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Abstract. We apply a new version of multiscale convergence named very
weak multiscale convergence to find possible frequencies of oscillation in an
unknown coefficient of a partial differential equation from its solution. We also
use this notion to study homogenization of a certain linear parabolic problem
with multiple spatial and temporal scales.

1. Introduction

Let us consider a piece Ω ⊂ RN of a material with a heterogeneous structure.
The classical problem of homogenization deals with finding a corresponding ho-
mogeneous material with a similar over all response as the composite in question.
This is well studied if the material is periodically arranged with heterogeneities
on one or several scale levels. The standard example is the homogenization of the
stationary heat equation

−∇ ·
(
a
(x

ε

)
∇uε (x)

)
= f(x) in Ω,

uε (x) = 0 on ∂Ω,

Date: Received: 23 October 2010; Revised: 18 February 2011; Accepted: 12 April 2011.
∗ Corresponding author.
2010 Mathematics Subject Classification. Primary 35B27; Secondary 35K10, 46B50.
Key words and phrases. Homogenization, parabolic, two-scale convergence, multiscale con-

vergence, very weak multiscale convergence.
84



DETECTION OF SCALES 85

where a is periodic with respect to a unit cube Y ⊂ RN . Homogenization means
that we study the process when ε tends to zero to find a limit equation

−∇ · (b∇u (x)) = f(x) in Ω, (1.1)

u (x) = 0 on ∂Ω

such that uε approaches u. The difficulty in this procedure consists in finding b.
For appropriate choices of test functions in the weak form of (1.1) it is possible
to identify

b∇u (x) =

∫
Y

a (y) (∇u (x) +∇yu1 (x, y)) dy,

where u1 is found by means of a so-called local problem defined on Y . The
approach in mathematical homogenization is thus to find the homogenized matrix
b when the microstructure is known. For some clear and informative texts on
homogenization theory we suggest e.g. [4], [1], [10] and [12].

This paper also addresses the problem from a different angle. Applying a cer-
tain type of weak convergence, very weak two-scale convergence [5], to {ε−1uε}
we obtain u1 as a limit for a certain choice of test functions, but only if their
frequency of oscillation is in time with those of uε and hence of the governing
coefficient a(x

ε
). This can be extended to several scales ε1, ..., εn of heterogene-

ity which are detected one at the time by studying the corresponding limit for{
ε−1

k uε
}

, k = 1, ..., n by means of very weak multiscale convergence (see again
[5]), which will provide us with a non-zero limit when there are heterogeneities
of the frequency in question there to discover. Finally, in the last section of this
paper, we return to the origin of very weak multiscale convergence, the homog-
enization of parabolic problems with fast oscillations in both space and time.
We demonstrate how minor modifications of very weak multiscale convergence
enables us to homogenize quite complicated parabolic problems with multiple
spatial and temporal scales.

Homogenization results for linear parabolic problems with fast oscillations in
both spatial and temporal scales applying generalizations of two-scale convergence
are found in e.g. [8] and have been extended to nonlinear cases in for example [13],
[6] and [21]. Such techniques for problems with three time scales are developed
for linear parabolic homogenization problems in [7] and further extended to the
nonlinear non-monotone case in [20].

2. Multiscale convergence

In [15] a new technique for the homogenization of partial differential equations
was introduced by Nguetseng. This approach, which has become known under
the name of two-scale convergence, was extended to multiple scales by Allaire and
Briane in [2]. We define this more general concept below. Two-scale convergence
means that there is only one scale of rapid oscillation, see also [1], [4], [9], [12]
and [14].

We denote yn = (y1, ..., yn), dyn = dy1...dyn, Yk = Y = [0, 1]N , Y n = Y1×...×Yn

and let εk(ε), k = 1, ..., n be functions such that εk(ε) → 0 when ε → 0. In
a similar way we write sm = (s1, ..., sm), dsm = ds1...dsm, Sk = S = (0, 1),
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Sm = S1×...×Sm, Yn,m = Y n×Sm and let ε′k(ε), k = 1, ...,m be the corresponding
temporal scales. The rest of the notations are standard for homogenization theory.

Definition 2.1. We say that a sequence {uε} in L2 (Ω) (n + 1)-scale converges
to a function u0 ∈ L2 (Ω× Y n) if∫

Ω

uε(x)v

(
x,

x

ε1

,
x

ε2

, ...,
x

εn

)
dx →

∫
Ω

∫
Y n

u0 (x, yn) v (x, yn) dyndx

for any v ∈ L2 (Ω; C] (Y n)). This is denoted by

uε (x)
n+1
⇀ u0 (x, yn) .

