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A NOTE ON THE EXPRESSION OF MODULUS OF
CONVEXITY

XIAOLIN ZENG

Communicated by J. Esterle

Abstract. It is well known that different kinds of expressions of modulus of
convexity are essentially based on two geometrical propositions. For one of the
propositions we first present a new proof by the Hahn–Banach theorem and
intermediate value theorem, then give some corollaries to it which lead to some
new expressions of modulus of convexity.

1. Introduction and preliminaries

Recently, companying the deep and systematic development of random metric
theory [3, 4, 5, 12], the geometry of random normed modules naturally began
in [6]. A random version of modulus of convexity of a normed space, namely,
modulus of random convexity, was introduced therein as a powerful tool for the
study of the geometry of random normed modules. The rich and complicated
stratification structure of a random normed module often causes many difficulties
in the investigation into modulus of random convexity, which motivated us to
analyze classical modulus of convexity in more details. In fact, this note is a
by-product of such considerations.

The modulus of convexity of a normed space X was defined in [1] by

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε

}
(ε ∈ [0, 2]).

We can, without loss of generality, suppose that the scalar field of every normed
space occurring in this note is R.

It is clear that δ(0) = 0. Moreover, when dim(X) = 1 we have δ(ε) = 1 for all
ε ∈ (0, 2]. When dim(X)≥ 2, there have appeared in [2, 8] and [9] different kinds
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of expressions of δ(ε) as summarized in (1,1) and (1.2) below, respectively.

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = ‖y‖ = 1 and ‖x− y‖ = ε

}
= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ ≤ 1 and ‖x− y‖ = ε

}
= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ = ε

}
= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε

}
= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε

}
,

(1.1)

for all ε ∈ [0, 2] and

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = ‖y‖ = 1 and ‖x− y‖ > ε

}
= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ ≤ 1 and ‖x− y‖ > ε

}
= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ > ε

}
,

(1.2)

for all ε ∈ [0, 2).
In the establishment of (1.1) and (1.2), Propositions 1.1 and 1.2 below have

played important roles, respectively.
For the sake of conciseness, X always denotes a normed space with dim(X) ≥ 2,

SX := {x ∈ X | ‖x‖ = 1} the unit sphere of X and U◦X := {x ∈ X | ‖x‖ < 1}
the open unit ball of X in the sequel.

Proposition 1.1. [8] For any two elements x0 and y0 in X such that ‖x0‖ = 1
and ‖y0‖ ≤ 1 there exist x1, y1 ∈ X such that ‖x1‖ = ‖y1‖ = 1, x1 − y1 = x0 − y0
and ‖x1 + y1‖ ≥ ‖x0 + y0‖.
Proposition 1.2. [9] Suppose that 0 < ε < 2, x0 and y0 ∈ SX such that ‖x0 −
y0‖ = ε. Then there exist two sequences {xn, n ∈ N} and {yn, n ∈ N} in SX such
that xn → x0, yn → y0 as n→∞ and ‖xn − yn‖ > ε (n ∈ N).

There are two known approaches to the proofs of Propositions 1.1 and 1.2:
one depends on the connectedness of the unit sphere and delicate geometrical
arguments in R2 as demonstrated in [8, 9], and the other on the Hahn–Banach
theorem and intermediate value theorem as given in [11] for the proof of Proposi-
tion 1.1. Either is feasible in classical analysis. But when we study the geometry
of random normed modules we find that the difficulty caused by inherent strati-
fication structure of a random normed module can hardly be overcome with the
first method. However, as shown in [7], the second method is fairly suitable for
the study in random normed modules. Thus it is meaningful to give a new proof
of Proposition 1.2 by using the second method. It forms an interesting part of
this note.
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The other part of this note is devoted to the equivalent formulas for the modulus
of convexity. Suppose that 0 < ε < 2, x0 and y0 ∈ SX such that ‖x0 − y0‖ = ε.
From Proposition 1.2 we can obtain the following corollaries, which together with
some known expressions in (1.1) and (1.2) easily lead to Theorem 1.7 below.

Corollary 1.3. There exist two sequences {xn, n ∈ N} and {yn, n ∈ N} in U◦X
such that xn → x0, yn → y0 as n→∞ and ‖xn − yn‖ > ε (n ∈ N).

