∞

(∫ −ε

−M

+

∫ M

ε

)
eixs

∫ b

a

f(t)e−istdtds

= lim
a→−∞
b→∞

∫ b

a

f(t)

(∫ −ε

−M

+

∫ M

ε

)
eis(x−t)dsdt

=

∫ ∞

−∞
f(t)

(∫ −ε

−M

+

∫ M

ε

)
eis(x−t)dsdt

= 2

∫ ∞

0

g(x, t)

t
(sin M t− sin εt)dt

= 2

∫ ∞

δ

g(x, t)

t
(sin M t− sin εt)dt

+2

∫ δ

0

g(x, t)

t
(sin M t− sin εt)dt.

In [δ,∞], by Corollary 3.3 and Lemma 3.4, we obtain

lim
M→∞,ε→0

∫ ∞

δ

g(x, t)

t
(sin M t− sin εt)dt = 0. (3.5)

In [0, δ], the Lebesgue Dominate Convergence theorem implies that

lim
ε→0

∫ δ

0

g(x, t)

t
sin εtdt = 0. (3.6)

Now, by Lemma 3.6,

lim
M→∞

∫ δ

0

g(x, t)
sin Mt

t
dt = g(x, 0+) =

π

2
[f(x− 0) + f(x + 0)] .

Combining (3.5), (3.6) and the above expression we then conclude the proof. �

Remark 3.8. It is clear that the classic theorem of Dirichlet-Jordan on L(R) is a
particular case of Theorem 3.7. Since HK(R) ∩BV (R) ⊂ BV0(R), from Lemma
3.2 and Theorem 3.7 we get the following items. The first of them contains some
results of [3].

• (Riemann-Lebesgue lemma) If f ∈ HK(R) ∩ BV (R), then the Fourier

transform f̂(s) exists for each s ∈ R and f̂ ∈ C0(R\ {0}).
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• For every f ∈ HK(R) ∩ BV (R) and each x ∈ R, the expression (3.4)
holds.

In ([3]) it is proved that if h ∈ BV ([−π1/α, π1/α]), then, for 1 > α > 0, the
function f : R → R defined by

f(t) =


h(t) if t ∈ (−π1/α, π1/α),

sin |t|α

|t|
if t ∈ (−∞, −π1/α] ∪ [π1/α, ∞)

belongs to {HK(R)∩BV (R)} \L( R). By the Multiplier theorem it follows that
HK(R)∩BV (R) ⊂ L2(R), so the above function is in {BV0(R)∩L2(R)} \L( R).
Therefore we have the following corollary.

Corollary 3.9. There exist functions in L2(R) \ L( R) such that their Fourier
transforms exist as in (1.1) and, for each x ∈ R, the expression (3.4) is true.
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