To proceed we need to distinguish some types of relationships between the
scales. If

lim
ε→0

εk+1

εk

= 0

we say that the scales are separated. Sometimes a stronger assumption is needed.
When

lim
ε→0

1

εk

(
εk+1

εk

)m

= 0

for some positive integer m the scales are called well-separated. The compactness
result below is found in Theorem 2.4 in [2].

Theorem 2.2. If {uε} is bounded in L2 (Ω) and the scales are separated there
exists a subsequence such that

uε (x)
n+1
⇀ u0 (x, yn) ,

where u0 ∈ L2 (Ω× Y n) .

A characterization of multiscale limits for gradients of bounded sequences in
H1 (Ω) can be found in Theorem 2.6 in [2].

Theorem 2.3. Let {uε} be a bounded sequence in H1 (Ω) and assume that the
scales εk (ε), k = 1, ..., n, are separated. Then there exists a subsequence such that

uε (x) ⇀ u(x) in H1 (Ω) ,

uε (x)
n+1
⇀ u (x)

and
∇uε (x)

n+1
⇀ ∇u (x) +∇y1u1 (x, y1) + ... +∇ynun (x, yn) ,

where u ∈ H1 (Ω), u1 ∈ L2(Ω; H1
] (Y1)/R) and uk ∈ L2(Ω × Y k−1; H1

] (Yk)/R) for
k = 2, ..., n.

Remark 2.4. In [11] reiterated homogenization of elliptic problems is treated un-
der less restrictive assumptions which do not have to include periodicity but
contain periodic homogenization as a special case. The authors use a technique
named Σ-convergence, which is probably the most general concept originating
from two-scale convergence of today. See also e.g. [18] , [16] or [21], where para-
bolic problems are studied. Another example where homogenization is performed
under conditions different from the usual assumptions of periodicity is stochastic
homogenization, see e.g. [3] or [17].
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3. Very weak multiscale convergence

For the method of detection of scales developed in the next section and the
homogenization procedure in the last section we need a different type of multiscale
convergence, where a more restrictive class of test functions is used. Let {uε} be
a sequence of functions such that

uε (x) ⇀ u (x) in H1
0 (Ω) .

Then, see [8], there exists a subsequence such that∫
Ω

uε(x)− u(x)

ε
v(x)ϕ

(x

ε

)
dx →

∫
Ω

∫
Y

u1(x, y)v(x)ϕ (y) dydx

for any v ∈ D (Ω) , ϕ ∈ C∞
] (Y ) /R. In this setting it is easy to identify assump-

tions such that {ε−1 (uε − u)} is bounded in L2 (Ω) when {uε} is a sequence of
solutions to the homogenization problem (1.1), see [10], and hence also a usual
two-scale limit exists.

A similar result, where the term u is omitted, is found in [16] , where it is
proven that any bounded sequence {uε} in H1

0 (Ω) contains a subsequence such
that ∫

Ω

uε(x)

ε
v(x)ϕ

(x

ε

)
dx →

∫
Ω

∫
Y

u1(x, y)v(x)ϕ (y) dydx (3.1)

for the same test functions as above, see Remarks 3.3 and 3.4. Here {ε−1uε} is
not bounded in L2 (Ω) unless {uε} passes to zero in a quite powerful way. The
corresponding result for Σ-convergence, from which (3.1) can be concluded, is
found in [18].

We are now ready to define the multiscale equivalent of the concept discussed
above.

Definition 3.1. Let {gε} be a sequence in L1 (Ω) and let g0 ∈ L1 (Ω× Y n). We
say that {gε} (n + 1)-scale converges very weakly to g0 if∫

Ω

gε(x)v

(
x,

x

ε1

, ...,
x

εn−1

)
ϕ

(
x

εn

)
dx →

∫
Ω

∫
Yn

g0(x, yn)v(x, yn−1)ϕ (yn) dyndx

for any v ∈ D(Ω; C∞
] (Y n−1)) and ϕ ∈ C∞

] (Yn) /R. We write

gε (x)
n+1
⇀
vw

g0(x, yn).

A unique representation of the limit is provided by choosing g0 such that∫
Yn

g0 (x, yn) dyn = 0.

Below we have a compactness result for very weak multiscale convergence.

Theorem 3.2. Let {uε} be a bounded sequence in H1
0 (Ω) and the scales εk (ε),

k = 1, ..., n well-separated. Then there exists a subsequence such that

uε (x)

εk

k+1
⇀
vw

uk

(
x, yk

)
,
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where u1 ∈ L2(Ω; H1
] (Y1)/R) and uk ∈ L2(Ω × Y k−1; H1

] (Yk)/R) for k = 2, ..., n
are the same as in Theorem 2.3.