Corollary 1.4. There exist two sequences {xn, n ∈ N} and {yn, n ∈ N} in U◦X
such that xn → x0, yn → y0 as n→∞ and ‖xn − yn‖ = ε (n ∈ N).

Corollary 1.5. There exist two sequences {x′n, n ∈ N} in U◦X and {yn, n ∈ N} in
SX such that x′n → x0, yn → y0 as n→∞ and ‖x′n − yn‖ > ε (n ∈ N).

Corollary 1.6. There exist two sequences {x′′n, n ∈ N} in U◦X and {yn, n ∈ N} in
SX such that x′′n → x0, yn → y0 as n→∞ and ‖x′′n − yn‖ = ε (n ∈ N).

Theorem 1.7.

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ < 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
(1.3)

= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ < 1, ‖y‖ < 1 and ‖x− y‖ = ε

}
(1.4)

and

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
(1.5)

= inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ < 1 and ‖x− y‖ = ε

}
, (1.6)

for all ε ∈ (0, 2).

Finally, as a consequence of Theorem 1.7, (1.1) and (1.2), we can express the
modulus of convexity in the following way.

Corollary 1.8.

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖(R1)1, ‖y‖(R2)1 and ‖x− y‖(R3)ε

}
,(1.7)

where (R1), (R2) ∈ {≤, <,=} and (R3) ∈ {≥, >,=}. When either < or >
occurs, the corresponding expression is valid for any ε ∈ (0, 2); otherwise, for any
ε ∈ (0, 2].

With the concise proofs in this note, Corollaries from 1.3 to 1.6, Theorem 1.7
and Proposition 1.2 can all be generalized into random normed modules based on
complicate analysis of stratification structure as in [7]. Since the work involves
more, it will be discussed in a forthcoming paper.

The rest of this section consists of some simple facts in normed spaces which
are useful in our new proof for Proposition 1.2.

Recall that the following proposition is deduced from the convexity of the unit
ball of a normed space X.
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Proposition 1.9. Let x and y be two elements in SX . If there exists some α0 ∈ R
with 0 < α0 < 1 such that ‖α0 ·x+ (1−α0) · y‖ = 1, then ‖α ·x+ (1−α) · y‖ = 1
for any α ∈ R with 0 ≤ α ≤ 1.

Proposition 1.10 below shows that the dimension of the normed space discussed
in Proposition 1.2 is not less than 2.

Proposition 1.10. Let x and y be two elements in SX . Then x and y are linearly
independent if 0 < ‖x− y‖ < 2.

Proof. Otherwise, without loss of generality, suppose that there exists a ∈ R such
that y = ax, then ‖y‖ = |a|‖x‖, i.e., |a| = 1, so that we have ‖x − y‖ = 0 or 2,
which is a contradiction. �

Definition 1.11. ([9]) Let x and y be two elements in X. Then xy := {αx +
(1− α)y | α ∈ R)} is called the straight line through the points x and y.

Lemma 1.12. Let (X, ‖ · ‖) be a normed space and x, y, u, v ∈ X. If xy∩uv = ∅
and u = k1x+ l1y, v = k2x+ l2y, where ki, li ∈ R, i = 1, 2. Then k1 + l1 = k2 + l2,
which implies that u− v = ξ(x− y), where ξ = k1 − k2.

Proof. Since λu+ (1−λ)v /∈ xy (λ ∈ R), namely, (λk1 + (1−λ)k2)x+ (λl1 + (1−
λ)l2)y /∈ xy, we have

λ(k1 + l1) + (1− λ)(k2 + l2) 6= 1 (λ ∈ R) . (1.8)

Suppose that k1 + l1 6= k2 + l2, let λ′ = (k1 + l1 − k2 − l2)−1(1− k2 − l2), then it
is easy to see that λ′(k1 + l1) + (1− λ′)(k2 + l2) = 1, which contradicts to (1.8).
Thus k1 + l1 = k2 + l2. �

Lemma 1.13. Let x and y be two elements in X which are linearly independent.
Then there exists x∗ ∈ X∗ such that x∗(x) = 0 and x∗(y) = 1.

Proof. Let M = {kx + ly | k, l ∈ R}, then M is a two-dimensional subspace of
X. Define a mapping f : M → R by

f(kx+ ly) = l (k, l ∈ R).