Proof. See Theorem 4 in [5]. �

Remark 3.3. The compactness result in Theorem 3.2 makes it possible to detect
oscillations, whose amplitude goes to zero when ε does and catch them in a limit
that is not disturbed by the corresponding upscaling of the macro-level trend of
the functions. Moreover, it provides us with a type of multiscale compactness
for sequences which are usually not bounded in L2 (Ω). The crucial point here
is the choice of test functions. For a more restrictive choice of test functions the
result in Theorem 3.2 holds also when the scales are separated but not necessarily
well-separated.

Remark 3.4. Originally, see [8] and [18], the concept of very weak two-scale con-
vergence was developed to treat homogenization of parabolic partial differential
equations with oscillations in both spatial and temporal scales and hence the
assumptions on {uε} are adapted to this context in these papers. A slight modifi-
cation of Theorem 3.2 will be used in the homogenization procedure for parabolic
equations with multiple spatial and temporal scales developed in Section 5. See
also [6], [7], [19] , [20] and [21] for some recent results on the applications of
related approaches to parabolic homogenization.

Remark 3.5. Y does not have to have the volume |Y | = 1 or even to be a cube.
The unit cube is however the usual standard for homogenization even though
other choices of repetitive units can be used without major changes in the ap-
proach. This is also the case for the investigations in this paper. See e.g. [10]
or [4]. The techniques are basically the same for N = 1 and N > 1 even though
some simplifications are possible in the one-dimensional case.

4. Detection of scales of heterogeneity

Consider the multiscale homogenization problem

−∇ · (aε(x)∇uε (x)) = f(x) in Ω, (4.1)

uε (x) = 0 on ∂Ω.

Contrary to how we usually treat homogenization problems we aim at identifying
properties of the coefficient from the answering solution to (4.1). Our ambition
is to find ways to use the solution uε to (4.1) to analyze which frequencies of
oscillation that appear in the coefficient. This could for example mean that uε is
obtained from measurements and not necessarily by solving (4.1). We introduce
the well-separated scales

ε1 (ε) = ε, ε2 (ε) = ε
3
2 , ε3 (ε) = ε

5
3 , ε4 (ε) = ε2

and compute the results for very weak multiscale convergence of
{
ε−1

k uε
}

for these
scales and suitable choices of test functions.

In the examples below we let Ω = (0, 2) and ε = 0.05 and study uε generated
by a certain choice of aε given in (4.2). We will see that very weak multiscale
convergence gives us significantly non-zero values when we hit the frequencies of
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oscillation which are found in the coefficient aε and hence indicates existing scales
of heterogeneity. The micro-oscillations of uε are usually of vanishing amplitude.
This is however compensated by the scaling used in Theorem 3.2 for very weak
multiscale convergence.

Up to the authors’ knowledge the technique introduced below is new and could
mean the first step in a new direction in the study of heterogeneous media.

For k = 1 we choose

v(x) = (1− x) (1− cos πx) ,

ϕ(y1) = sin 2πy1

and obtain for ε1 = ε = 0.05

I1 (ε) =

∫
Ω

uε (x)

ε1

v(x)ϕ

(
x

ε1

)
dx ≈ 0.

From Theorem 3.2 we know that when ε → 0

I1 (ε) →
∫

Ω

∫
Y1

u1(x, y1)v(x)ϕ (y1) dy1dx.

Seemingly, there are no oscillations of the chosen frequency there to detect.

Continuing with k = 2 and choosing

v(x, y1) = (1− x) (1− cos πx) (2 + sin 2πy1) ,

ϕ(y2) = cos 2πy2

we find that for ε1 = ε = 0.05 and ε2 = (0.05)
3
2 ≈ 0.0112

I2 (ε) =

∫
Ω

uε (x)

ε2

v

(
x,

x

ε1

)
ϕ

(
x

ε2

)
dx ≈ 0.0416.

Since

I2 (ε) →
∫

Ω

∫
Y 2

u2(x, y2)v(x, y1)ϕ (y2) dy2dx

when ε → 0 we have found signs of an existing frequency of oscillation.

Next we study k = 3 for

v(x, y2) = (1− x) (1− cos πx) (2 + sin 2πy1)
(
2 + cos2 2πy2

)
,

ϕ(y3) = sin 2πy3

and observe that for the scale values ε1 = ε = 0.05, ε2 = (0.05)
3
2 ≈ 0.0112 and

ε3 = (0.05)
5
3 ≈ 0.0068

I3 (ε) =

∫
Ω

uε (x)

ε3

v

(
x,

x

ε1

,
x

ε2

)
ϕ

(
x

ε3

)
dx ≈ 0.1039.

In the same way as above we note that

I3 (ε) →
∫

Ω

∫
Y 3

u3(x, y3)v(x, y2)ϕ (y3) dy3dx
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for ε → 0 and hence there seems to be a scale of heterogeneity corresponding to
the frequency represented by ε3.

Finally, we investigate k = 4 and choose

v(x, y3) = (1− x) (1− cos πx) (2 + sin 2πy1)
(
2 + cos2 2πy2

) (
2 + sin3 2πy3

)
,

ϕ(y4) = cos 2πy4.

When ε1 = ε = 0.05, ε2 = (0.05)
3
2 ≈ 0.0112, ε3 = (0.05)

5
3 ≈ 0.0068 and ε4 =

(0.05)2 ≈ 0.0025 we obtain

I4 (ε) =

∫
Ω

uε (x)

ε4

v

(
x,

x

ε1

,
x

ε2

,
x

ε3

)
ϕ

(
x

ε4

)
dx ≈ 0.

Because

I4 (ε) →
∫

Ω

∫
Y 4

u4(x, y4)v
(
x, y3

)
ϕ (y4) dy4dx

when ε → 0 this indicates that u4 = 0 and we conclude that there is no indication
of heterogeneities for this scale.

Our numerical experiment leads us to believe that the coefficient is of the type

aε(x) = a
( x

0.0112
,

x

0.0068

)
with a periodic with respect to Y 2. Revealing the “secret” coefficient used in our
computations above we see that

aε(x) =
1

3 + sin
(
2π x

ε
3
2

)
+ cos

(
2π x

ε
5
3

) (4.2)

and hence what we have seen above is the stage in the homogenization for this
coefficient corresponding to ε = 0.05.

Remark 4.1. The results for I1(ε) and I4(ε) are −6.2 · 10−7 and −7.9 · 10−6 re-
spectively. Some care has to be taken while choosing the functions to be used
in the computations to avoid to obtain values very close to zero also when the
chosen speed of oscillation coincides with a frequency that appears in the prob-
lem to be studied. A more careful study of truly unknown scales of heterogeneity
would be have to be based on a the use of a larger number of test functions to
be convincing.

Remark 4.2. Let us assume that uε is given from e.g. measurements and we are
looking for signs of an underlying Y -periodic structure with multiple scales. By
inspection we may first look for small oscillations of uε on a coarsest scale roughly
indicating a suitable value of ε1 (ε) = ε. Let ε run through such values until we
obtain significantly non-zero values of I1 (ε). In a similar way we look for a
finer scale and fine tune until we find clearly non-zero values of the corresponding
expression for this scale in I2 and so on. I1 above is an example of when the chosen
first micro-scale does not correspond to an existing scale of heterogeneity while the
second and third micro-scales introduced in I2 and I3 respectively do. The scale
ε1 (ε) is included in the computations of I2, I3 and I4 above just to illustrate that
a scale that does not correspond to any level of oscillation of uε will not disturb
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the procedure. Making these investigations for practical purposes we would have
chosen ε1 = ε = 0.0112 in I1 (ε) and the oscillations with period 0.05 would
appear neither in I1 nor in the following computations with successively larger
number of scales. Clearly, for a given uε the method discovers scales corresponding
to certain levels of heterogeneity represented by real numbers and hence the choice
of well-separated scales in our example defined by (4.2) is only formal. Note
that very weak multiscale convergence provides us not only with an indication
of existing scales of heterogeneity but also with the correctors u1, ..., un for these
scales.

Obviously, this approach helps us to identify the relationship between the fre-
quencies of oscillation that appear in the coefficient in (4.1). It does however not
in general provide us with the homogenized limit or the shape of the oscillations
of aε. To distinguish for which cases such a procedure could give an accurate
picture of the coefficient contains many open questions and will be attended to in
forthcoming studies. Let us first briefly outline how a simplest possible example
could be treated and then comment on some more complicated cases.

We study (4.1) in one dimension for

aε (x) = a
(x

ε

)
,

where a is Y -periodic and strictly positive. Let a solution to (4.1) be given and
scan over different small values of ε (see Remark 4.2) to find the appropriate
frequency of oscillation, i.e. when∫

Ω

∫
Y

u1 (x, y) v(x)v1 (y) dydx ≈
∫

Ω

uε (x)

ε
v(x)v1

(x

ε

)
dx 6= 0.

Standard numerical techniques can be applied to find u1. Since it is not difficult
to find a good approximation of d

dx
u a separation of variables

u1 (x, y) =
d

dx
u (x) · z(y)

provides us with z, the solution to the local problem

− d

dy

(
a(y)

(
1 +

d

dy
z(y)

))
= 0.

Once we know z, simple calculations leads to the result that

a (y) =
C

1 + d
dy

z(y)
. (4.3)

Introducing (4.3) with y = x
ε

in (4.1) we find the constant C, which is identical
to the homogenized limit b.