Since x and y are linearly independent, f is a linear functional, so that f is
bounded. Obviously, f(x) = 0 and f(y) = 1, then by Hahn–Banach theorem
there exists x∗ ∈ X∗ such that x∗(x) = 0 and x∗(y) = 1. �

The geometrical meaning of Lemma 1.14 below is very clear. Meanwhile, its
proof is, in some sense, interesting.

Lemma 1.14. Let (X, ‖ · ‖) be a real normed space and x, y ∈ SX . If α, β ∈ R
and α ≤ β < 0, z = αx+ (1− α)y and w = βx+ (1− β)y, then ‖z‖ ≥ ‖w‖ ≥ 1.

Proof. Clearly, ‖w‖ ≥ ‖(1 − β)y‖ − ‖βx‖ = (1 − β) − (−β) = 1. Applying
Hahn–Banach theorem to w we can obtain an f ∈ X∗ such that f(w) = ‖w‖ and
‖f‖∗ = 1. Thus βf(x)+(1−β)f(y) = ‖w‖ ≥ 1, namely, β(f(x)−f(y))+f(y) ≥ 1.
Since f(y) ≤ ‖f‖∗‖y‖ = 1, then f(x) ≤ f(y). Finally, from ‖z‖ − ‖w‖ = ‖z‖ −
f(w) ≥ f(z)− f(w) = (α− β)(f(x)− f(y)) ≥ 0 it follows that ‖z‖ ≥ ‖w‖. �
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2. Proofs

The new proof of Proposition 1.2 together with the proofs of Corollaries from
1.3 to 1.6, Theorem 1.7 and Corollary 1.8 are presented in this section.

We first give a new proof of Proposition 1.2 with the above preparations.

Proof of Proposition 1.2. Since x0 and y0 are linearly independent, so are x0− y0
and y0. By Lemma 1.13, there exists x∗ ∈ X∗ such that x∗(x0 − y0) = 0 and
x∗(y0) = 1, namely

x∗(x0) = x∗(y0) = 1. (2.1)

Let zn = (1 + 1
n
)x0 − 1

n
y0, then

x∗(zn) = 1 (n ∈ N), (2.2)

zn → x0 as n→∞. (2.3)

By Lemma 1.14 we have

‖zn‖ ≥ ‖zm‖ ≥ 1 (n,m ∈ N and n ≤ m). (2.4)

Let δn = ‖zn‖−1 (n ∈ N), then 0 < δn ≤ 1 and δ−1n = ‖zn‖ (n ∈ N). Combining
(2.3) and (2.4) we can see that δn ↗ 1 as n→∞.

Define a real function f as follows:

f(λ) = ‖λx0 + (1− λ)y0‖ (λ ∈ R).

The continuity of f is obvious.
When λ < 0, f(λ) = ‖λ(x0− y0) + y0‖ ≥ −λε− 1, certainly, there exists Λ ∈ R

such that Λ ≤ 0 and f(Λ) > δ−11 = ‖z1‖.
Notice that f(0) = 1 ≤ δ−11 < f(Λ), by the intermediate value theorem there

exists λ1 ∈ R such that Λ ≤ λ1 ≤ 0 and f(λ1) = δ−11 .
Then notice that f(0) ≤ δ−12 ≤ δ−11 = f(λ1), by the intermediate value theorem

there exists λ2 ∈ R such that λ1 ≤ λ2 ≤ 0 and f(λ2) = δ−12 .
Repeating the process, we can obtain a nondecreasing sequence {λn, n ∈ N} in

R such that λn ≤ 0 and f(λn) = δ−1n (n ∈ N). Observe that

f(λn) = δ−1n = ‖zn‖ ↘ 1 (2.5)

as n → ∞. Let λ′ = limk→∞ λk, then λ′ ≤ 0. By the continuity of f we can see
that f(λk) → f(λ′)(k → ∞), which together with (2.5) implies that f(λ′) = 1.
The following proof is divided into three cases.

(Case 1). When there exists some n0 ∈ N such that ‖zn0‖ = 1, then ‖zn‖ =
1 (n ≥ n0). Let

xn = zn+n0 ,

yn = y0 (n ∈ N).