Adding more scales we arrive at more complicated situations such as the one
studied in the first part of this section. This means that the underlying equation
could be of the type

−∇ ·
(

a

(
x

ε1

, ...,
x

εn

)
∇uε (x)

)
= f(x) in Ω,

uε (x) = 0 on ∂Ω



92 L. FLODÉN, A. HOLMBOM, M. OLSSON LINDBERG, J. PERSSON

and the first step is then to find the scales of oscillation in the same way as
we already did once. The next, and technically more difficult, task would be
to find ways to trace the coefficient a(y1, ..., yn) from the correctors u1, ..., un.
Also to extend the problem from ordinary to partial differential equations will
require more advanced techniques and may necessitate supplementary conditions.
Moreover, non-zero very weak multiscale limits for

{
ε−1

k uε
}

may appear also for
structures that are not perfectly periodic. A future aim in this connection would
be to find an equivalent material with a periodic structure and a suitable number
of scales that mimics the properties of the original material as well as possible
on both macro and micro level. We will return to these questions in forthcoming
papers.

5. Parabolic homogenization

The origin of very weak multiscale convergence is found in [8], where homoge-
nization of parabolic equations is studied for different relations between the speed
of oscillation in the respective fast spatial and temporal scales. Below we show
how the generalization to multiple scales allows us to homogenize more compli-
cated problems with several spatial and temporal scales. The scales are chosen to
illustrate how the evolution version of very weak multiscale convergence can be
applied both to reveal certain resonance phenomena and the vanishing of tempo-
ral scales that are too fast to be in resonance with an appropriate spatial scale.
Without rapid temporal scales the homogenization procedure follows along the
same lines as for the elliptic case worked out in [2]. With rapid oscillations in time
there may appear negative exponents on ε in the weak formulations of (5.1) used
to identify the local problems which necessitates the use of very weak multiscale
convergence and hence the homogenization procedure is essentially different from
the corresponding elliptic case. We use the notation for evolution function spaces
found in e.g. Chapter 23 in [22].

We will investigate the parabolic problem

∂tu
ε(x, t)−∇·

(
a

(
x

ε
,

x

ε2
,

t

ε2
,

t

ε4
,

t

ε5

)
∇uε (x, t)

)
= f(x, t) in ΩT ,

uε (x, t) = 0 on ∂Ω×(0, T ), (5.1)

uε (x, 0) = g(x) in Ω,

where ΩT =Ω× (0, T ), f ∈L2 (ΩT ) and g∈L2 (Ω). Moreover, we assume that

(i): a ∈ L∞] (Y2,3)
N×N

(ii): a(y2, s3) ξ · ξ ≥ α |ξ|2 for all (y2, s3) ∈ R2N× R3, all ξ ∈ RN and some
α>0.

Under these structure conditions the problem (5.1) allows a unique solution
uε contained in W 1

2 (0, T ; H1
0 (Ω) , L2 (Ω)). Here W 1

2 (0, T ; H1
0 (Ω) , L2 (Ω)) is the

space of all functions in L2(0, T ; H1
0 (Ω)) such that the time derivative belongs to

L2(0, T ; H−1 (Ω)). Moreover, for some positive constant C

‖uε‖L∞(0,T ;L2(Ω)) < C
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and
‖uε‖W 1

2 (0,T ;H1
0 (Ω),L2(Ω)) < C.

The concept in Definition 2.1 can be extended to involve also rapid oscillations
in time. We define evolution multiscale convergence.

Definition 5.1. We say that a sequence {uε} in L2 (ΩT ) (n + 1, m + 1)-scale
converges to u0 ∈ L2 (ΩT × Yn,m) if∫

ΩT

uε(x, t)v

(
x, t,

x

ε1

, ...,
x

εn

,
t

ε′1
, ...,

t

ε′m

)
dxdt →∫

ΩT

∫
Yn,m

u0(x, t, yn, sm)v (x, t, yn, sm) dyndsmdxdt

for any v ∈ L2 (Ω; C] (Yn,m)). This is written

uε (x, t)
n+1,m+1

⇀ u0(x, t, yn, sm).

For {uε} bounded in W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω)) there is a characterization of
multiscale limits for gradients.

Theorem 5.2. Let {uε} be a bounded sequence in W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω)) and
chose the scales ε1 = ε, ε2 = ε2, ε′1 = ε2, ε′2 = ε4 and ε′3 = ε5. Then there exists a
subsequence such that

uε (x, t) → u (x, t) in L2(ΩT ),

uε (x, t) ⇀ u (x, t) in L2(0, T ; H1
0 (Ω)),

uε (x, t)
3,4
⇀ u (x, t)

and
∇uε (x, t)

3,4
⇀ ∇u (x, t) +∇y1u1

(
x, t, y1, s

3
)

+∇y2u2

(
x, t, y2, s3

)
,

where u ∈ W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω)), u1 ∈ L2(ΩT × S3; H1
] (Y1)/R) and

u2 ∈ L2(ΩT × Y1,3; H
1
] (Y2)/R).

In [6] a corresponding result is proven for the case with three spatial and two
temporal scales, and the theorem above can be proven in an analogous way. To
homogenize (5.1) we also need a generalization of very weak multiscale conver-
gence.

Definition 5.3. We say that {gε} in L1(ΩT ) (n + 1, m + 1)-scale converges very
weakly to g0 ∈ L1(ΩT × Yn,m) if∫

ΩT

gε(x, t)v

(
x,

x

ε1

, ...,
x

εn−1

)
c

(
t,

t

ε′1
, ...,

t

ε′m

)
ϕ

(
x

εn

)
dxdt →∫

ΩT

∫
Yn,m

g0(x, t, yn, sm)v(x, yn−1)c(t,sm)ϕ (yn) dyndsmdxdt

for any v ∈ D(Ω, C∞
] (Y n−1)), c ∈ D(0, T ; C∞

] (Sm)) and ϕ ∈ C∞
] (Yn) /R. We

write
gε (x, t)

n+1,m+1
⇀
vw

g0(x, t, yn, sm).
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We give the following theorem.

Theorem 5.4. Let {uε} be a bounded sequence in W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω)).

(i): Let the spatial scale be ε1(ε) = ε and the temporal scales ε′1(ε) = ε2,
ε′2(ε)= ε4 and ε′3(ε) = ε5. Then there exists a subsequence such that

uε(x, t)

ε

2,4
⇀
vw

u1(x, t, y1, s
3).

(ii): Let the spatial scales be ε1(ε) = ε and ε2(ε) = ε2 and the temporal scales
ε′1(ε) = ε2, ε′2(ε) = ε4 and ε′3(ε) = ε5. Then there exists a subsequence
such that

uε(x, t)

ε2

3,4
⇀
vw

u2(x, t, y2, s3).

Here u1 ∈ L2(ΩT ×S3; H1
] (Y1)/R) and u2 ∈ L2(ΩT ×Y1,3; H

1
] (Y2)/R) are the same

as in Theorem 5.2.

Proof. The proof is a straightforward adaptation of the proof given in [5] if we
just observe that any bounded sequence in W 1

2 (0, T ; H1
0 (Ω) , L2 (Ω)) possesses a

subsequence that converges strongly in L2 (ΩT ). Similar results for two fast spatial
scales and one fast temporal scale are formulated in terms of Σ-convergence in
[21]. �

We are now ready to prove the following homogenization result.

Theorem 5.5. Let {uε} be a sequence of solutions in W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω))
to (5.1). Then it holds that

uε(x, t) → u(x, t) in L2(ΩT ),

uε(x, t) ⇀ u(x, t) in L2(0, T ; H1
0 (Ω))

and
∇uε (x, t)

3,4
⇀ ∇u (x, t) +∇y1u1 (x, t, y1, s1) +∇y2u2

(
x, t, y2, s2

)
,

where u ∈ W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω)) is the unique solution to

∂tu (x, t)−∇ · (b (x, t)∇u (x, t)) = f(x, t) in ΩT ,

u (x, t) = 0 on ∂Ω× (0, T ) ,

u (x, 0) = g(x) in Ω

with

b (x, t)∇u (x, t) =

∫
Y2,3

a
(
y2, s3

)
(∇u +∇y1u1 +∇y2u2))dy2ds3.

Here u1 ∈ L2(ΩT × S1; H
1
] (Y1)/R) and u2 ∈ L2(ΩT × Y1,2; H

1
] (Y2)/R) are the

unique solutions to

∂s2u2 −∇y2 ·
((∫

S3

a
(
y2, s3

)
ds3

)
(∇u +∇y1u1 +∇y2u2)

)
= 0

and

∂s1u1 −∇y1 ·
∫

S2

∫
Y2

(∫
S3

a
(
y2, s3

)
ds3

)
(∇u +∇y1u1 +∇y2u2) dy2ds2 = 0.
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Proof. Since {uε} is bounded in W 1
2 (0, T ; H1

0 (Ω) , L2 (Ω)) we can apply Theo-
rem 5.2 and obtain that, for a suitable subsequence,

uε(x, t) → u(x, t) in L2(ΩT ),

uε(x, t) ⇀ u(x, t) in L2(0, T ; H1
0 (Ω))

and

∇uε (x, t)
3,4
⇀ ∇u (x, t) +∇y1u1

(
x, t, y1, s

3
)

+∇y2u2

(
x, t, y2, s3

)
,

where u1 ∈ L2(ΩT × S3; H1
] (Y1)/R) and u2 ∈ L2(ΩT × Y1,3; H

1
] (Y2)/R).