Then it is easy to check that {xn, n ∈ N} and {yn, n ∈ N} are just desired.
(Case 2). When ‖zn‖ > 1 (n ∈ N) and λ′ < 0, let

xn = x0,

yn =
λ′

n+ 1
(x0 − y0) + y0 (n ∈ N).
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Observe that 0 > λ′

n+1
> λ′ and f(λ′) = ‖λ′x0 + (1− λ′)y0‖ = 1, by Lemma 1.14

we have ‖yn‖ = 1 (n ∈ N). Consequently, it is direct to check that {xn, n ∈ N}
and {yn, n ∈ N} are desired.

(Case 3). When ‖zn‖ > 1 (n ∈ N) and λ′ = 0, let

xn = δnzn,

yn = δn(λnx0 + (1− λn)y0) (n ∈ N).

It is a straightforward verification that xn → x0, yn → y0 as n → ∞ and
‖xn‖ = ‖yn‖ = 1 (n ∈ N). We only need to show that ‖xn − yn‖ > ε (n ∈ N).

Notice that

xn − yn = δn(1 +
1

n
− λn)(x0 − y0), (2.6)

which certainly implies that

‖xn − yn‖ > 0. (2.7)

We claim that x0(−y0) ∩ xnyn 6= ∅. Otherwise, by Lemma 1.12 there exists
ξn ∈ R such that xn − yn = ξn(x0 + y0) for each n ∈ N. Since x0 and y0 are
linearly independent, we have{

δn(1 + 1
n
− λn) = ξn,

−δn(1 + 1
n
− λn) = ξn,

which leads to ξn = 0, so that xn − yn = θ, a contradition to (2.7).

Similarly, y0(−x0) ∩ xnyn 6= ∅.
For each n ∈ N, take x′n ∈ x0(−y0)∩xnyn and y′n ∈ y0(−x0)∩xnyn, and suppose

that

x′n = anxn + (1− an)yn = bnx0 + (1− bn)(−y0), (2.8)

y′n = cnxn + (1− cn)yn = dny0 + (1− dn)(−x0), (2.9)

where an, bn, cn, dn ∈ R.
Consider (2.8). Recalling (2.1), (2.2) and letting x∗ act on each side of (2.8),

by the definition of xn and yn we have x∗(x′n) = δn = 2bn − 1, thus bn = δn+1
2

,
further, ‖x′n‖ ≤ 1. We will show that 0 < an < 1 as follows.

If an ≤ 0 (or an ≥ 1) for some n ∈ N, then ‖x′n‖ ≥ 1, so that ‖x′n‖ = 1. Since
0 < δn < 1, then 0 < bn < 1. By Proposition 1.9 we derive that ‖x0−y0

2
‖ = 1,

which is a contradiction to ‖x0 − y0‖ = ε. Therefore, 0 < an < 1 (n ∈ N).
Similarly, we have 0 < cn < 1 (n ∈ N) by (2.9).

Noticing (2.6), (2.9)− (2.8) yields

y′n − x′n = (cn − an)(xn − yn) = (cn − an)δn(1 +
1

n
− λn)(x0 − y0), (2.10)

and

y′n − x′n = (dn − bn + 1)y0 + (dn − bn − 1)x0, (2.11)

which together with the linear independence of x0 and y0 imply that{
(dn − bn + 1) + (cn − an)δn(1 + 1

n
− λn) = 0,

(dn − bn − 1)− (cn − an)δn(1 + 1
n
− λn) = 0,
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for each n ∈ N. Thus dn = bn (n ∈ N), so that y′n−x′n = y0−x0 by (2.11). Then
by (2.10) y0−x0 = (cn−an)(xn− yn), so that ε = ‖y0−x0‖ = |cn−an|‖xn− yn‖,
which yields |cn − an| > 0 (n ∈ N).

Finally, by 0 < |cn − an| < 1, we have

‖xn − yn‖ =
ε

|cn − an|
> ε (n ∈ N).

�

Remark 2.1. The above proof for Proposition 1.2 as well as the one in [11] for
Proposition 1.1 relies on the Hahn–Banach theorem and intermediate value theo-
rem in a considerably different way. Such technique of transforming geometrical
questions of normed spaces into the ones of continuous linear functionals has their
root in the earlier literature [10].

Now, let us give the respective proofs of the four corollaries to Proposition 1.2,
even if they are not very difficult.

Proof of Corollary 1.3. Let {xn, n ∈ N} and {yn, n ∈ N} be the two sequences
obtained for x0 and y0 as in Proposition 1.2. Take arbitrarily cn such that

1 < cn < ‖xn−yn‖
ε

for each n ∈ N, and let x′n = xn
cn

and y′n = yn
cn

for each

n ∈ N. Then it is easy to check that {x′n, n ∈ N} and {y′n, n ∈ N} are just
required sequences. �

Proof of Corollary 1.4. Let {xn, n ∈ N} and {yn, n ∈ N} be the two sequences

obtained for x0 and y0 as in Proposition 1.2. Take dn = ‖xn−yn‖
ε

for each n ∈ N,
and let x′′n = xn

dn
and y′′n = yn

dn
for each n ∈ N. Then it is easy to check that

{x′′n, n ∈ N} and {y′′n, n ∈ N} are just required sequences. �

Proof of Corollary 1.5. Let {xn, n ∈ N} and {yn, n ∈ N} be the two sequences
obtained for x0 and y0 as in Proposition 1.2. Take a real number αn ∈ (0, 1)
such that 1 − αn < ‖xn − yn‖ − ε for each n ∈ N, then αn → 1 as n → ∞. Let
x′n = αnxn (n ∈ N). It is easy to see that ‖yn − x′n‖ = ‖yn − xn + (1− αn)xn‖ ≥
‖yn − xn‖ − (1 − αn) > ε, ‖x′n‖ < 1, ‖yn‖ = 1 (n ∈ N), x′n → x0 and yn → y0 as
n→∞. �

Proof of Corollary 1.6. Let {x′n, n ∈ N} and {yn, n ∈ N} be the two sequences
obtained for x0 and y0 as in Corollary 1.5. Let λn = ε

‖x′n−yn‖
(n ∈ N), and

x′′n = λnx
′
n + (1− λn)yn. Then it is easy to see that λn → 1, so that x′′n → x0 and

yn → y0 as n → ∞. It is a straightforward verification that ‖x′′n‖ < 1, ‖yn‖ = 1
and ‖x′′n − yn‖ = ε (n ∈ N). �

Then, we can prove Theorem 1.7.

Proof of Theorem 1.7. In order to prove (1.3), by the third expression in (1.2)
we only need to check that

δ(ε) ≥ inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ < 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
.
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For any x0, y0 ∈ SX such that ‖x0 − y0‖ = ε, let {xn, n ∈ N} and {yn, n ∈ N} be
the two sequences as obtained in Corollary 1.3. Then

1−
∥∥∥∥x0 + y0

2

∥∥∥∥ = lim
n→∞

(
1−

∥∥∥∥xn + yn
2

∥∥∥∥)
≥ inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ < 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
.

Consequently, the desired inequality can be verified by the first expression in
(1.1).

(1.4) is justified in the same way by Corollary 1.4 together with the first and
third expressions in (1.1).

Now, let us prove (1.5). By the last expression in (1.1) it is clear that

δ(ε) ≤ inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
.

Thus we only need to check that

δ(ε) ≥ inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
.

For any x0, y0 ∈ SX such that ‖x0 − y0‖ = ε, let {x′n, n ∈ N} and {yn, n ∈ N} be
the two sequences as obtained in Corollary 1.5. Then we have

1−
∥∥∥∥x0 + y0

2

∥∥∥∥ = lim
n→∞

(
1−

∥∥∥∥yn + x′n
2

∥∥∥∥)
≥ inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
.

Combining the first expression in (1.1) we complete the verification of (1.5).
Similarly, (1.6) can be verified by Corollary 1.6 and the first expression in (1.1).�

Finally, we conclude this note with the proof of Corollary 1.8.

Proof of Corollary 1.8. Combining (1.3) and the last expression in (1.1) we have

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ < 1, ‖y‖ < 1 and ‖x− y‖ ≥ ε

}
, (2.12)

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ < 1 and ‖x− y‖ ≥ ε

}
, (2.13)

and

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ < 1 and ‖x− y‖ > ε

}
. (2.14)

From (1.4) and the third expression in (1.1) it follows that

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ < 1 and ‖x− y‖ = ε

}
. (2.15)
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From (1.6) and the last expression in (1.1) it follows that

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = 1, ‖y‖ < 1 and ‖x− y‖ ≥ ε

}
. (2.16)

Summarizing the expressions in (1.1) and (1.2), from (1.3) to (1.6), and from
(2.12) to (2.16), we obtain (1.7). �
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