To find the homogenized problem we use the weak form∫
ΩT

−uε(x, t)v(x)∂tc (t) +

∫
ΩT

a

(
x

ε
,

x

ε2
,

t

ε2
,

t

ε4
,

t

ε5

)
∇uε (x, t) ·∇v (x) c (t) dxdt =∫

ΩT

f(x, t)v (x) c (t) dxdt (5.2)

of (5.1), where v ∈ H1
0 (Ω) and c ∈ D (0, T ), and letting ε → 0 we obtain from

Theorem 5.2 ∫
ΩT

−u(x, t)v(x)∂tc (t) +

(∫
Y2,3

a
(
y2, s3

)
(∇u (x, t) +

∇y1u1

(
x, t, y1, s

3
)

+∇y2u2

(
x, t, y2, s3

)
) · ∇v (x) c (t) dy2ds3

)
dxdt =∫

ΩT

f(x, t)v (x) c (t) dxdt.

We introduce the test functions

v(x) = εpv1(x)v2

(x

ε

)
v3

( x

ε2

)
, c(t) = c1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
in (5.2), where, if nothing else is stated, we choose v1 ∈ D (Ω) , v2 ∈ C∞

] (Y1),
v3 ∈ C∞

] (Y2) /R, c1 ∈ D (0, T ) , c2 ∈ C∞
] (S1), c3 ∈ C∞

] (S2) and c4 ∈ C∞
] (S3).

We get∫
ΩT

−uε (x, t) εpv1(x)v2

(x

ε

)
v3

( x

ε2

)
∂t

(
c1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

))
+

a

(
x

ε
,

x

ε2
,

t

ε2
,

t

ε4
,

t

ε5

)
∇uε (x, t) ·

∇
(
εpv1 (x) v2

(x

ε

)
v3

( x

ε2

))
c1 (t) c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
dxdt =∫

ΩT

f(x, t)εpv1(x)v2

(x

ε

)
v3

( x

ε2

)
c1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
dxdt
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and differentiating we have∫
ΩT

−uε (x, t) v1(x)v2

(x

ε

)
v3

( x

ε2

)(
εp∂tc1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
+

εp−2c1(t)∂s1c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
+ εp−4c1(t)c2

(
t

ε2

)
∂s2c3

(
t

ε4

)
c4

(
t

ε5

)
+

εp−5c1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
∂s3c4

(
t

ε5

))
+

a

(
x

ε
,

x

ε2
,

t

ε2
,

t

ε4
,

t

ε5

)
∇uε (x, t) ·

(
εp∇v1(x)v2

(x

ε

)
v3

( x

ε2

)
+ (5.3)

εp−1v1(x)∇y1v2

(x

ε

)
v3

( x

ε2

)
+ εp−2v1(x)v2

(x

ε

)
∇y2v3

( x

ε2

))
·

c1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
dxdt =∫

ΩT

f(x, t)εpv1(x)v2

(x

ε

)
v3

( x

ε2

)
c1(t)c2

(
t

ε2

)
c3

(
t

ε4

)
c4

(
t

ε5

)
dxdt.

We will investigate the equation (5.3) for different choices of test functions and
values of p.

To begin with we let p = 3 and by (ii) in Theorem 5.4 we get∫
ΩT

∫
Y2,3

−u2(x, t, y2, s3)v1(x)v2 (y1)v3(y2)c1(t)c2(s1)c3(s2)∂s3c4(s3)dy2ds3dxdt=0

and, by the variational lemma,∫
S3

−u2(x, t, y2, s3)∂s3c4 (s3) ds3 = 0

a.e. in ΩT × Y2,2. This means that u2 does not depend on s3 and hence belongs
to the space L2(ΩT × Y1,2; H

1
] (Y2)/R).

Next we choose p = 4, v3 = 1 and v2 ∈ C∞
] (Y1) /R in (5.3). Applying (i) in

Theorem 5.4 on the third and fourth term in (5.3) we obtain∫
ΩT

∫
Y1,3

−u1(x, t, y1, s
3)v1(x)v2 (y1) c1(t)c2 (s1) c3 (s2) ∂s3c4 (s3) dy2ds3dxdt = 0,

i.e., ∫
S3

−u1(x, t, y1, s
3)∂s3c4 (s3) ds3 = 0

a.e. in ΩT ×Y1,2 and hence u1 is also independent of s3. In the sequel we will use
the variational lemma with respect to the appropriate sets in the corresponding
way without comments.

Letting p = 3 and c4 = v3 = 1 and v2 ∈ C∞
] (Y1) /R we get by Theorem 5.4 (i)∫

ΩT

∫
Y1,3

−u1(x, t, y1, s
2)v1(x)v2 (y1) c1(t)c2 (s1) ∂s2c3 (s2) dy2ds3dxdt = 0.
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Again using the variational lemma together with the fact that u1 is independent
of s3 we end up with ∫

S2

−u1(x, t, y1, s
2)∂s2c3 (s2) ds2 = 0,

that is, u1 is independent of s2 as well and thus u1 ∈ L2(ΩT × S1; H
1
] (Y1)/R).

To find the first local problem we now let p = 2 and c4 = 1. Using Theorem 5.2
and (ii) in Theorem 5.4 we find that∫

ΩT

∫
Y2,3

−u2(x, t, y2, s2)v1(x)v2 (y1) v3 (y2) c1(t)c2 (s1) ∂s2c3 (s2) +

a
(
y2, s3

) (
∇u (x, t) +∇y1u1 (x, t, y1, s1) +∇y2u2

(
x, t, y2, s2

))
·

v1(x)v2 (y1)∇y2v3 (y2) c1(t)c2 (s1) c3 (s2) dy2ds3dxdt = 0

and hence ∫
S2

∫
Y2

−u2(x, t, y2, s2)v3 (y2) ∂s2c3 (s2) +((∫
S3

a
(
y2, s3

)
ds3

)(
∇u (x, t) +∇y1u1 (x, t, y1, s1) +∇y2u2

(
x, t, y2, s2

)))
·

∇y2v3 (y2) c3 (s2) dy2ds2 = 0,

which is the weak form of the first local problem for (5.1).
Next we choose p = 1, c3 = c4 = v3 = 1 and v2 ∈ C∞

] (Y1) /R and receive by
Theorem 5.2 and (i) in Theorem 5.4∫

ΩT

∫
Y1,1

−u1(x, t, y1, s1)v1(x)v2 (y1) c1(t)∂s1c2 (s1) +(∫
S2

∫
Y2

(∫
S3

a
(
y2, s3

)
ds3

)(
∇u(x, t)+∇y1u1(x, t, y1, s1)+∇y2u2

(
x, t, y2, s2

))
dy2ds2

)
·

v1(x)∇y1v2 (y1) c1(t)c2 (s1) dy1ds1dxdt = 0

and we end up with ∫
Y1,1

−u1(x, t, y1, s1)v2 (y1) ∂s1c2 (s1) +(∫
S2

∫
Y2

(∫
S3

a
(
y2, s3

)
ds3

)(
∇u(x, t)+∇y1u1(x, t, y1, s1)+∇y2u2

(
x, t, y2, s2

))
dy2ds2

)
·

∇y1v2 (y1) c2 (s1) dy1ds1 = 0,

the weak form of the second local problem. Since the functions u1 and u2 are
uniquely determined by the local problems the result holds for the entire sequence
and not just for a subsequence. �
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[14] L. Nechvátal, On two-scale convergence, Math. Comput. Simulation 61 (2003), no. 3-6,
489–495.

[15] G. Nguetseng, A general convergence result for a functional related to the theory of homo-
genization, SIAM J. Math. Anal. 20 (1989), no. 3, 608–623.

[16] G. Nguetseng, Σ-convergence of parabolic differential operators, manuscript.
[17] G. Nguetseng, H. Nnang and N. Svanstedt, G-convergence and homogenization of mono-

tone damped hyperbolic equations, Banach J. Math. Anal. 4 (2010), no. 1, 100–115.
[18] G. Nguetseng and J.L. Woukeng, Σ-convergence of nonlinear parabolic operators, Nonlinear

Anal. 66 (2007), no. 4, 968–1004.
[19] J. Persson, Homogenization of monotone parabolic problems with several temporal scales.

Appl. Math. (to appear).
[20] J.L. Woukeng, Periodic homogenization of nonlinear non-monotone parabolic operators

with three time scales, Ann. Mat. Pura Appl. (4) 189 (2010), no. 3, 357–379.
[21] J.L. Woukeng, Σ-convergence and reiterated homogenization of nonlinear parabolic opera-

tors, Commun. Pure Appl. Anal. 9 (2010), no. 6, 1753–1789.
[22] E. Zeidler, Nonlinear functional analysis and its applications. II/A. Linear monotone op-

erators, Springer-Verlag, New York, 1990.

1 Department of engineering and sustainable development, Mid Sweden Uni-
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versity, Östersund 83125, Sweden.

E-mail address: marianne.olsson@miun.se

4 Department of engineering and sustainable development, Mid Sweden Uni-
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